
Familial exudative vitreoretinopathy (FEVR) is a rare, 
inherited, bilateral eye disorder characterized largely by the 
avascular peripheral retina that leads to retinal ischemia. This 
may further progress to retinal neovascularization, subretinal 
exudation and hemorrhages, and partial or total retinal 
detachment that leads to complete blindness [1,2]. FEVR is 
a genetically heterogeneous disorder that exhibits variable 
clinical phenotypes across patients. The clinical heteroge-
neity is further compounded by the course of the disease that 
may vary between the two eyes of a patient and among the 
affected members of a family [1,2].

Thus far, mutations in five candidate genes, viz., Norrie 
disease pseudoglioma (NDP; Xp11.3; OMIM 300658), 
Frizzled-4 (FZD4; 11q14.2; OMIM 604579), low-density 
lipoprotein receptor related protein-5 (LRP5; 11q13.2; OMIM 
603506), tetraspanin-12 (TSPAN12; 7q31.31; OMIM 613138), 
and Zinc finger protein-408 (ZNF408; 11p11.2; OMIM 
616454) have been implicated in FEVR [3-29]. The mutations 

in these genes were involved in autosomal dominant (FZD4, 
LRP5, TSPAN12, and ZNF408) [10-12,17,20-22,24,26], 
autosomal recessive (LRP5 and TSPAN12) [15,16,23], and 
X-linked (NDP) forms of FEVR [3-9,30]. Overall, the muta-
tions in these genes accounted for less than 50% of all FEVR 
cases worldwide suggesting the involvement of other uniden-
tified genes in the disease pathogenesis [26,28].

The proteins encoded by the NDP, FZD4, LRP5, and 
TSPAN12 genes are involved in the formation of a ligand-
receptor complex that leads to the stabilization and nuclear 
translocation of the cytoplasmic β-catenin molecules and 
activation of T-cell factor (TCF)/lymphoid enhancer factor 
(LEF)-mediated gene expression, similar to the canonical 
Wnt/β-catenin pathway [31-37]. The NDP gene encodes for a 
133 amino acid–containing protein, Norrin, that is secreted 
by the Müller glial cells of the retina [34]. Though Norrin is 
structurally divergent from the Wnt ligands, it specifically 
binds to the transmembrane FZD4 receptor and LRP5 core-
ceptor complex on the retinal vascular endothelial cells and 
induces the canonical Wnt/β-catenin pathway [31,33,34]. The 
TSPAN12 protein enhances FZD4 oligomerization through 
physical binding and thus, efficiently induces the signaling 
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pathway [32,36]. This pathway plays a crucial role in hyaloid 
vessel regression, developmental retinal angiogenesis, and 
maintenance of retinal blood vessel integrity and blood–
retinal barrier (BRB) property in adults [31-33,35,37-39]. This 
pathway also has roles in placental angiogenesis, rescuing 
oxygen-induced retinal vessel loss, maintenance of blood–
brain barrier (BBB) property, and induction of neuroprotec-
tive growth factor expression [35,37,40-45]. In addition to 
its healthy physiologic roles, this pathway is involved in the 
angiogenesis of tumors in colorectal cancer [46]. A recent 
study also suggested the role of Norrin as a ligand for leucine-
rich repeat containing G-protein coupled receptor-4 (LGR4) 
and bone morphogenesis protein (BMP) antagonist [47]. The 
most recently identified candidate gene in FEVR is ZNF408, 
and its role in the disease pathogenesis is not yet known [26].

The molecular genetics of FEVR have been well charac-
terized across different ethnic groups, including Caucasian, 
Chinese, and Japanese patients [3-30]. Although the mutation 
spectrum of the NDP gene in FEVR has been extensively 
documented in these populations, there are no such reports 
from India. Thus, we screened the NDP gene in patients 
from southern India, to understand the gene’s contribution 
in FEVR.

METHODS

Enrollment and clinical evaluation of the subjects: The 
study was approved by the Institutional Review Board of 
L.V. Prasad Eye Institute (LVPEI), Hyderabad, India, and 
adhered to the tenets of the Declaration of Helsinki. The 225 
consecutive subjects, including 110 unrelated patients with 
FEVR and 115 healthy controls, were recruited at LVPEI 
from January 1, 2008, to December 31, 2009. The diagnosis 
of FEVR was based on indirect ophthalmoscopic examina-
tion, B-scan ultrasonography, and fundus fluorescein angi-
ography (in selective patients). The clinical examination was 
performed by an ophthalmologist with specialization in the 
retina (SJ). The stages of the disease were classified based 
on the Pendergast and Trese classification [48]. All healthy 
subjects underwent a comprehensive ophthalmic examination 
including a dilated fundus examination with indirect ophthal-
moscopy. Written informed consent was obtained from all 
adult participants and the guardians of minors before their 
enrollment in the study. All control subjects were ethnically 
matched and recruited from the same geographic region as 
the patients with FEVR. Blood samples from all subjects were 
collected in heparinized vacutainers and immediately stored 
in −20 °C deep freezers until further use.

Clinical evaluation of the subjects: The inclusion criteria for 
the patients with FEVR included the following criteria.

Essential criteria: The following essential criteria were used:

i. Each FEVR patient born full term without any 
evidence of low birthweight, septicemia, apnea, or oxygen 
supplementation;

ii. Bilateral presence of the disease with a healthy corneal 
diameter;

iii. Vitreoretinal characteristics including a persistent 
peripheral avascular retina that was never vascularized (in 
eyes in which the peripheral retina was visualized); bilat-
eral infantile or neonatal retinal detachment presenting 
as leukocoria associated with a clear lens and a retrolen-
ticular membrane (pseudoglioma) where all other causes are 
excluded; variable extent of vitreous condensation, retinal 
new vessels, retinal angiomatous proliferation or exudation 
at the posterior edge of the avascular retina; retinal stretching 
and dragging or folds due to vitreous condensation and 
traction;

iv. One eye has a persistent peripheral avascular retina;

v. Vitreoretinal characteristics described above with the 
other eye having a pseudoglioma retinal detachment since 
birth or early infancy with a healthy corneal diameter; and

vi. Rhegmatogenous retinal detachments associated with 
any of these described vitreoretinal characteristics.

Additional criteria: Additional features were investigated if 
a family member revealed any of these vitreoretinal signs. 
The family members were then clinically evaluated following 
their pedigree documentation. Systemic features, including 
seizures, mental retardation, hearing problems, develop-
mental delays, etc., were recorded but did not constitute 
exclusion of patients with typical ocular findings.

Mutation screening in the NDP gene: Genomic DNA was 
extracted from blood leucocytes using standard Phenol-
Chloroform extraction protocols [49]. The 28 kb NDP gene 
consists of three exons with a transcript length of 1.85 kb and 
an open reading frame of 399 bp (NM_000266.3). The coding 
and non-coding exons along with the intron–exon boundaries 
were PCR amplified with seven overlapping sets of primers. 
The 5′ untranslated region (UTR) and the coding regions 
of the gene were amplified by using three different sets of 
primers that have been previously described [50], while four 
sets of predesigned primers were used for the amplification of 
the 3′ UTR (Table 1). Finally, these amplicons were screened 
with resequencing on an automated DNA sequencer ABI3130 
XL (Applied Biosystems, Foster City, CA) using the Big Dye 
chemistry (version 3.1) and following the manufacturer’s 
guidelines.
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Confirmation of the observed variants and bioinformatics 
analysis: The observed variants in the NDP gene were further 
validated with resequencing by another investigator who 
was masked to the genotype of the subjects. The observed 
variants were also searched in the dbSNP [51], ESP5400 
[52], NIEHS95 [53], and ExAC [54] databases and avail-
able literature for filtering out the known polymorphisms. 
Multiple sequence alignments were performed to determine 
the conservation of the wild-type amino acid residues at the 
sites harboring the missense changes using the ClustalW 
program with different protein orthologs retrieved from the 
NCBI database [55]. The functional effects of the identified 
missense changes were predicted using computational tools, 
Sorting Intolerant From Tolerant (SIFT) [56] and PolyPhen-2 
[57]. The detailed protocols on the use of these programs 
are provided as a supplementary item (Appendix 1). The 
observed missense changes were considered pathogenic when 
they segregated with the disease phenotype, were absent in 
the ethnically matched healthy controls along with the exome 
databases and their wild-type protein residues were highly 
conserved, and were predicted to be damaging based on the 
bioinformatic analysis (SIFT and PolyPhen-2). The effect of 
these changes on mRNA splicing was further evaluated using 
the Human Splicing Finder analysis [58].

RESULTS

Among the 110 clinically diagnosed and unrelated probands 
with FEVR (67 men and 43 women), 34 (30.91%) had a family 
history of the disease. Eight different mutations were observed 
in the coding regions of ten probands with FEVR (9.09%, 
95% confidence interval [CI], 7.04–19.17%; Figure 1, Figure 
2, and Table 2). Consanguinity was observed in three fami-
lies with FEVR who harbor NDP mutations. Five mutations 
were novel, including three missense changes (p.His50Asp, 
p.Gly113Asp, and p.Cys126Arg) and two small base pair frame 
shift deletions (p.Asp23GlufsX9 and p.Ile48ValfsX55). The 

p.His50Asp mutation was observed in three familial FEVR 
cases while the p.Gly113Asp, p.Cys126Arg, and p.Arg121Gln 
changes were observed in three sporadic cases (Figure 1). 
Although the p.His50Asp change segregated with the disease 
phenotype in all affected family members of the probands, 
some of the female carriers were found to be healthy in indi-
rect ophthalmoscopic examination but were unavailable for 
further evaluation with fundus fluorescein angiography.

Additionally, three previously reported mutations 
comprising a deletion (p.His4ArgfsX21) [18], a nonsense 
change (p.Ser57*) [59], and a recurrent missense change 
(p.Arg121Gln) [9,17,30] were observed in three sporadic 
FEVR cases. These mutations were not observed in the 115 
ethnically matched controls and were not reported earlier 
in the dbSNP [51], ESP5400 [52], NIEHS95 [53], and ExAC 
[54] databases. Apart from these potential mutations, a previ-
ously reported 14 bp deletion -409_-395del114bp [6,7] and a 
single nucleotide polymorphism (SNP; rs45501198) in the 5′ 
UTR were observed in a family with three affected siblings. 
Further, two novel variations in the 3′ UTR, c.*522T>C and 
c.*974C>G, were observed in two patients with disease 
stages 3B (sporadic) and 5 (familial), respectively (Appendix 
1). However, these changes were non-pathogenic and did not 
appear to cosegregate with FEVR.

The wild-type residues of the three novel missense 
changes identified in this study were highly conserved across 
different species and were predicted to be pathogenic based 
on bioinformatic analysis (Figure 3 and Table 2). However, 
no significant effect of these mutations was observed on the 
potential splice sites or splicing-regulatory elements. As NDP 
is an X-linked gene, mutations were predominantly observed 
in the male probands in the hemizygous condition, and some 
of the female carriers exhibited the disease phenotype (Figure 
1). In the present study, the three deletions (p.His4ArgfsX21, 
p.Asp23GlufsX9, and p.Ile48ValfsX55) and a reported trun-
cating mutation (p.Ser57*) were found in exon 2. All three 

Table 1. Primers for amplification of the 3' UTR of NDP.

Primer Primer sequence
Amplicon 
size

Annealing tempera-
ture (°C)

MgCl2 concen-
tration (mM)

NDP-3UTR-1F 5’-CCAGACTTCCAAGCTGAAGG-3’ 352 58 1.5
NDP-3UTR-1R 5’-ACCAAACACTGACAGCCTGA-3’      
NDP-3UTR-2F 5’-TTGGCTCTCAATGCTGTTTG-3’ 499 58 1.5
NDP-3UTR-2R 5’-GCTGTCAAGAGTTCCAGCATC-3’      
NDP-3UTR-3F 5’-CAGCCAGCGAACTGACATTA-3’ 297 54 1.5
NDP-3UTR-3R 5’-TTAGAGAATGATGCCCGTGA-3’      
NDP-3UTR-4F 5’-GCATGCAAATTAGACAACCAA-3’ 458 58 1.5
NDP-3UTR-4F 5’-AGGAGATGCTCAAGCACTAGC-3’      
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deletions led to a frame shift and the formation of prema-
ture termination codons. In the case of p.His4ArgfsX21 
(c.11_12delAT) and Asp23GlufsX9 (c.69delC) deletions, 
the premature termination codons were formed in exon 2, 
which is followed by exon 3 and was therefore suggestive of 
nonsense-mediated mRNA decay [60]. The p.Ile48ValfsX55 
(c.142_145delATCA) deletion led to the formation of a prema-
ture termination codon in exon 3 that could result either in 
nonsense-mediated mRNA decay or in the formation of a 
truncated protein [60].

Phenotypes of the patients with NDP gene mutations: All ten 
probands who harbor NDP gene mutations presented with 
typical clinical features of FEVR characterized by avascu-
larized peripheral retina, nystagmus, retinal hemorrhages, 
exudation, vitreous traction, various degrees of ectopic 
macula, falciform retinal folds, closed funnel retinal folds 
with or without partial or total retinal detachments and retro-
lental membranes, and no other systemic features. Additional 
clinical details of these probands and their affected family 
members are provided in Appendix 1 and Figure 4.

Figure 1. Pedigrees of the FEVR families with NDP gene mutations. Completely and partially shaded symbols represent severe stages and 
milder stages of the disease, respectively. Open symbols represent unaffected individuals. Y indicates the Y chromosome. - indicates the 
presence of deletion, and + indicates the wild-type allele. An asterisk (*) over the pedigree symbol represents an individual screened for 
NDP gene variations.

http://www.molvis.org/molvis/v22/491
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Almost all probands harboring NDP mutations presented 
with a bilaterally severe form of FEVR at <1 year of age. Only 
the proband (FEVR family 85) with the Gly113Asp mutation 
had an atypical presentation with a bilateral avascular periph-
eral retina with vitreous condensation along with straight-
ening of the arcades and was diagnosed at 24 years of age. 
The disease phenotype was also observed in the women who 
harbor the heterozygous p.His50Asp and p.Asp23GlufsX9 
mutations (Figure 1) but with a lesser degree of severity 
compared to the male probands. The female carriers who 
harbored the heterozygous p.Ile48ValfsX55, p.Ser57*, 
p.Gly113Asp, and p.Arg121Gln changes were phenotypically 
normal on indirect ophthalmoscopic examination (Figure 
1). The p.His4ArgfsX21 and p.Cys126Arg mutations were 
detected only in the probands with bilateral total retinal 
detachment condition. These two changes were suggestive 
of de novo origin as they were not detected in the probands’ 
parents.

DISCUSSION

The Norrin-FZD4 signaling pathway is a variant of the 
canonical Wnt signaling pathway and plays a crucial role in 
the development of retinal angiogenesis [2]. It is presumed 
that alterations in highly conserved amino acids of genes 
involved in this pathway might affect either the structure of 
the ligand (Norrin) or the proteins involved in the formation 
of the receptor complex (FZD4, LRP5, and TSPAN12) and 
their localizations. These alterations might either inactivate 
or alter the pathways resulting in the inhibition of abnormal 
vascular development. Mice that lack NDP, FZD4, LRP5, and 
TSPAN12 [31-33,39,61] have further demonstrated the role of 
these genes in capillary maturation and signaling mecha-
nisms that are involved in retinal angiogenesis and normal 
retinal development.

Recently, the crystal structure of Norrin and its structural 
basis for FZD4 receptor interaction was elucidated [36,62,63]. 

Figure 2. Electropherograms of the five novel nucleotide changes identified in the NDP gene. The cDNA positions of the nucleotide changes 
and the amino acid changes are shown at the left side of the picture. Wild-type and altered electropherograms are shown at the right side 
of each corresponding nucleotide change.
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It was found that Norrin exists as a homodimer in the solu-
tion and contains different binding surfaces for FZD4, LRP5, 
and the extracellular matrix [62,63]. Each Norrin monomer 
has an L-shaped structure and comprises three β-hairpins 
(β1–β2, β3–β4, and β5–β6, a β7 strand) and four intramo-
lecular disulfide bridges (C39–C96, C65–C126, C69–C128, 
and C55–C110) [36,62,63]. These disulfide bridges are crucial 
for maintenance of the cysteine knot domain of the Norrin 
[36,63].

In the present study, the three novel missense changes 
(p.His50Asp, p.Gly113Asp, and p.Cys126Arg) were located 
in the highly conserved cysteine knot domain of the protein. 
These changes were predicted to be pathogenic by SIFT 
and PolyPhen-2. Further, these mutations were located 
in the regions of Norrin that are crucial for its structural 
maintenance and for receptor binding and segregated in all 
affected family members (Figure 1). This evidence suggests 
the pathogenic nature of these variations. Additionally, the 
three pathogenic deletions observed in this study led to frame 
shift and premature termination that could either result in 
nonsense-mediated mRNA decay or in the formation of a 
truncated protein thus affecting its function.

The NDP gene mutations contributed to 9% (10/110) of 
all the cases (Table 2) suggesting its involvement in Indian 
patients with FEVR. These findings were in accordance 
with the previously published reports on FEVR from other 
populations [5,7,8,17,28]. Similarly, X-linked gene muta-
tions were also observed in some of the women with the 
disease phenotype, as observed earlier [64,65]. The healthy 

phenotype observed in some of the female carriers could be 
due to the presence of the mutated allele on the inactivated 
X-chromosome, although this requires further functional 
validation.

Some of the earlier reports indicated the presence of 
frame shifts, truncated mutations, and mutations in the 
structurally crucial cysteine residues of NDP mainly in the 
case of patients with Norrie disease [7]. In this study, we 
observed two novel (p.Asp23GlufsX9 and p.Ile48ValfsX55) 
mutations, a reported frame shift (p.His4ArgfsX21) mutation, 
and a missense change at cysteine 126 position (p.Cys126Arg) 
in four unrelated patients with FEVR. However, none of the 
typical clinical features of Norrie disease, such as microph-
thalmia, corneal opacifications, hearing loss, and mental 
retardation, were observed in these patients. Recently, a 
similar finding of two novel truncating NDP mutations in 
three probands with FEVR further supported the involve-
ment of pathogenic truncating mutations in this disease [28]. 
Based on the recently published clinical studies, we avoided 
distinguishing between Norrie disease and FEVR as two 
separate entities due to their overlapping clinical features 
and genotypes [6,7].

In the future, we will verify our novel missense muta-
tions in silico with new promising approaches, including, 
among others, “combined annotation dependent depletion” 
[66] and “mutation significance cutoff” [67]. These methods 
improve upon SIFT and Polyphen-2 for variant interpretation. 
We plan to test the consequences of our new missense muta-
tions in functional assays to verify that they are causative.

Figure 3. Multiple sequence align-
ment of various orthologs of the 
Norrin protein at the positions 
of the novel missense changes 
(p.H50D, p.G113D, and p.C126R) 
demonstrates the evolutionarily 
conserved nature of the wild-type 
residues. The amino acid sequences 
of the Norrin orthologs (Homo 
sapiens, NP_000257.1; Macaca 
mulatta, NP_001253901.1; Bos 
taurus, NP_001039555.1; Python 
bivittatus, XP_007434018.1; Gallus 
gallus, NP_001265016.1; Mus 
musculus, NP_035013.1; Rattus 
norvegicus, NP_001102284.1; Felis 

catus, XP_004000470.1; Sus scrofa, NP_001106528.1; Lipotes vexillifer, XP_007457029.1; Erinaceus europaeus, XP_007528285.1; Monodel-
phis domestica, XP_007493375.1; Pteropus alecto, XP_006917969.1; Poecilia formosa, XP_007571466.1; Xenopus laevis, NP_001154869.1) 
were retrieved from the NCBI database.
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Figure 4. Fundus photographs and 
f luorescein angiogram pictures 
of the patients with FEVR with 
novel changes (p.H50D, p.G113D, 
and p.D23EfsX9) identified in the 
NDP gene. A: Patient ID: family 
33-II:2 (p.H50D); the right eye of 
the patient shows straightening 
of the blood vessels and macular 
dragging toward the inferotemporal 
area due to fibrovascular trac-
tion. B: Patient ID: family 33-I:2 
(p.H50D; affected mother of the 
proband); the left eye of the patient 
shows vitreoretinal traction with 
macular dragging. C, D: Patient 
ID: family 72-IV:1 (p.H50D); the 
right (C) and left (D) eyes show 
dragging and vitreoretinal traction 
with an ectopic macula. E: Patient 
ID: family 139-II:2 (p.H50D); the 
right eye of the patient shows an 
avascular peripheral retina with 
neovascularization and laser scars 
after the treatment. F: Patient ID: 
family 85-II:1 (p.G113D); fundus 
fluorescein angiogram of the left 
eye shows an avascular peripheral 
retina, straightening of the blood 
vessels, and dye leakage at the 
avascular and neovascular junction. 
G, H: Patient ID: family 21-III:2 
(p.D23EfsX9; affected mother of 
the proband); the right (G) and 
left (H) eyes of the patient show 
pigmentation and vitreoretinal trac-
tion with a dragged macula.
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In summary, to the best of our knowledge, this is perhaps 
the first study providing a mutation spectrum of the NDP 
gene in Indian patients with FEVR. The five novel mutations 
identified in this study further broaden the allelic heteroge-
neity of NDP and provide interesting insights into the clinical 
manifestations of this disease. These data would be valu-
able for genetic counseling that could further aid in proper 
management and early intervention before the development 
of severe visual complications in patients with FEVR.

APPENDIX 1. CLINICAL FEATURES OF PATIENTS 
HARBORING MUTATIONS/ VARIATION IN THE 
NDP GENE

To access the table, click or select the words “Appendix 1.”
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