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Abstract: The extracellular matrix (ECM) is a significant factor in cancer progression. Collagens,
as the main component of the ECM, are greatly remodeled alongside cancer development. More
and more studies have confirmed that collagens changed from a barrier to providing assistance
in cancer development. In this course, collagens cause remodeling alongside cancer progression,
which in turn, promotes cancer development. The interaction between collagens and tumor cells
is complex with biochemical and mechanical signals intervention through activating diverse signal
pathways. As the mechanism gradually clears, it becomes a new target to find opportunities to
diagnose and treat cancer. In this review, we investigated the process of collagen remodeling in
cancer progression and discussed the interaction between collagens and cancer cells. Several typical
effects associated with collagens were highlighted in the review, such as fibrillation in precancerous
lesions, enhancing ECM stiffness, promoting angiogenesis, and guiding invasion. Then, the values of
cancer diagnosis and prognosis were focused on. It is worth noting that several generated fragments
in serum were reported to be able to be biomarkers for cancer diagnosis and prognosis, which is
beneficial for clinic detection. At a glance, a variety of reported biomarkers were summarized. Many
collagen-associated targets and drugs have been reported for cancer treatment in recent years. The
new targets and related drugs were discussed in the review. The mass data were collected and
classified by mechanism. Overall, the interaction of collagens and tumor cells is complicated, in
which the mechanisms are not completely clear. A lot of collagen-associated biomarkers are excavated
for cancer diagnosis. However, new therapeutic targets and related drugs are almost in clinical trials,
with merely a few in clinical applications. So, more efforts are needed in collagens-associated studies
and drug development for cancer research and treatment.

Keywords: cancer; the extracellular matrix (ECM); collagen remodeling; interaction; mechanism;
diagnosis; biomarker; therapeutic target; treatment

1. Introduction

Cancer is a serious disease for humans with high morbidity and death. The extracellu-
lar matrix (ECM) is a non-ignored factor in cancer progression due to the fact that it is the
major component of tumor stroma, playing the roles of the physical scaffold and regulator
of cell and tissue function. ECM could not only act as a medium to conduct signals but also
elicits biochemical and biophysical signaling to excite cells [1,2]. The interaction between
tumor cells and ECM is bidirectional and dynamical, which could reshape the morphology
of perimalignant tissue continuously. Recent studies have shown that tumors could directly
leverage ECM remodeling to create a microenvironment that promotes tumorigenesis and
metastasis. Conversely, many cell behaviors are inspired by transformed ECM, such as
adhesion, migration, angiogenesis, and canceration [3,4].
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In the complex interaction between ECM and tumor cells, collagens play a significant
role involved in multiple actions. Collagens are the major component in ECM, which con-
stitute up to 30%—28 different collagens have been identified. Multiple subtype collagens
participate in the construction of both matrices of ECM, i.e., base-membrane and interstitial
matrix, and create special ECM compositions in different tissues [5,6]. Recently, many stud-
ies reported the abnormal appearance in the cancer progression, including degradation,
remodeling, fragmentation settlement, linearization, and fasciculation. It is confirmed that
collagens are relevant to the precancerous lesion and cancer progression. Based on the
mechanisms of collagens involved in the multiple stages of cancer progression, the value of
diagnosis and prognosis is developed. Moreover, it provides opportunities to identify new
therapeutic targets for cancer treatment. This review investigated the complex response of
collagens in cancer progression and summarized the interaction between collagens and
cancer cells. Then, we focused on the diagnosis value of collagen-associated imaging and
biomarkers. Finally, we discussed the therapeutic opportunities of targeting collagens for
cancer treatment.

2. Collagen Is a Significant Concern for Cancer Research Associated with the ECM
2.1. Collagens Are the Major Component of ECM

Collagens are a superfamily comprising 28 members characterized by collagen α

chains [6,7]. According to the supramolecular organization, collagens are divided into
fibrillar collagens and non-fibrillar collagens. Fibrillar collagens occupy 90% of the totality,
including types I, II, III, V, XI, XXIV, and XXVII. They show elongated, rod, or banded fibril
structures under electron microscopy. In comparison, others are non-fibrillar collagens,
which form other types of supramolecular structures. Non-fibrillar collagens are further
subdivided into fibril-associated collagens with interrupted triple helices (types of IX, XII,
XIV, XVI, XIX, XX, XXI, and XXII), network-forming collagens (types IV, VI, VIII, and X),
beaded filament-forming collagens (types VI, XXVI, and XXVIII), anchoring fibrils (type
VII) and transmembrane collagens (types XIII, XVII, XXIII, and XXV). Collagens participate
in the formation of both forms of ECM, i.e., the base-membrane and interstitial matrix.
Fibrillar collagens have a clear structural role of mechanical support and dimensional
stability, which could provide three-dimensional frameworks for tissue and organs. As an
example, type I collagen, as fibrillar collagen, is the main protein in skin, contributing to
the tensile strength of skin [6,8]. Non-fibrillar collagens are also essential to maintain tissue
structure; for instance, the type IV collagen network is the main scaffold structure of the base
membrane. In addition, non-fibrillar collagens are the key regulators to anchor and organize
the ECM meshwork. It has been reported that an anchoring bridge is created between the
base membrane and the interstitial matrix by the regulation of type VI collagen [9].

2.2. The Observation Methods of Collagens in Research and Clinic

The paramorphia of collagens is a significant signal of many diseases, especially fi-
brosis and precancerosis. Several imaging modalities were developed for quantitative or
qualitative analysis collagens. The coarse collagen fiber could be observed directly under
the light field of optical microscopy, the visual scenes of which are shown in Figure 1A.
However, the tiny collagen fibrils or soft networks are hard to be identified under optical
microscopy. Pathological staining technology offers the assistance to catch high-recognition
images under light fields, especially for clinicopathological sections. Of note, immuno-
histochemistry (IHC) could recognize the types of collagens with the assistance of optical
microscopy. Fluorescence immunostaining is a method to mark the collagens with a flu-
orescence dye, then the marked collagens are highlighted under the excitation light of a
fluorescence microscope from the background. This method is suitable for all subtypes
of collagens, whether fibrous or not; however, this method is hard to apply in practical
applications due to the fact that the fluorescence dye is hard to wash completely from the
dense networks, causing significant interference to collagen identification. Collagen fiber is
a non-centrosymmetry and high second-order nonlinear coefficient structure that could
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produce the signal of second-harmonic generation (SHG) under two-photon excitation.
This provides an excellent opportunity to image collagens, and SHG imaging has been
promoted to be a popular and effective approach to investigate collagens in the labora-
tory. As an example, SHG imaging is developed to investigate collagen fiber organization,
which has a high resolution capable of recognizing faint signals [10]. In fact, SHG imaging
of collagens is always used combining with confocal microscopy, which could catch the
interior signals of the samples to reconstruct 3D images [11,12]. We took an SHG image
of type I collagen fibers in an in vitro experiment using confocal microscopy shown in
Figure 1B. Due to the fibrous structure differs from other matrices, the pure reflective mode
of the confocal microscope is available to take the fiber signal, although the clarity is worse
in contrast to SHG imaging [13–15]. Figure 1C exhibited the collagen network structure
in an in vitro experiment using the reflective mode of the confocal microscope. Electron
microscopy is an instrument manufactured by the principle of electron photons, which
replaces light beams and optical lenses with electron beams and electron lenses to take
the subtle structure imaged with a very high magnification. Fortunately, collagen fibers
could be imaged by the two commonly types of electron microscopy, i.e., scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) [16–18]. SEM could see the
morphology of collagens limited to surface and longitudinal. We took the porous structure
by SEM, shown in Figure 1D. TEM could evaluate the cross sections through 3D imaging.
Figure 1E is the structure of collagen type I under TEM. Cryo-TEM advanced the TEM
technique allowing the sample examined to maintain the frozen-hydrated state and remov-
ing the step of heavy-metal staining. The early banding analysis of reconstituted collagen
fibrils was performed from cryo-TEM images [19–21]. Atomic force microscopy (AFM) is
another morphology detection instrument based on a completely different principle, i.e.,
van der Waals force. AFM could be used to confirm the inner assembly of collagen fibrils.
As an example, Figure 1F exhibited the microstructure of a single collagen fibril in a high
magnification AFM image. However, AFM could only scan the 3D topographic feature, but
not the section structure inside the matrix [22–24].
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Figure 1. Several examples of collagen detecting methods. (A) light field of optical microscopy. (B)
SHG imaging. (C) The reflection mode of confocal microscopy. Reprinted/adapted with permission
from Ref. [3]. (D) SEM imaging. (E) TEM imaging. Reprinted/adapted with permission from Ref. [6].
(F) AFM imaging. Reprinted/adapted with permission from Ref. [12].

Clinically, medical imaging technology is an important contribution to disease diagno-
sis and surgical guidance, which is popular due to its non-invasive, including ultrasound,
X-ray, computed tomography (CT), and nuclear magnetic resonance imaging (MRI). The



Int. J. Mol. Sci. 2022, 23, 10509 4 of 28

medical imaging technology allows the sample to be examined in a close to physiological
hydration state without chemical fixation of sectioning. Diffraction pattern signals are
inspired by high-intensity X-rays scattering from the arranged collagen molecules and
fibrils in the bulk matrix. So, X-ray is available to analysis the average diameter, lateral
arrangement, and alignment of collagen fibrils; as an example, corneal ultrastructure is
obtained by X-ray with a powerful synchrotron source [25,26]. CT and MRI are able to ana-
lyze the collagen fibers quantitatively. Karjalainen et al. used micro-computed tomography
to analyze the three-dimensional collagen orientation of the human meniscus posterior
horn in health and osteoarthritis [27]. Eder et al. used MRI to evaluate the regional collagen
fiber network in the human temporomandibular joint disc [28]. Ultrasound is developed
to assess collagen microstructure based on the integrated backscatter coefficient (IBC).
Mercado, Karla P. et al. employed IBC as a quantitative ultrasound parameter to detect
the quantify spatial variations of collagen fiber density and diameter [29]. Kenton et al.
prospectively characterize the collagen organization in the Achilles and patellar tendon [30].
However, IHC still plays an irreplaceable role in the clinic due to its ability to recognize
the types of collagens. Pathological detection based on IHC is the gold standard for tumor
diagnosis in the clinic.

3. Collagen Remodeling Is a Significant Signal in Cancer Progression
3.1. Precancerous Lesions

Stromal alterations are the reference precursors to predict the progression of carci-
noma, especially collagens, which is the main component of the ECM. The occurrence of
fibrosis and the base membrane abnormality, which are mainly involved by collagens, are
the important cues orienting to deterioration, having a significant clinical meaning. In
precancerous lesions, it is likely to occur due to the abnormal ratio of collagen types, new
collagen types secreted, and abnormal molecular structure, causing the abnormal ECM.

The fibrosis of organ tissue is an important cue to draw attention to, which is likely to
be a stage of deterioration, such as liver fibrosis, lung fibrosis, oral submucosa fibrosis, and
so on. Most hepatocellular carcinoma develops through the progression of chronic liver
injury, hepatic inflammation, and fibrosis, so liver fibrosis is a precursor of cancerization.
It has been confirmed that high fibrosis index is positively correlated with the risk of
hepatocellular carcinoma [31,32]. The configuration of collagen types is changed greatly
in the progression of fibrillation. In normal liver, the collagens in ECM are type IV and
VI, which are non-fibrillar; however, a great accumulation of fibrillar collagens occurs
in the fibrotic liver, such as collagen type I and III [33]. Similarly, idiopathic pulmonary
fibrosis is considered to have a high risk of concomitant lung cancer in the clinic. What is
worse, patients with idiopathic pulmonary fibrosis have a poor prognosis with a 2–5 year
survival time, which is worse than liver fibrosis [34]. Enhancing nodules in post-radiation
fibrosis in CT imaging could be an early detecting method of recurrent lung cancer [35].
The deposition of collagens in the interstitium is the direct reason for fibrosis. In early
pulmonary fibrosis, collagen type III predominates in the matrix; however, the proportion
is gradually replaced by collagen type I along the process of pulmonary fibrosis to the late
stage [36]. Oral submucous fibrosis is a precancerous disorder and has a 1.5–15% chance of
transforming into a malignant tumor. The characteristics of oral submucous fibrosis are
abnormal collagen deposition. In oral submucous fibrosis cells, the collagen synthesis is
increased and the ratio of the α1(I) to α2(I) chains of type I collagen is ~3:1 whereas ~2:1 in
normal cells [37,38].

The analysis of collagen fibers is significant in predicting cancer. Despotovic et al.
caught the SEM images of the perimalignant tissue shown in Figure 2A. They found that
the altered organization of collagen fibers was observed at 10 cm and 20 cm away from
the malignant tumor. The alignment of collagen fibers is step increased as proximity to
the tumor [39]. Wu et al. focused on the base membrane in intraductal carcinoma, a
precancerous lesion of invasive ductal carcinoma. They found that the base membrane
was distorted and elongated compared with the normal cases (Figure 2B). Several types
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of gynecological cancers are reported differently in terms of precancerous lesions, such as
breast cancer, ovarian cancer, and vulvar cancer. Castor et al. characterized the collagen
fibers in preneoplastic lesions compared with normal tissue and squamous carcinoma in
vulvar cancer using SHG microscopy. They found that the collagen fibers showed better
organization in the normal tissue than in the other two stages. The devise parameters of
collagen fibers showed reducing in squamous carcinoma and preneoplastic lesions com-
pared with normal tissue, i.e., quantity, organization, and uniformity; however, no obvious
difference was observed between squamous carcinoma and preneoplastic lesions [40]. In
cervical precancers, several collagen-associated indicators directly affect the quantitative
classification of precancerous stages, including the density and degree of linear arrange-
ment, collagen degradation, and the breakage of collagen cross-links. Zaffar et al. focused
on this valuable information by developing a series of studies of the spatial frequencies of
collagens for cervical precancer detection [41,42]. The expression of collage IV seriously
affects the integrity of the base membrane because collagen IV is the main complement of
the base membrane. As a precancerous lesion of squamous cell carcinoma in malignant
skin tumors, actinic keratosis has shown the premonition of collagen IV low expression.
Hirakawa et al. compared the expression of collagen IV using immunohistochemical in
actinic keratosis tissue. The result showed that collagen IV in dysplastic areas of actinic
keratosis samples was lower than peri-lesional tissue and no longer continuous [43].
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Figure 2. Collagen remodeling in precancerous lesions is a signal of cancerization. (A1–A3) The SEM
images of collagen fibers in the health tissue and 10 cm and 20 cm away from the malignant tumor [39]
(A1) The collagen fibers in the health tissue are thin collagen fibers forming a dense network. (A2)
The collagen fibers at 20 cm away from the tumor, thick and aligned. (A3) The collagen fibers at
10 cm away from the tumor, highly aligned. (B1–B3) The difference of base membrane in intraductal
carcinoma, a precancerous lesion of invasive ductal carcinoma [44] (B1) The base membrane shows a
distorted structure with a larger size. (B2) The base membrane is destroyed in the evolution from
intraductal carcinoma to invasive ductal carcinoma. (B3) The statistics data of the circle length of
base membrane. The circle length is elongated observably in precancerous lesions compared with
normal cases.
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3.2. Post-Cancerous
3.2.1. Breaching Base Membrane

In the development of cancer progression, collagens become from a passive barrier
resisting cancer cells to an accomplice in promoting the progression. The base membrane is
a baffle between tumor cells and normal tissue originally; however, it would be breached at
the early stage of carcinogenesis. The main reason is collagen IV, which occupies the major
complement of the base membrane, is degraded directly or indirectly by tumor cells. In the
degrading progress, matrix metalloproteinase plays an indispensable role, which is secreted
by tumor cells or stimulated epithelial or stromal cells. In the subsequent progression of
cancer development, degrading collagens remains an effective strategy to create roads to
invasion or migration. Yan et al. reported a period that collagens exhibited a significant
loss in invasive ductal carcinoma compared to the normal case and precursor lesion [44].
Recently, another cue is revealed that cancer cells could break the base membrane just
facilitated by physical forces, which is a completely different manner independent of
protease. As evidence, the collagen IV meshwork exhibits a densified structure at the
adjacent disruption; on the contrary, the collagen IV scaffold should be decreased under
the degradation theory. Piercing filopodia is captured in further studies, which is proved
to have a pivotal role in the mechanical response model. The force of push and pull by
the contractility of piercing filopodia is considered an explanation of the base membrane
non-protease disruption [45–47].

3.2.2. Enhancing ECM Stiffness

Enhancing the stiffness of ECM is another strategy to promote tumor cell migration
and invasion through the pathway of activating integrins to increase the adhesion between
cells and substrate. Castor et al. found that the parameters of collagen fibers present
higher in metastatic vulvar cancer patients than in that without metastases [40]. High
ECM stiffness is mainly realized by increasing the secretion of fibrous collagens and the
deposition of non-fibrous collagens, most notably collagen type I and type IV [48,49]. In
medical statistics, ECM stiffness is considered a reason for tumor rise incidence with aging
because it is a fact that the aged tissues are stiffer due to containing more aberrant cross-
linked collagens [50]. High collagen density in tumors is often closely correlated with poor
prognosis; however, the association between collagen density and cancer progression is not
completely clear. Recent reports studied it from various perspectives. The most accepted
view is that ECM stiffness is closely related to cancer-associated fibroblasts (CAFs) [51–54].
This viewpoint is supported because CAFs are the main producer of abnormal collagen
fibers. Shibata et al. reported that CAFs promote ECM stiffness in response to the signals
from yes-associated protein 1 (YAP1) [55]. However, Farhat et al. found that abnormal
activation and expression of the Lox family of proteins, a group of extracellular enzymes
catalyzing the cross-linking of collagens, would lead to the ECM toward increased rigidity
and fibrosis [56].

3.2.3. Orienting the Collagen Fibers

Orienting the collagen fibers is a significant manner of remodeling the ECM by cancer
cells. The stress of tumor growth remodels the collagen fibers toward the tumor circumfer-
ence at the tumor periphery. Those oriented collagen fibers provide a highway to cancer
cell invasion directly [57–60]. Meanwhile, the tension of aligned collagen fiber bunches
contributes to ECM stiffness [61]. Many studies reported the high orientation of collagen
fibers in the tumor location [13,57,59,62]. The mechanism of collagen fibers orientation in
the malignant tumor is still unclear. Many scientists dedicated themselves to this study,
and they revealed it is a complex process, maybe participated in by tumor cells, CAFs,
mesenchymal cells, and interstitial fluid. Tumor cells remodel the collagen fibers through
various manners, including the stress of tumor growth, the pseudopod with contractility,
the protease, and so on, which is a complex process with multiple pathways [61,63–67].
The examples are shown below. Ray et al. reported that the traction forces from the di-
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rected migration of cancer cell clusters are a mechanism of collagen fiber alignment [68].
Drifka et al., using a pancreatic ductal adenocarcinoma model, found that human pancreatic
stellate cells could orchestrate the alignment of collagen fibers, and they further found that
the aligned collagen fibers, in turn, enhanced cancer cell migration. Bayer et al. showed
that the collagen receptor DDR2 in CAFs reorganizes collagen fibers at the tumor-stromal
boundary [69]. Hanley et al. reported that CAFs could induce the formation of elongated
collagen fibers [70]. Del Amo et al. constructed a collagen-based osteoblasts model in 3D
microfluidic devices, and the data suggested that a high rate of interstitial fluid flow could
modify the orientation of collagen fibers [71].

4. Remodeled Collagens Assist Cancer Progression
4.1. Promoting Angiogenesis

In cancer progression, limited oxygen and nutrients are always insufficient for the
rapid growth of cancer cells. Angiogenesis is induced under a poor supply of oxygen and
nutrient. The angiogenesis process is always accompanied by the upregulation of collagens
and ECM-modifying enzymes, which has been confirmed in different human tumor types.
That is because the collagen network provides the scaffold for recruited endothelial cells
migrating during angiogenesis. Even the remote collagen fiber network is induced by tumor
cells into orientation steers for angiogenesis. We illustrated the process of angiogenesis
induced by collagen fibers in Figure 3A. Piotrowski-Daspit et al. took a confocal image
of a representative tissue comprised of breast cancer cell MDA-MB-231. They found that
the collagen fibers showed high alignment obviously (Figure 3B). The collagen network
provides the intact physical connection with tumor tissue for vascular endothelial cells’
mechanical sensing, which is considered essential during angiogenesis [72]. Nathaniel
et al. observed the fibril organization around angiogenic sprouts and growing neo-vessels
in real time. They found that a strong association of fibrillar collagens occurred during
vessel reconstitution and a substantial collagen fibril reorganization at the sites of sprout
and neo-vessel tips [73]. Luthria et al. investigated the vasculature around the tumor in
the dense collagen micro-environment—shown in Figure 3C [74]. Niels et al. reported
that type VIII collagen was elevated in diseases associated with angiogenesis and vascular
remodeling, such as pulmonary fibrosis and cancer [75].
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Figure 3. Tumor cells organize the disordered collagen fibers into orientation, further providing a
scaffold to recruit endothelial cells (green cell in illustration) for angiogenesis or inducing vasculogenic
mimicry constituted by tumor cells (red cell in illustration) without endothelial cells presenting.
(A) The cartoon diagram displays the process of angiogenesis. (B) A confocal image of a representative
tissue comprised of breast cancer cell MDA-MB-231. The collagen fibers around the tissue are aligned,
obviously. Reprinted/adapted with permission from Ref. [76]. (C1,C2) The SHG images show the
vasculature (blue) formed neighbor tumor within the micro-environment of high dense collagen
matrix. Reprinted/adapted with permission from Ref. [74].
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Another vasculature-like structure could also support tumors with blood, which is
called vasculogenic mimicry constructed by cancer cells without endothelial cells. The
primary trigger is dense collagen, inducing cancer cells to form interconnected networks [4].
Velez et al. found that the collagen matrixes with small pores and short fibers induced
vasculogenic mimicry. The upregulation of β1-integrin is triggered by the collagen matrix
architecture and is considered a significant reason in the follow-up research [77]. The
non-fibril collagens contribute to vasculogenic mimicry, such as collagen type IV, VI, and
XVI. Bedal et al. found the NC11 domain of human collagen XVI, one non-fibril collagen,
induced vasculogenic mimicry in oral squamous cell carcinoma cells. The process is realized
by triggering the generation of tubular-like net structures on a laminin-rich matrix [78].

4.2. Promoting Invasion

Escaping from the primary site is another strategy employed by cancer cells to obtain
supplies; collagens also play a significant role in this process. Collagen fibers induce cancer
cell migration by contact guidance [68]. Especially, the aligned collagen fibers are confirmed
to provide “a highway” to cancer cell invasion [79–81]. The guidance of collagen fibers
runs through the major process of cancer progression. In the early stage, the collagen fibers
that are perpendicular to the solid tumor provide conduits to escape and penetrate the
base membrane [58,82]. In the following process, the interface between the collagen fiber
bundle in ECM and the peripheral interstitial components provides the opportunity for
breakthrough for tumor cells. We illustrated the intravasation guided by collagen fibers in
Figure 4A. The role of the “highway” has been verified by several reports. In an experiment
on the orientation of collagen fibers, cancer cells could break through the high density of
Matrigel along with the collagen fibers, while they were unable to do that in the absence of
oriented collagen fibers—shown in Figure 4B [59]. In the process of intravasation (cancer
cell entering blood vessel) and extravasation (cancer cell exuding blood vessel), collagen
fibers as important participators are remodeled firstly and, in turn, guide the cancer cell
invasion [83–86]. Moreover, the orientation and the deposition of collagens make the matrix
stiff. The stiffness of the ECM could induce the enhancement of transforming growth factor-
β (TGF-β) to increase the cell adhesion to the substrate, further promoting the migration
and invasion of tumor cells. Masoud et al. reported that ECM stiffness could make a
bridge in the base membrane through the related pathway of transforming growth factor-β
(TGF-β), which contributed to EMT [87]. Figure 4C illustrates the process of EMT induced
by the high stiffness ECM. Han et al. displayed a merged image of the SHG signal and light
field of the pathological section (Figure 4D). They found that the tumor cells invaded along
with the direction of fibers [59]; however, the mechanism of the stiffness ECM acting on
tumor cells is complex; there are other pathways being investigated as well. For instance,
Anne et al. investigated the immune modulatory properties of collagens in cancer, and
they revealed that collagens could affect the function and phenotype of various types of
tumor-infiltrating immune cells, such as tumor-associated macrophages and T cells [88].
Yu et al., from the perspective of drug transport, revealed that ECM stiffness was a barrier
to drug screening at the tumor site [89].

Non-fibril collagens also participate in the invasion process. Fang et al. reported that
collagen type IV occurred a series of changes to provide a proper tumor microenvironment
for cancer invasion. In the initial stage, collagen IV presents an irregular sheath in the
base membrane, and then it is degraded and accompanied by linear redeposition to form
invasion fronts, which would become the escape sites of cancer cells [90]. Zhang et al.
reported that collagen XIII could promote invasive tumor growth, enhance the stemness
of cancer cells, and induce anoikis resistance [91]. Karagiannis et al. investigated collagen
type XII by immunohistochemistry and found that collagen XII was highly expressed in the
invasion front of cancer cells [92]. Kumagai et al. found that the intercellular expression of
type XVII collagen could promote collective invasion by producing intercellular adhesion
sites for contact following [93]. Miyake et al. reported that collagen IV and collagen XIII
played a pivotal role in tumor invasion by inducing tumor budding [94].
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Figure 4. Collagens promote cancer invasion. (A) The schematic representation of oriented collagen
fibers providing a “highway” to guide cancer cells in realizing the intravasation process. (B1,B2) The
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pathological section. (D2) The merge of the light field and SHG signal of the pathological section [59].

5. Collagens Provide Opportunities to Cancer Diagnosis and Prognosis
5.1. Collagen-Associated Biomarkers for Cancer Diagnosis

Collagens, as the main component of the ECM, would be abnormally expressed or
deposited in the location or the pericarcinoma of the cancer site. It is for this reason
that collagens are proposed as a diagnostic biomarker in cancer types. Type I collagen
is reported to be a good diagnostic marker to detect the metastasis of lung cancer, the
expression level of which is a significant indicator of distinct bone involvement happening
or not in lung cancer metastasis [95]. The degradation products of type I collagen in serum
are a significant reference for diagnosis and prognosis. Nurmenniemi et al. reported that
type III collagen N-terminal telopeptide and type I collagen C-terminal telopeptide in
serum, which are the degradation products of type I and III collagen, respectively, could be
used as a prognostic marker in head and neck squamous cell carcinoma because they are
proved closely associated with patient survival [96]. Another report revealed that the levels
of matrix metalloproteinase (MMP) generated fragments of type I collagen in serum are
valuable as a diagnostic biomarker for lung cancer [97]. The variety of collagens is valuable
as a biomarker in the diagnosis of numerous cancers, and we collected and summarized
them—we present this in Table 1. Of note, many generated fragments of collagens in serum
are available for cancer diagnosis, which provides a convenient detection method through
drawing peripheral blood.
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Table 1. The collagen-associated biomarkers and the applicating cancer types in cancer diagnostic.

Collagen Type Biomarker Cancer Type Reference

Type I

the expression level of collagen I
bone metastases of lung cancer;

bladder cancer;
colorectal cancer

[95,98,99]

the carboxyl terminal peptide beta-special sequence,
total type I procollagen amino terminal propeptide,

alkaline phosphatase of collagen I in serum
bone metastases of lung cancer [100]

type I collagen C-terminal telopeptide in serum head and neck squamous
cell carcinoma [96]

MMP-generated fragments of type I collagen in serum lung cancer;
breast cancer [97,101]

the expression level of collagen type I alpha 1 hepatocellular carcinogenesis
and metastasis [102]

the carboxyterminal collagen type I telopeptid breast cancer with
bone metastases [103]

the expression level of collagen type I alpha 2 gastric cancer [104]

Type III

MMP-generated type III collagen fragment, procollagen
type III N-peptide in serum breast cancer [101,105]

the propeptide of type III collagen in serum pancreatic cancer [106]

the level of procollagen III aminoterminal propeptide malignant head and neck cancer;
cervical carcinoma [107,108]

procollagen type III N-peptide in serum
gastric cancer;
ovarian cancer;

lung cancer
[109–111]

type III collagen in serum hepatocellular carcinoma [112]

type III collagen in cancer tissue malignant pleural mesothelioma [113]

the expression of collagen III and collagen III mRNA Ewing’s sarcoma [114]

Type IV

the type IV collagen, MMP-generated type IV collagen
fragment in serum in serum breast cancer [101,105]

7S domain of type IV collagen in serum

gastric cancer;
pancreatic cancer;

lung cancer;
extrahepatic cancer;

hepatocellular carcinoma

[111,115–118]

the expression level of collagen IV malignancy glioma [119]

the differential localization of the type IV collagen
alpha5/alpha6 chains colorectal epithelial tumors [120]

MMP-degradation of type IV collagen ovarian cancer [121]

the expression level of collagen IV prostate cancer [122]

the expression of collagen type IV urothelial carcinoma;
oral squamous cell carcinoma [123,124]

the expression of the type IV collagen alpha1 and
alpha2 chains hepatocarcinogenesis [125]

the expression of the type IV collagen alpha1 bladder cancer [126]

the expression of collagen IV in tumor location invasive adenocarcinoma [127]

serum N-terminal pro-peptide of type IV collagen
7S domain

hepatocellular carcinoma in
patients with liver cirrhosis [128]
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Table 1. Cont.

Collagen Type Biomarker Cancer Type Reference

Type V
the expression level of collagen type V alpha 2 colorectal cancer;

gastric cancer; [129,130]

the expression level of collagen type V breast cancer;
lung cancer [131,132]

Type VI

MMP-generated type III collagen fragment

breast cancer; colon cancer; gastric
cancer; malignant melanoma;
lung cancer; ovarian cancer;

pancreas cancer; prostate cancer

[133]

serum collagen type VI alpha 3 pancreatic ductal adenocarcinoma [134]

stromal collagen type VI salivary gland cancer [135]

the expression of COL6 pancreatic cancer [136]

collagen type VI alpha 1chain esophageal squamous
cell carcinoma [137]

Type VII
the expression level of type VII collagen

identifying lung cancer subtypes;
skin cancer;

gastric cancer
[138–140]

the expression level of collagen type VII a 1 chain clear cell renal cell carcinoma [141]

Type VIII

the NC1 domain of human type VIII collagen a1 chain
in serum colorectal cancer [142]

collagen type VIII alpha 1 chain breast cancer;
colon Adenocarcinoma [143,144]

Type XI
the expression level of Collagen Type XI Alpha 1 Chain

colorectal cancer;
breast carcinoma invasiveness;

colon cancer;
gastric cancer;

pancreatic ductal adenocarcinoma;
pancreatic adenocarcinoma;

pancreatic cancer

[145–151]

the expression of procollagen XI Alpha 1 Chain breast cancer [152]

type XIII the expression of the type XIII collagen alpha1 bladder cancer [126]

Type XIV the expression of type XIV collagen breast cancer [153]

Type XV fragments of collagen XV collagen alpha1 in urine gastrointestinal cancer [154]

Type XVIII
the expression of type XVIII collagen pancreatic ductal adenocarcinoma [155]

serum endostatin (a fragment of collagen XVIII) levels colorectal cancer [156]

Type XXIII the expression of collagen type XXIII alpha 1 chain clear cell renal cell carcinoma [157]

5.2. The Predictive Value of Collagens

Collagens have high value in monitoring cancer processes, prognosis, and recurrence.
The predictive value is exhibited in many types of cancer, including breast cancer, prostate
adenocarcinoma, lung cancer, hepatocellular carcinoma, colon cancer, and pancreatic cancer.
In breast cancer, the qualitative descriptors of collagens at the boundaries between tumor
and stroma are important indicators for tumor staging. In invasive breast cancer, the 5-year
disease-free survival in patients with low tumor-stromal ratios is poorer than the patients
with high tumor–stroma ratios. In lung cancer, high levels of collagen I in serum and
tissue demonstrated a significant decrease in survival. Furthermore, collagen metabolic
components and prolyl hydroxylases have been marked as the predictive factors of lung
cancer presence, progression, and outcome. Abnormal collagen expression is associated
with cancer overall survival (OS). The prognosis value is outstanding in enriched stromal
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cancers, such as pancreatic cancer and colon cancer. It is confirmed that the alignment of
collagens was associated with the patient survival of pancreatic ductal adenocarcinoma
(PDAC). Highly aligned collagen fibers report poor prognosis in PDAC, according to clinical
statistics. Collagen types I, III, VI, and XI were shown to be associated with the diverse
response of pancreatic cancers, such as proliferation, migration, decreasing E-cadherin
expression, and cancer-associated fibroblasts [158]. Furthermore, the percent survival with
a high level of collagen type I is observably lower than the low level. It was shown that
the level of collagen type I had a negative correlation to OS for pancreatic cancer [159]. In
colon cancer, the level of collagen expression is the key indicator to predicting the OS and
risk, especially the types of COL1A1, COL1A2, COL3A1, COL4A3, and COL4A6. Please
refer to reference [158] for more information on the predictive value of collagens.

6. Therapeutic Opportunities of Cancer Target to Collagens and the Collagen
Associated Molecules

Collagen remodeling plays a significant role in cancer progression, as the content
described above. It provides the possibility for therapeutic cancer targeting to collagens
undergoing remodeling, including inhibiting the synthesis of collagens and interdicting
the reactivator on the signal pathway. Of note, many small molecule inhibitors of collagen
synthesis and functioning are available as anti-cancer drugs. They could accurately point
to the target, avoiding damage to normal cells, which is an absolute advantage over
conventional chemotherapeutic agents.

6.1. Inhibiting the Synthesis and Secretion of Collagens

Inhibiting collagen synthesis and secretion is a strategy for cancer therapeutics, which
could prevent the series of effects initiated by collagen remodeling. For instance, as a
catalyst in a key step of collagen biosynthesis, CP4H was linked with cancer metastasis
in recent studies. Undoubtedly, CP4H has confirmed a new target for anti-cancer drugs.
Several drugs targeted to CP4H have been developed as CP4H inhibitors, such as Ethyl
3,4-dihydroxybenzoate (EDHB) and 2-(5-carboxythiazol-2-yl) pyridine-5-carboxylic acid
(pythiDC) [160]. Lysyl hydroxylation is a key step for collagen cross-link and deposition,
which is a potential target to inhibit collagen synthesis. Aiming at the collagen remodeling
induced by aberrant lysyl hydroxylation and collagen cross-link, lysyl hydroxylation is
developed as a potential target for cancer therapeutic. Minoxidil, as an inhibitor of lysyl
hydroxylation, is confirmed to have anti-invasive effects on human breast cancer [161].
Relatively, procollagen-lysine 2-oxoglutarate 5-dioxygenase (PLOD) drew much attention
as the catalyzer of the process of lysyl hydroxylation. Increased PLOD expression has
been detected in many types of cancer. Targeting PLODs is considered a potential strategy
for cancer treatment; however, there are still no reports revealing the related anti-cancer
drugs [162]. More available targets and the related drug aiming at collagen synthesis are
summarized in Table 2.

Table 2. A summary of drugs targeting the synthesis and secretion of collagens.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

collagen type I

Baicalein

inhibiting collagen type I
transcription by

alleviating TGF-β1
stimulation

lung cancer,
osteosarcoma cells,

bladder cancer, breast
cancer, pancreatic

cancer, cervical
cancer, oral cancer

a promising
candidate awaiting

further testing
[163–165]

Phenylbutyrate,
sodium

phenylbutyrate

as a weak histone
deacetylase inhibitor

decreasing collagen type I
Alpha 1 mRNA

transcription

lung cancer, prostate
cancer, liver cancer,

breast cancer,
ovarian cancer,
bladder cancer

a promising
candidate awaiting

further testing
[166–171]
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Table 2. Cont.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

collagen type I

C9

C9 inhibits collagen
production by
dissociating

laribonucleoprotein
domain family member 6

(LARP6) from type I
collagen 50′SL RNA

- awaiting further
testing [172]

Ethyl 3,4-
dihydroxybenzoate

(EDHB),
2-(5-carboxythiazol-

2-yl) pyridine-
5-carboxylic acid

(pythiDC)

inhibiting collagen
synthesis by inhibiting
Prolyl 4-hydroxylases

(P4Hs), which is a
synthesis and regulatory
factor of collagen type I

colorectal cancer,
breast cancer

awaiting further
testing [160,173,174]

Minoxidil

inhibiting collagen
synthesis by inhibitor

lysyl hydroxylases (LHs),
which is a synthesis and

regulatory factor of
collagen type I

prostate cancer,
breast cancer, ovarian

cancer

a promising
candidate awaiting

further testing
[161,162,175,176]

AK-778

inhibiting collagen
synthesis by mitigating
the interaction between

collagen and HSP47,
which is a molecule

required for collagen type
I maturation.

-
a promising

candidate awaiting
further testing

[177,178]

CCT365623

decreasing collagen
synthesis by inhibiting

lysyl oxidase (LOX),
which is a regulatory

factor for collagen
cross-linking

-
a promising

candidate awaiting
further testing

[179,180]

collagen type XI

LY2157299

inhibiting collagen XI
alpha 1 chain (COL11A1)
expression by inhibiting
the transforming growth

factor beta receptor 1
(TβRI)

ovarian cancer,
pancreatic cancer,

breast cancer
phase II clinical trial [181–185]

SC66
as an Akt inhibitor

preventing the
transcription of COL11A1

colon cancer, ovarian
cancer, bladder

cancer, lung cancer
under clinical trials [182,186–189]

collagen type XI
AK778 and its

cleavage
product Col003

disrupted collagen
binding with the

molecular chaperone
HSP47 and inhibited

collagen secretion

- awaiting further
clinical studies [177,182]

6.2. Interdicting the Receptors

The collagen receptors are the direct trigger of the interaction between cancer cells
and collagens. Cancer cells sense the surrounding microenvironment by responding to the
biochemical and mechanical properties of transmembrane receptors, including integrins
and discoidin domain receptors (DDRs). Interdicting the receptors of collagens is another
effectual strategy. We summarize the related targets and the corresponding drug below.

6.2.1. Integrins

Integrins are the important receptor of collagens on the cell membrane. It is a large
family, at least including 24 different functional heterodimeric receptors distinguished by
18α-subunits and 8β-subunits [190,191]. According to the reports by far, the integrins of
α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, α9β1, α10β1, α11β1, α5β3, and α5β8 have been
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found to be involved in tumor growth and metastasis by the regulation of collagen-binding
integrin signal [190,192–200]. Further, integrin-mediated pathways are reported many
times to connect to drug resistance [201,202]. So, integrins are considered an attractive
drug target for cancer therapeutics [203]. This concept is largely encouraged by preclinical
studies. Cilengitide, an inhibitor of integrin αvβ3 and αvβv, has been developed as an
anti-cancer drug in various tumor types. Several clinical trials were carried out on diverse
cancers, such as lung cancer, breast cancer, glioblastoma, prostate cancer, melanoma,
and squamous cell cancer [204,205]. Abituzumab (EMD 525797), a monoclonal antibody
targeting integrin alpha nu heterodimers, was also demonstrated as an anti-cancer drug.
The phase I clinical trial was completed in ovarian cancer patients with liver metastases and
the phase II clinical trial was completed in metastatic colorectal cancer; however, successful
clinical trials are few in number. For example, cilengitide failed to improve survival for
glioblastoma patients in the phase III trial, despite the standard care. At the same time,
the trial data of combining abituzumab showed no improvement in the progression-free
survival of patients compared with the standard of care alone. So, further verified trials
are essential based on stratifying the patient population [206]. Exploiting tumor-specific
integrin expression profiles or downstream integrin effectors is also an alternative strategy
to target for the development of anti-cancer drugs. Many typical integrin activation factors
are noticed, such as FAK, LOX, mucins, and the corresponding inhibitors are developed for
cancer therapeutic. Moreover, snake venom disintegrins were confirmed to inhibit integrins
and further effected cancer treatment. We summarize the data in Table 3 below.

Table 3. Integrin-associated therapy and the related drugs in cancer therapeutics.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

integrin

Cilengitide an inhibitor of integrin
ανβ3, ανβ5, α5β1, αIIβ3

lung cancer, breast cancer,
glioblastoma, prostate

cancer, melanoma,
squamous cell cancer

in clinical trials [203,207,208]

Abituzumab inhibiting integrin ανβ1,
ανβ3, ανβ5, ανβ6, ανβ8

colorectal cancer.
ovarian cancer in clinical trials [203,209]

Etaracizumab inhibiting integrin ανβ3 melanoma
prostate cancer a phase II trial [203]

Intetumumab inhibiting integrin ανβ1,
ανβ3, ανβ5, ανβ6, ανβ8

melanoma
prostate cancer a phase II trial [203]

NCT02428270

using a FAK inhibitor in
combination with a

MEK1 and
MEK2 inhibitor

pancreatic cancer a phase II trial [206]

NCT02546531

using a FAK inhibitor in
combination with a

humanized antibody
targeting programmed

cell death protein 1 (PD1)
and chemotherapy

solid tumors
pancreatic cancer a phase I trial [206]

NCT01279603
inhibit MUC1

cytoplasmic tail
oligomerization

solid tumors a phase I trial [206]

NCT00565721

as valuable probes in
cancer imaging studies to
determine both prognosis

and treatment efficacy

lung cancer
Head & Neck cancer a phase II trial [206]

NCT02683824

an αvβ6 integrin tracer to
detect tumors and
evaluate treatment

response in patients with
pancreatic cancer

pancreatic cancer early phase I trial [206]
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Table 3. Cont.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

integrin snake venom
disintegrins

inhibiting integrins on
transmembrane
cellular surfaces

prostate
breast cancer
lung cancer

sarcoma

a promising
candidate awaiting

further testing
[208]

6.2.2. DDRs

Another important receptor is DDRs family, including DDR1 and DDR2, which have
been proved to regulate various cellular signaling pathways, including cell proliferation,
adhesion, migration, and matrix remodeling. DDRs are a subfamily of receptor tyrosine
kinases, activated by the triple-helical structure of collagens in the interaction. It is revealed
that DDRs possess a special activation mechanism, which initiates the pathways leading to
autophosphorylation through collagen binding. In the fibrillar collagens, DDR1 and DDR2
could respond to collagen type I, II, III, and V, while in the non-fibrillar collagens, type IV,
VI, VIII, and X are also the activator. However, the mechanism of extracellular collagen
binding and activation of the cytosolic kinase domain of the receptors is not clear so far. A
recognized theory is that DDRs occur dimerization before the ligand binding with collagens,
which is different from the other receptor tyrosine kinases undergoing dimerization after
ligand binding [210]; then, the amino acid produces residues of collagens as the sites
bind with DDRs dimerization [211]. In turn, the activated DDRs could trigger the signal
transduction pathways of cell behaviors, such as proliferation, migration, and invasion [212].
In many cancers, overexpression of DDRs is associated with a poor prognosis. Deng et al.
demonstrated that collagen-induced DDR1 activation in cancer cells could recruit tumor-
associated neutrophils to form extracellular traps, enhancing the subsequent cancer cell
invasion and metastasis [213]. The imbalance expression of DDRs has been demonstrated
to be associated with most cancers. Huo et al. revealed that high expression of DDR1 was
associated with poor prognosis in pancreatic ductal adenocarcinoma [214]. Xie et al. found
that overexpression of DDR1 promoted the aggressive growth, migration, and invasion of
bladder cancer cells, in which process collagen IV was a signal axis [215]. As DDRs play a
significant role in cancer progression, DDRs would be new promising targets for cancer
treatment, such as the design of DDR inhibitors for use in clinical settings. Some drugs were
developed to inhibit DDR expression, such as dasatinib, imatinib, nilotinib, and ponatinib.
Dasatinib was confirmed enabling to inhibit gastric cancer cell migration and invasion in
the assays. Several clinical trials were completed in phases I and II, such as lung cancer,
breast cancer, and prostate cancer. Nilotinib was reported to reduce metastatic colorectal
cancer invasion by inhibiting DDR1 kinase activation. Many clinical trials are currently
underway in several types of cancer, such as breast cancer, gastrointestinal stromal tumors,
and so on. The antibody–drug conjugate targeting DDRs is utilized in anti-cancer drug
development. As an example, T4H11-DM4 is demonstrated to be effective for colon cancer.
Many other drugs were developed to target DDRs in recent years—shown in Table 4.

Table 4. DDRs associated therapy and the related drugs in cancer therapeutics.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

DDRs

nilotinib inhibiting the kinase
activity of DDR1 colorectal cancer [216]

Dasatinib inhibit DDRs

prostate cancer,
glioblastoma, breast
cancer, lung cancer,

gastric cancer

in clinical trials [217–223]

Nilotinib inhibit DDRs colorectal cancer,
colon cancer in clinical trials [217,224–226]
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Table 4. Cont.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

DDRs

Imatinib inhibit DDRs lung cancer, liver cancer in clinical trials [227–230]

Ponatinib inhibit DDRs lung cancer in clinical trials [231,232]

T4H11-DM4 an antibody-drug
conjugate targeting DDR1 colon cancer awaiting further

clinical studies [233]

Actinomycin D
an antagonist of the

DDR2-collagen
interaction

rhabdomyosarcoma,
Ewing’s sarcoma,

trophoblastic neoplasia,
and testicular carcinoma

in clinical application [234,235]

LCB 03-0110

inhibiting
collagen-induced

activation of DDR1 and
DDR2 receptors

- awaiting further
clinical studies [236,237]

pyrazolo-urea
containing

compounds 2a,
4a, 4b

inhibit DDR2 - awaiting further
clinical studies [238]

7rh inhibited the kinase
activity of DDR1

gastric cancer,
nasopharyngeal

carcinoma, pancreatic
ductal adenocarcinoma,

breast cancer,
uveal melanoma

in clinical trials [218,239–243]

7rj inhibited the kinase
activity of DDR1 - awaiting further

clinical studies [235]

DDR1-IN-1
induced a significant

inhibitory effect
against DDR1

colorectal cancer,
lung cancer

awaiting further
clinical studies [232,244–246]

DDR1-IN-2
induced a significant

inhibitory effect
against DDR1

- awaiting further
clinical studies [235]

miR-199a-5p, a
targeted delivery

of miRNAs
inhibit DDRs colorectal cancer,

renal cancer
awaiting further
clinical studies [247–250]

monoclonal
antibodies Fab 3E3,

48B3, H-126
inhibit DDRs ductal breast carcinoma awaiting further

clinical studies [235,251]

6.3. Targeting to Collagen-Induced Chemoresistance

More and more data implicated the desmoplastic reaction is substantially related to
chemoresistance in chemotherapeutics. It is reported that the pancreatic cancer cells grown
in collagens demonstrated low sensitivity to gemcitabine chemotherapy. A further study
showed that three-dimensional collagens enabled an increase in ERK1/2 signaling, which is
known to promote chemotherapy resistance in several cancers. In other malignancies, it is
repeatedly reported that collagens protect cancer cells against chemotherapy. For instance,
in lung cancer models, collagens are shown to provide survival signals to attenuate the
effects of chemotherapy. In this regard, MT1-MMP plays a critical physiological role in
modulating growth factors and integrin signaling to enhance ERK1/2 phosphorylation
in the collagen microenvironment. Moreover, the increasing density of the ECM initiated
by collagen fibers and collagen deposition attenuates the permeability of drug delivery
in chemotherapy. Targeting collagen-induced chemoresistance is an effective strategy to
promote the chemotherapy effect. Some drugs are developed targeting the intermediary in
the signal pathway. Moreover, enhancing the collagen penetration of anticancer drugs is
an available strategy for cancer therapeutics, which targets collagen-associated stiffness
ECM and high dense collagen fibers, increasing the drug efficacy [252]. We summarize the
related drugs in Table 5.
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Table 5. The drugs that target collagen-induced chemoresistance.

Therapeutics Target Drug Mechanism Cancer Type Status Reference

collagen

polyethylene glycol
(PEG) &

glutaraldehyde
co-modified

fluorinated chitosan
(PGFCS)

as a collagen-targeted
transepithelial penetration

enhancer creating a
tumor-targeted adhesive

interface to open the
transepithelial-delivery
barrier at the tumor site

bladder cancer awaiting further
testing [253]

losartan

reducing stromal collagen
and hyaluronan production

to decompress tumor
vessels for enhancing

drug delivery.

prostate cancer,
colorectal cancer,
pancreatic cancer,
breast cancer, lung

cancer, ovarian cancer,
endometrial cancer

in clinical application [254–261]

Collagen type II Ivosideni

a selective inhibitor of
mutant IDH1, which is a

gene mutant site of collagen
type II

chondrosarcoma waiting further
clinical studies [262]

ERK1/2 JaZ-30

downregulates
phosphorylation of the

extracellular
signal-regulated ERK1/2

melanoma waiting further
clinical studies [263]

7. Conclusions and Future Perspectives

Collagens are the main component of the ECM, and their remodeling occurs along
with all processes of cancer progression. Collagens occur in abnormal morphology and
distribution in precancerous lesions, which seriously affect the topography of the ECM.
This provides a chance for clinicians to discover the pathology through medical imaging or
pathological for cancer early diagnosis. In cancer development, collagens cause different
stages of ECM topography, which contributes to cancer staging. Moreover, collagen-
associated biochemical indicators are the significant biomarkers of cancer diagnosis and
prognosis. Collagen participation in cancer progression is not only reflected in the remod-
eling under the influence of tumor cells or tumor-associated cells but is further revealed
as the role of guider or inducer for cancer cell invasion. The “highway” for cancer cell
invasion and the high stiffness of ECM are all enhanced by collagens, corresponding with
the aligned collagen fiber bundle and collagen deposition, respectively. Based on the mech-
anism of the interaction between collagens and cancer cells, many opportunities for cancer
therapeutics are revealed by disturbing or blocking the requirement in the interaction. The
targets are diversely located across the pathway of collagen synthesis, binding to receptors,
degradation, and drug transport. Overall, collagens provide many opportunities, whether
for cancer diagnosis or cancer treatment; however, there are still many challenges from the
exploration of therapeutic targets to drug development because there are only a few drugs
allowed to enter the clinical application, while most of them are just in clinical trials or
waiting for further clinical studies. Several questions and propositions are provided for
further research. Firstly, the mechanism of collagen remodeling and its interaction with
cancer cells is not completely clear. So further studies are essential on the mechanisms of
collagen remodeling and the interaction between collagens and cancer cells. In our opinion,
small molecule inhibitors are worth developing as anti-cancer drugs due to their excellent
location and potential to cause no damage to normal cells. It would be a potential strategy
to block the collagen remodeling; however, it is hard to implement for the reconstructed
collagens. So, how to reduce the effectiveness of the reconstructed collagens is a valuable
issue. In addition to the targets in the action pathway, we propose that ablating the recon-
structed collagens is another strategy for cancer therapeutics. Moreover, to enhance the
efficacy, we highlight the significance of finding a suitable nanocarrier to increase the drug
transport capacity. Overall, further efforts are urgent in the collagen-associated mechanism
and the therapeutic strategy for cancer.
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