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Abstract: Plasma exosomal miRNAs are key regulators of cell-cell interactions associated with several
biological functions in patients with cancer. This pilot study aimed to investigate the log2 fold change
(log2FC) of the expression of exosomal miRNAs and related mRNAs in the blood of patients with
cervical cancer to identify prognostic markers better than those currently available. We sequenced
plasma exosomal RNA from 56 blood samples collected from 28 patients with cervical cancer, who
had been treated with concurrent chemoradiotherapy (CCRT). Changes in the expression of miRNAs
and mRNAs before and after CCRT were represented as log2FC. Their biological functions were
studied by miRNA-mRNA network analysis, using ingenuity pathway analysis, after the selection of
two groups of miRNAs, each associated with early progression (EP) and metastasis, also described as
initial stage. Seven patients experienced EP, three of whom died within four months after progression.
Reduced levels of miR-1228-5p, miR-33a-5p, miR-3200-3p, and miR-6815-5p and increased levels of
miR-146a-3p in patients with EP revealed unresolved inflammation, with accompanying increased
expression of PCK1 and decreased expression of FCGR1A. Increased levels of miR-605-5p, miR-
6791-5p, miR-6780a-5p, and miR-6826-5p and decreased levels of miR-16-1-3p (or 15a-3p) were
associated with the degree of metastasis and led to the systemic activation of myeloid, endothelial,
and epithelial cells, as well as neurons, phagocytes, and platelets. Log2FCs in the expression of
miRNAs and mRNAs from plasma exosomes after CCRT are associated with EP and metastasis,
reflecting unresolved inflammation and systemic microenvironmental factors, respectively. However,
this study, supported by preliminary data insufficient to reach clear conclusions, should be verified
in larger prospective cohorts.

Keywords: exosome; transcriptomics; fold change; cervical cancer; early progression; metastasis

1. Introduction

The prognosis of cervical cancer is estimated based on the initial clinical stage; how-
ever, occasionally, patients with cervical cancer proceed to death earlier than expected.
This may occur after three major cancer treatments: surgery, chemotherapy, and radio-
therapy (RT) [1–3]. Such treatments destroy not only the cancer cells but also normal
tissues and cause inflammation thereafter. Cancer development is deeply related to chronic
inflammation [4], and patients undergoing treatments for cancer are subjected to higher
psychological stress than usual [5]. Therefore, patients with cancer are also exposed to
stress-derived inflammation. Notably, inflammation following tissue damage is essential
for the maintenance of local and systemic homeostasis, autonomic nervous system, and the
hypothalamic-pituitary-adrenal (HPA) axis [6]. Non-homeostatic states are associated with
the co-existence of pro-inflammatory and anti-inflammatory signals, which may result
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in the abundant secretion of growth factors, high blood glucose levels, and inactivated
cell-mediated immunity. In fact, such a systemic environment can be favorable for cancer
progression; however, the association between unresolved inflammatory responses and
cancer progression or death still remains undefined.

A 27% difference in 5-year progression-free survival has been reported between pa-
tients with cervical cancer and pelvic lymph node (LN) metastasis (2018 International
Federation of Gynecology and Obstetrics (FIGO) stage IIIC1) and those with cervical cancer
and para-aortic LN (PALN) metastasis (2018 FIGO IIIC2) [7]. Therefore, PALN metastasis
is important for predicting clinical outcomes and establishing treatment strategies. Bi-
ologically, bone marrow-derived cells, lymphatic endothelial cells, and neuron cells are
recruited to tumors to promote invasion and metastasis [8]. The same microenvironment
may be formed at metastatic sites. Therefore, it may be useful to quantify systemic tumor
microenvironment indicators for prognostic estimation.

The prediction of clinical outcomes in patients with cancer via analysis of the expres-
sion of individual genes has several limitations. First, selection of genes with a significantly
different expression in group comparisons (e.g., healthy controls vs. patients with cancer
and non-recurrence vs. recurrence) is usually performed. However, this analysis excludes
pivotal regulators of various biological functions with small expression changes; moreover,
it may be difficult to find all pivotal regulators even in a large population, because a
plurality of upstream regulatory genes is likely to affect clinical outcomes. Second, gene
expression levels may be affected by different treatment modalities. Therefore, comparing
treatment outcomes may lead to the “dilution” of important variables, particularly when
treatment groups are heterogeneous. Third, association studies of gene expression and
clinical outcomes usually focus on the tumor and its microenvironment. However, clinical
outcomes may also depend on different systemic responses. Therefore, access to blood
is necessary to comprehensively investigate the systemic responses (of both cancer and
normal cells) to treatment. Fourth, it is essential to analyze the highest number of regula-
tory genes related to cell-to-cell signaling for an efficient integration between numerous
complex biological data and clinical results.

miRNA levels in plasma exosomes should be considered in this regard. The 30–
100 nm extracellular vesicles, released by both cancer and normal cells, may regulate
systemic biological functions relevant to clinical outcomes [9]. Therefore, in this study, we
aimed to perform transcriptomic analysis of plasma exosomes isolated from the blood of
patients with cervical cancer before treatment and in the second week after cisplatin-based
concurrent chemoradiotherapy (CCRT). We calculated the log2 fold change (log2FC) values
between the two samples from each patient to identify miRNAs as predictors of early
progression (EP) and metastasis. Due to the use of network analysis tools, our findings
provide mechanistic insights into EP and metastasis as well.

2. Methods
2.1. Patients

Two sets of 5–10 mL blood samples from 29 patients diagnosed with FIGO IB-IVB
cervical cancer and treated with CCRT at the Department of Radiation Oncology, Ajou Uni-
versity Hospital from June 2018 to November 2019 were stored at the Biobank of Ajou
University Hospital, a member of Korea Biobank Network, after the acquisition of informed
consent from the patients (institutional review board approval number: BMR-SMP-18-248).
The 58 samples were obtained before treatment and after the second week of CCRT, based
on previous retrospective studies [10,11]. Plasma exosomal RNA sequencing and profiling
were conducted by Macrogen (www.macrogen.com, Supplementary Methods). One patient
was excluded owing to the significantly low expression levels. Diagnosis was histologically
confirmed by biopsy, and regional LN and distant metastases were evaluated by magnetic
resonance imaging (MRI) and positron emission tomography-computed tomography (PET-
CT). External beam radiotherapy (EBRT) was delivered using 10 MV photons to the pelvis
or PALNs. The pelvic RT dose was 45 Gy, delivered in 25 fractions, with a simultaneous
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integrated boost of 120–130% to regional LN metastases. RT response was evaluated by
MRI in the fourth week of pelvic EBRT (36–45 Gy in 20–25 fractions). A weekly cisplatin
regimen (30–70 mg/m2) was administered for six cycles to all patients. Three patients
with one or two distant metastatic lesions were treated with the following EBRT regime.
The patient with a single lesion in the left lung was treated with stereotactic body radiation
therapy using 48 Gy in four fractions, starting in the fourth week of CCRT. The patient
with a left supraclavicular lesion was treated with conformal RT of 55 Gy in 22 fractions,
starting in the first week of CCRT. The patient with both left supraclavicular and right
axillary lesions was treated with conformal RT of 40 Gy in 10 fractions, starting in the
third week of CCRT. Twenty-six patients underwent intracavitary brachytherapy (ICBT),
except the one whose ICBT was replaced with EBRT boost and another who refused further
treatment (Iridium-192; GammaMedplus iX, Varian, Palo Alto, CA, USA). Weekly cisplatin
(30–70 mg/m2) was administered in 6 cycles during RT to all patients, and the latter were
followed up every 1–3 months after treatment completion. Primary cervical tumors and
regional LN and distant metastases were evaluated by pelvic examination, Pap smear test,
tumor marker analysis, MRI, and CT.

2.2. Log2FC and Power Transformation for miRNA and mRNA

Next generation sequencing data from plasma exosomes included data of small RNAs,
long non-coding RNAs, and mRNAs, from which miRNAs and mRNAs were used for
analysis. After removal of the RNAs undetected in 50% of samples, 586 miRNAs and 15,324
mRNAs were analyzed. Log2FC values between read counts of miRNAs and mRNAs,
before treatment (control) and after the second week of CCRT (treatment), were calculated
after TMM normalization using edgeR. Reads per million (RPM) values before treatment
were transformed to normal distribution using Box-Cox function to find the miRNAs most
relevant to pretreatment. miR-16-1-3p or miRNAs with pretreatment RPM values were
negatively correlated with log2FC values (Figure S1A).

2.3. Selection of RNAs to Predict Clinical End Points

The matrix of Pearson’s correlations between all RNAs was calculated by recorr
function in Hmisc package for R programming. RNAs associated with EP (|R| > 0.4)
and stage (|R| > 0, staging order and |R| > 0, extrapelvic metastasis) were primarily
selected. The optimal model using selected RNAs was suggested by an exhaustive search
of regsubsets in leaps package for R (Figures S2A and S5A). The sum and difference of
RNAs in the suggested model were relevant to EP and stage by Wilcoxon rank-sum test
and Kruskal–Wallis test, respectively (Figures S2B and S5B).

2.4. Network Analysis

Network analyses were performed using Prim’s algorithm of minimum spanning tree
in igraph package for R (Figure S1). Positively and negatively correlated edges are shown
in red and blue, respectively, and were calculated as Pearson’s correlations.

2.5. Ingenuity Pathway Analysis

The most significant diseases and bio-functions analyzed using ingenuity pathway
analysis (IPA) software (QIAGEN, https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis) were selected based on the activated Z-scores of downstream
effects of the analysis [12]. Positive and negative Z-scores indicated promoted and inhibited
functional activities, respectively.

Data analysis and visualization were performed using R version 3.6.3 (https://www.
r-project.org).

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.r-project.org
https://www.r-project.org


J. Clin. Med. 2021, 10, 2110 4 of 16

3. Results
3.1. Early Progression and Tumor Stage

Two sets of blood samples were collected from 28 patients with cervical cancer before
and two weeks after the initiation of CCRT. Treatment and follow-up data of EP and
metastasis were collected (Figure 1A). EP was defined as the observation of new tumor(s)
outside the RT field within a year after diagnosis; tumor progression within the RT field
or after one year of diagnosis was not defined as EP. The treatment approaches and
cancer progression results are shown in Figure 1B. Considering a median follow-up of 16.9
months, seven patients showed EP; three of them died within four months after progression,
three showed responses to second-line chemotherapy and are still being followed-up, and
the remaining patient discontinued follow-up. Additionally, two patients showed loco-
regional progression; one of them had cervical lesion progression after refusal of ICBT,
whereas the other showed left pelvic LN lesion progression despite irradiation (more than
70 Gy). Clinical characteristics of the patients are described in Table 1. According to FIGO
staging, the lesions of 18 patients with stage IB-IIIC1 were localized in the pelvis, whereas
those of patients with stage IIIC2-IVA spread to the PALNs and those of patients with stage
IVB spread to the lungs and supraclavicular and axillary LNs (Figure 1C). This clearly
showed that tumor staging reflects the degree of metastasis.

Figure 1. Transcriptomic analysis of miRNAs within exosomes isolated from the plasma of 28
patients with cervical cancer. (A) Clinical endpoints and blood sampling timeline. (B) Bar graph of
follow-up duration and description of early progression and second-line treatment. (C) Metastatic
sites according to the 2018 International Federation of Gynecology and Obstetrics (FIGO) staging.
One patient with bladder invasion (stage IVA) also showed para-aortic lymph node metastasis.
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Table 1. Clinical characteristics of the patients.

All Early Progression p

(N = 28) No (N = 21) Yes (N = 7)

Age (years) (IQR) 50.0 (42.5;56.0) 50.0 (47.0;56.0) 46.0 (35.0;51.5) 0.184

FIGO staging 2018, n (%) 0.298
- IB 4 (14.3%) 3 (14.3%) 1 (14.3%)
- IIB-IIIC1 14 (50.0%) 12 (57.1%) 2 (28.6%)
- IIIC2-IVA 7 (25.0%) 5 (23.8%) 2 (28.6%)
- IVB 3 (10.7%) 1 (4.8%) 2 (28.6%)

Pathology, n (%) 0.017
- Adenocarcinoma 4 (14.3%) 1 (4.8%) 3 (42.9%)
- Adenosquamous cell carcinoma 1 (3.6%) 0 (0.0%) 1 (14.3%)
- Unclassified carcinoma 1 (3.6%) 1 (4.8%) 0 (0.0%)
- Squamous cell carcinoma 22 (78.6%) 19 (90.5%) 3 (42.9%)

RT field, n (%) 0.815
Pelvis 19 (67.9%) 15 (71.4%) 4 (57.1%)

Pelvis with para-aortic region 9 (32.1%) 6 (28.6%) 3 (42.9%)

Total dose (EQD2) (IQR) 76.2 (72.2;84.2) 75.5 (72.2;84.2) 84.2 (74.2;84.2) 0.357

Intracavitary brachytherapy, n (%) 0.483
- No treatment 2 (7.1%) 1 (4.8%) Refusal 1 (14.3%) EBRT
- 24 Gy in four fractions 10 (35.7%) 9 (42.9%) 1 (14.3%)
- 24 Gy in six fractions 5 (17.9%) 4 (19.0%) 1 (14.3%)
- 25 Gy in five fractions 1 (3.6%) 1 (4.8%) 0 (0.0%)
- 30 Gy in six fractions 10 (35.7%) 6 (28.6%) 4 (57.1%)

Dexamethasone during RT, n (%) 1.000
No 21 (75.0%) 16 (76.2%) 5 (71.4%)
Yes 7 (25.0%) 5 (23.8%) 2 (28.6%)

Dexamethasone after RT, n (%) 0.061
No 24 (85.7%) 20 (95.2%) 4 (57.1%)
Yes 4 (14.3%) 1 (4.8%) 3 (42.9%)

Death, n (%) 0.014
No 25 (89.3%) 21 (100.0%) 4 (57.1%)
Yes 3 (10.7%) 0 (0.0%) 3 (42.9%)

RT, radiotherapy; EQD2, equivalent dose in 2 Gy fractions; FIGO, International Federation of Gynecology and Obstetrics; IQR, interquartile range.
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3.2. Selection of miRNAs That Predicted Early Progression and Tumor Stage Better

miR-1228-5p, miR-146a-3p, miR-33a-5p, miR-3200-3p, miR-501-3p, and miR-6815-5p
were found to be associated with EP (Figure 2A). We also performed a multiple linear
regression (MLR) analysis of the selected miRNAs; the difference in expression of these
miRNAs between the two groups, according to EP, was larger for five miRNAs (excluding
miR-501-3p) than all the above six miRNAs (Figure 2B). Therefore, miR-1228-5p, miR-146a-
3p, miR-33a-5p, miR-3200-3p, and miR-6815-5p were selected as predictors of EP.

Figure 2. Selection of miRNAs associated with early progression and stage in cervical cancer. (A)
Five miRNAs, selected after obtaining adjusted R values from multiple regressions of all possible
combinations of 19 miRNAs, were significantly associated with early progression. (B) In two groups
related to early progression status, the difference of sum and subtraction of the selected 5 miRNAs
was greater than that of the six selected miRNAs. (C) Pre-treatment normal transformed miR-16-1-3p
correlated better with miR-15a-3p among all miRNAs. (D) Five miRNAs, selected after obtaining
adjusted R values from multiple linear regressions of all possible combinations of 10 miRNAs, were
significantly associated with stage. (E) Sum and difference of the selected 5 miRNAs were positively
correlated with stage. (F) Correlation between miR-605-5p+miR-6791-5p+miR-6826-5p+miR-6780a-
5p, miR-16-1-3p (or 15a-3p), and extrapelvic metastasis.

Only miR-16-1-3p, known as a cluster of miR-15a [13], was negatively correlated
with tumor stage (R = −0.488, and −0.546 for staging order and extrapelvic metastasis,
respectively). Considering pretreatment RPM values, miR-16-1-3p was most positively
correlated with miR-15a-3p (Figure 2C). Since miR-16-1-3p was not detected in four patients,
it was replaced with miR-15a-3p to obtain miR-16-1-3p (or 15a-3p) (log2FC). Importantly,
miR-605-5p, miR-6791-5p, miR-6780a-5p, miR-6826-5p, and miR-16-1-3p (or 15a-3p) were
associated with stages (Figure 2D). After MLR analysis, stage was found to be significantly
correlated with miR-605-5p+miR-6791-5p+miR-6780a-5p+miR-6826-5p-miR-16-1-3p (or
15a-3p). Additionally, extrapelvic metastasis was negatively correlated with miR-16-1-3p
(or 15a-3p) while being positively correlated with miR-605-5p+miR-6791-5p+miR-6780a-
5p+miR-6826-5p (Figure 2F).

3.3. Selection of RNAs According to Disease and Biological Functions Using IPA

To understand the function of miRNAs associated with EP and stage, IPA was per-
formed after identification of the network structure formed by the selected miRNAs and
adjacent RNAs (Figure S1). Table S1 shows the candidate RNAs, including mRNAs, inti-
mately associated with three clinical endpoints and involved in miRNA-mRNA networks
related to EP and stage (Figure S1B,D). Importantly, cancer, inflammatory response (IR),
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inflammatory disease (ID), metabolic disease (MD), and cellular growth and proliferation
(CGP) were selected, among the top 30 categories, to be associated with EP; subcategories
relevant to ID or IR were also defined in terms of EP (Figure 3A,B). Additionally, cancer,
cellular movement (CM), cell-to-cell signaling and interaction (CCSI), and cell death and
survival (CDS) were selected, among the top 30 categories, to be associated with stage
(Figure 3C,D).

Figure 3. Ingenuity pathway analysis-based selection of RNAs using functional categories related to
early progression and stage. (A) (Sub)categories for early progression are sorted by relevance. Five
categories and four subcategories are selected based on the assumption of uncontrolled inflammation.
(B) Venn diagram representing four categories; RNAs overlapping with the cancer category are
highlighted. (C) (Sub)categories for stage are sorted by relevance. Four categories and 10 subcate-
gories are selected based on the assumption of the correlation between tumor microenvironment
and metastasis. (D) Venn diagram representing four categories; RNAs overlapping with the cancer
category are highlighted.

3.4. Association between Unresolved Inflammation and Early Progression in miRNA-mRNA
Simplified Network Analysis

The simplified network represented in Figure 4A was constructed with the RNAs,
including the shortest distance-connecting five main miRNAs represented in Figure S1B, as
well as the RNAs selected using IPA (Figure 3B). The number of RNAs altered by miR-1228-
5p, miR-146a-3p, and miR-3200-3p was 10–11, whereas that altered by miR-33a-5p and miR-
6815-5p was 7 and 2, respectively; additionally, there were nine overlapping cases among
the RNAs changed by miR-1228-5p and miR-146a-3p. The network suggested that PCK1 is
upregulated by CCNO following the upregulation of miR-146a-3p, or by SLAMF1 following
the downregulation of miR-1228-5p. In addition, the downregulation of miR-1228-5p and
upregulation of miR-146a-3p were interrelated. Moreover, the changes in miR-1228-5p,
miR-33a-5p, and miR-146a-3p according to EP were associated with the upregulation of
PCK1 following the downregulation of PDE3A. However, the downregulation of miR-
3200-3p was not correlated with the upregulation of PCK1, despite being relevant to the
upregulation of SLAMF1 (R2 = 0.3805). Additionally, the downregulation of miR-1228-
5p and miR-3200-3p was associated with the downregulation of FCGR1A; correlation
was higher for miR-3200-3p (R2 = 0.4939) than for miR-1228-5p (R2 = 0.2227). Curiously,
PCK1 and FCGR1A, the best predictors of EP among all mRNAs in Figure 4A (Figure S2),



J. Clin. Med. 2021, 10, 2110 8 of 16

replaced miR-146a-3p and miR-3200-3p, respectively, when they were combined with the
main miRNAs towards high adjusted R (Figure S2B). This supported the idea that primary
miRNAs are involved in EP through PCK1 and FCGR1A. The boxplots of RNAs altered
by main miRNAs are presented in Figure S3A; the changes in RNA expression due to
miR-33a-5p or miR-6815-5p were mostly between −1.5 and 1.5 log2FC, whereas that due to
miR-1228-5p, miR-146a-3p, or miR-3200-3p were not. Therefore, miR-1228-5p, miR-146a-3p,
and miR-3200-3p were more relevant to EP than miR-33a-5p and miR-6815-5p, considering
the association between these miRNAs and PCK1 or FCGR1A, the number of RNAs they
regulate, and their relevant changes.

Figure 4. Simplified network of miRNA-mRNA interactions in early progression. (A) A simplified
network is presented from 10 RNAs involved in the shortest pathway connecting 5 mRNAs and
45 RNAs within four functional categories related to early progression. RNAs altered by the five main
miRNAs are displayed by number(s) above vertices in red (downregulation) or blue (upregulation),
and in bold (p < 0.05) or plain (p ≥ 0.05) fonts. Red and blue edges correspond to positive and
negative correlations, respectively. (B) Subcategories are displayed to show the difference in Z-scores
according to early progression; subcategories were selected based on significant Z-scores in all
patients using the log2FC values of all 48 RNAs included in this network. Functional categories
are defined below the boxplots as ID (inflammatory disease), and IR (inflammatory response). ns,
p ≥ 0.05; *, p < 0.05. (C) Diseases and biological functions associated with the 43 RNAs and five
groups formed by primary miRNAs in the network are shown using boxplots. Statistical analysis
was performed using the Wilcoxon rank-sum test or Kruskal–Wallis test. Downregulation and
upregulation of RNAs refer to log2FC < −1.5 and log2FC > 1.5, respectively.

The difference in Z-scores according to EP can be interpreted as increased pro-
inflammation (colitis↑, enteritis↑), anti-inflammation (synthesis of ROS↓), and CGP (mat-
uration of cells↓, quantity of cells↑) in the EP group (Figure 4B). All RNAs were related
to ID (38%), IR (29%), MD (17%), and CGP (15%) (Figure 4C). Moreover, three groups of
RNAs regulated by miR-1228-5p, miR-146a-3p, and miR-3200-3p were relatively relevant
to MD and a group of RNAs regulated by miR-33a-5p was related to severe inflammatory
disorders; additionally, two groups of RNAs regulated by miR-3200-3p and miR-6815-
5p were relatively associated with CGP, whereas two groups regulated by miR-3200-3p
and miR-1228-5p included FCGR1A, relevant to antigen presentation in macrophages.
The functions of mRNAs altered by the five miRNAs are described as references (Table 2).
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Importantly, all miRNAs were relevant to increased pro-inflammation or cancer progres-
sion; four miRNAs (except miR-6815-5p) were associated with increased anti-inflammation,
and miR-1228-5p, miR-146a-3p, and miR-3200-3p were linked to reduced cell-mediated
immunity or increased blood glucose.

Cortisol is a representative anti-inflammatory hormone associated with the weakening
of immune responses and gluconeogenesis. Considering the HPA axis in the central
nervous system and peripheral tissues [14], an association between CRH, POMC, CYP11B1,
HSD11B1, and the primary miRNAs is presented in Figure S3B. CYP11B1 and HSD11B1 are
mRNAs relevant to the production of cortisol. Importantly, a network constructed by CRH,
POMC, CYP11B1, HSD11B1, CYP11B1+HSD11B1, and miR-3200-3p revealed the latter to
be a mediator between CRH and CYP11B1.

Table 2. Biological functions of RNAs that changed significantly according to the upregulation or
downregulation of the five main miRNAs are reviewed focusing on the inflammatory response.

Regulatory miRNAs mRNAs Related Function References

Pro-inflammation

miR-1228-5p↓,
miR-33a-5p↓,
miR-146a-3p↑

PDE3A↓
Cardiac contractility↑

Vascular
contractility↑

[15]

miR-1228-5p↓,
miR-146a-3p↑ ADAMTS-18↓ Platelet activation↑ [16]

miR-3200-3p↓ TG↑
Inflammatory

cytokine↑
Cancer proliferation↑

[17,18]

miR-33a-5p↓ HIST2H2AA3/4↓ DNA damage↑ [19]

miR-3200-3p↓ PLCE1↑
Inflammatory

cytokine↑
Cancer proliferation↑

[20]

miR-3200-3p↓ GCNT3↑ Inflammatory
cytokine↑ [21,22]

miR-146a-3p↑ PHYH↑ Peroxisome ↑ [23]
miR-6815-5p↓ TNIP1↓ Anti-inflammation↓ [24]

miR-6815-5p↓ RSPH3↓ Inflammatory
cytokine↑ [25,26]

Anti-inflammation

miR-1228-5p↓,
miR-33a-5p↓,
miR-146a-3p↑

PDE3A↓ Platelet aggregation↓ [15]

miR-146a-3p↑ PLAUR↓ Plasminogen
activation↓ [27]

miR-33a-5p↓ PTGS1↓ Prostaglandins↓ ->
anti-inflammation↑ [28]

miR-1228-5p↓ DHCR24↓ Inflammatory gene
expression↓ [29]

miR-146a-3p↑ E2F2↓ Inflammatory signal↓ [30]

miR-3200-3p↓ CCKBR↑
Vagus nerve

stimulation ->
anti-inflammation↑

[31]

Cell mediated
immunity↓

miR-1228-5p↓,
miR-146a-3p↑ SLAMF1↑ Activation of

macrophages↓ [32]
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Table 2. Cont.

Regulatory miRNAs mRNAs Related Function References

miR-1228-5p↓,
miR-3200-3p↓ FCGR1A↓ Antigen

presentation↓ [33]

miR-1228-5p↓ C1QB↓ Antigen
presentation↓ [34]

Blood glucose↑

miR-3200-3p↓ NUBPL↑
Mitochondrial

complex 1↑ -> Blood
glucose↑

[35,36]

miR-1228-5p↓,
miR-146a-3p↑ PCK1↑ Blood glucose↑ [37]

miR-1228-5p↓,
miR-146a-3p↑ STX16↓ Intracellular glucose

transport↓ [38]

miR-3200-3p↓ ADCY8↑ Obese and type 2
diabetes [39]

miR-3200-3p↓ IP6K3↑ Blood glucose↑ [40]

miR-3200-3p↓ NEGR1↑ Obese and insulin
resistance↑ [41]

Cancer progression

miR-1228-5p↓,
miR-146a-3p↑ NAV3↓ Cancer metastasis↑ [42]

miR-1228-5p↓ LARGE1↓ Cancer metastasis↑ [43]
miR-33a-5p↓ PSD3↓ Cancer proliferation↑ [44]

miR-146a-3p↑ CCNO↑ Cancer proliferation↑ [45]
miR-6815-5p↓ miR-590-3p↑ Cancer progression↑ [46]

Unclassified

miR-33a-5p↓ ACVR1↓ Oncogene vs. tumor
suppressor gene [47]

miR-3200-3p↓ TYMP↓ Cancer proliferation↓
vs. chemo response↓ [48]

↑; Increase, ↓; Decrease.

The simplified network may be divided into two groups: a group formed by miR-
1228-5p, miR-146a-3p, and miR-33a-5p centralized by PDE3A, and another formed by
miR-6815-5p and miR-3200-3p. Importantly, early death was associated with dysregulation
of all miRNAs in both groups (|1.5| > log2FC) according to EP (Figure S3C).

3.5. Association between Systemic Tumor Microenvironment and Metastasis in miRNA-mRNA
Simplified Network Analysis

The simplified network represented in Figure 5A was constructed with the RNAs
including the shortest distance-connecting five main miRNAs represented in Figure S1D
and those selected using IPA (Figure 3D). The boxplots of RNAs altered by the five main
miRNAs showed the extent to which the RNAs were altered by each primary miRNA, apart
from the statistically significant changes, as well as which (sub)categories they belonged to
(Figure S4). Downregulation, no change, and upregulation of miR-16-1-3p (or 15a-3p) were
relevant to the upregulation, downregulation, and no change of miR-6780a-5p, respectively.
This resulted from two outliers of negative linear correlation between miR-16-1-3p (or 15a-
3p) and miR-6780a-5p. However, miR-6780a-5p was positively correlated with miR-6826-5p
and positively relevant to miR-605-5p, which in turn was positively related to miR-6791-5p.
While the number of RNAs altered by miR-605-5p was the highest (27), those altered by
miR-6780a-5p, miR-6791-5p, and miR-6826-5p were similar (10–11); moreover, the number
of RNAs changed by miR-16-1-3p (or 15a-3p) was the lowest at 6. Therefore, miR-16-1-3p
(or 15a-3p) might regulate the other four miRNAs, whereas miR-605-5p might be regulated
by three other miRNAs (except miR-6791-5p). FAM168A, RBP3, and C1QTNF1 were the
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best mRNA predictors for stage (Figure S5). Additionally, RBP3 and C1QTNF1 replaced
miR-6826-5p and miR-6791-5p, respectively, when they were combined with the five main
miRNAs toward high adjusted R (Figure S5B). Therefore, RBP3 and C1QTNF1 may be the
key mRNAs relevant to miR-6826-5p and miR-6791-5p, respectively.

Figure 5. Simplified network of miRNA-mRNA interactions in metastasis. (A) A simplified network
is presented from 15 RNAs involved in the shortest pathway connecting 5 mRNAs and 65 RNAs
within four functional categories related to metastasis. RNAs changed by the five main miRNAs are
displayed by number(s) above the vertices in red (downregulation) or blue (upregulation), and in
bold (p < 0.05) or plain (p ≥ 0.05) fonts. Red and blue edges correspond to positive and negative
correlations, respectively. (B) Subcategories show the difference in Z-scores according to extrapelvic
metastasis; subcategories were selected based on significant Z-scores in all patients using the log2FC
values of all 72 RNAs included in this network. * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Biological
functions associated with the 67 RNAs and five groups formed by primary miRNAs in the network
are shown using boxplots. Statistical analysis was performed using the Wilcoxon rank-sum test or
Kruskal–Wallis test. Downregulation and upregulation of RNAs refer to log2FC < −1.5 and log2FC >
1.5, respectively.

The difference in Z-scores according to extrapelvic metastasis suggested that all of
the systemic angiogenesis, tumor-associated macrophages, neurogenesis, and blood cell
activation contribute to metastasis (Figure 5B); all RNAs were related to CM (42%), CCSI
(16%), CDS (35%), and metastasis of tumor cell lines (6%) (Figure 5C). Importantly, four
groups of RNAs altered by miRNAs (except miR-16-1-3p (or 15a-3p)) were relevant to CM
of myeloid cells, activation of blood platelets, and necrosis of epithelial cells. In addition,
both miR-605-5p and miR-6791-5p were associated with the CM of both neurons and
phagocytes and with the apoptosis of endothelial cells; their functions were also similar.
However, miR-6826-5p was not implicated in the migration of neurons and apoptosis of
endothelial cells; it was involved in the CM of myeloid cells and phagocytes with the
highest magnitude across all groups. In fact, miR-6780a-5p was the one with the lowest
number of biological functions among all groups. These data together suggested that
miR-16-1-3p (or 15a-3) has rare active functions, whereas the four groups of RNAs altered
by other miRNAs have active functions relevant to myeloid, endothelial, and epithelial
cells, as well as to neurons, phagocytes, and platelets.
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4. Discussion

Our findings clearly suggested that the log2FC of miRNAs contained within plasma ex-
osomes are associated with EP and metastasis in patients with cervical cancer. Importantly,
the biological functions of mRNAs regulated by these miRNAs supported the association
of unresolved inflammation with EP, systemic tumor microenvironment, and metastasis.

The balance between pro-inflammatory and anti-inflammatory states is essential for
inflammatory homeostasis [6,49]. However, anti-inflammatory cytokines and hormones
cannot efficiently reduce inflammation if the balance is disturbed. In fact, this is probably
what happens in cancer; the persistence of pro-inflammatory cytokines results in cancer
proliferation [50]. In this study, we showed that the changes in mRNAs altered by miR-
1228-5p, miR-146a-3p, miR-33a-5p, miR-3200-3p, and miR-6815-5p in patients with EP are
associated with loss of homeostasis and simultaneous induction of pro-inflammation, anti-
inflammation, gluconeogenesis (PCK1), and immune suppression (FCGR1A) (Figure 4 and
Figure S2). This unresolved inflammation is consistent for patients with EP, who require
more dexamethasone for enteritis or cystitis after completion of RT (Table 1) than those
without EP. Moreover, the downregulation of miR-3200-3p was relevant to the upregulation
of both CRH and CYP11B1 (Figure S3B) and supported the association between EP and
dysregulation of the peripheral HPA axis. Importantly, for EP, we found two relevant
miRNA groups, including one formed by miR-1228-5p, miR-146a-3p, and miR-33a-5p,
and another by miR-3200-3p and miR-6815-5p. The failure of regulation of all miRNAs
in each group was associated with early death after EP (Figure S3C). This implied that
miR-1228-5p and miR-146a-3p are complementary to miR-33a-5p, whereas miR-3200-3p
is complementary to miR-6815-5p. The novel findings clearly supported the notion that
cancer progression during conventional treatments results from the dysregulation of five
miRNAs related to inflammatory responses.

Tumors recruit various types of stromal cells, such as myeloid, endothelial, and
epithelial cells, as well as neurons, macrophages, lymphocytes, and platelets, which in-
duce metastasis and affect survival, progression, angiogenesis, and immune evasion [8].
Our results revealed that expression levels of four miRNAs associated with stromal cells
are increased in metastasis, and are negatively correlated with miR-16-1-3p (or 15a-3p)
(Figure 5). Additionally, two mRNAs, changed by miR-6826-5p and miR-6791-5p, were
also important to the tumor stage. RBP3, associated with the CM of myeloid cells and
phagocytes, and C1QTNF1, associated with the activation of platelets, played key roles
towards metastasis in the tumor microenvironment (Figures S4 and S5). In fact, such fac-
tors might affect cell signaling and consequent activation of stromal cells following tumor
metastasis outside the RT field. Therefore, quantification of these miRNAs could reflect
the metastatic microenvironment not seen otherwise in MRI or CT scans, thereby helping
the establishment of customized treatment strategies according to the risk. Furthermore,
our results suggested that miR-16-1-3p (or 15a-3p) may be a potential upstream regulator
important for the suppression of metastasis by modulation of the tumor microenvironment.
Its role as a tumor suppressor in cancer supported the potential of miR-16-1-3p (or 15a-3p)
as a therapeutic target in cervical cancer [13].

In this study, we used the sample obtained 2 weeks after CCRT to calculate log2FC for
the following reasons. A previous study reported that lymphopenia during CCRT is rele-
vant to cervical cancer prognosis [51]. Furthermore, it has been reported that hematological
parameters, including lymphocyte count, at 2 weeks during pelvic CCRT could predict
treatment outcome [10,11]. A sharp decline in lymphocyte count (poor radiation tolerance
of lymphocytes) was more associated with clinical results than a gradual decline (good
radiation tolerance of lymphocytes) during 2 weeks post CCRT in locally advanced cervical
cancer [52]. This lymphopenia may result from DNA damage in lymphocytes by CCRT, an
immune-response escape mechanism of cancer, and intrinsic factors, such as inappropriate
inflammatory response or suppressed innate immunity against CCRT. We hypothesize that
2 weeks post CCRT is the most appropriate period to evaluate the association between
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intrinsic factors and EP of cervical cancer because the influence of CCRT on circulating
lymphocytes and cancer may increase with treatment progression.

Han et al. compared miRNA expression profiles of advanced stage cervical squamous cell
carcinoma between patients resistant (EP) and those sensitive to CCRT for screening candidate
miRNAs [53]. In the present study, we evaluated the association between log2FC of miRNAs
in each patient according to irradiation and EP. The previous study by Han et al. was a
case-control study, whereas ours is a cohort study. A case-control study may have a selection
bias despite careful individual matching, and it is difficult to identify factors that are relatively
less relevant to EP, whereas a cohort study has the advantage to integrate various risk factors.
Therefore, serum miRNA-206 screened in the previous study might not have been upregulated
in all patients who showed EP, but largely upregulated in some patients who showed EP. In
the present study, we considered log2FC of each miRNA as a risk factor in this small cohort,
and several log2FCs of miRNAs were clearly divided into two groups according to EP without
overlapping of boxplots as shown in Figure 2B. In addition, IPA using log2FCs of mRNAs
correlated with these groups revealed a possible biological background. We used a research
method different from that used in previous studies, in that it enables cohort studies. We used
next generation sequencing of miRNA from plasma exosomes to maximize this advantage.
We believe that this method can be used to screen potential miRNAs associated with clinical
results more efficiently and accurately than previous methods.

5. Conclusions

The log2FCs of miRNAs and mRNAs from plasma exosomes were found to be associ-
ated with unresolved inflammation and microenvironmental factors that trigger metastasis.
The estimated biological functions of the main miRNAs supported their associations with
clinical outcomes. In addition, the study showed plasma exosomes to be useful tools for
addressing interesting biological problems in oncology, and be potential clinical biomarkers
for patients with cervical cancer.

Nevertheless, this study involved a small number of patients, which is a clear limita-
tion in this preliminary step to lay a foundation to predict EP and metastasis in patients
with cervical cancer treated with CCRT. Therefore, the methods and findings of this study
should be verified in larger prospective cohorts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10102110/s1, Supplementary Methods: Process of plasma exosomal RNA sequencing
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adjacent RNAs (related to Figure 3); Figure S2: Selection of mRNAs associated with early progression
in a simplified network (related to Figure 4); Figure S3: Details of simplified network of miRNA-
mRNA interactions in early progression (related to Figure 4); Figure S4: Details of simplified network
of miRNA-mRNA interactions in metastasis (related to Figure 5); Figure S5: Selection of mRNAs
associated with metastasis in the simplified network (related Figure 5), Table S1: Candidate RNAs
for the ingenuity pathway analysis (related to Figure 3).

Author Contributions: O.C. Conceptualization, Methodology, Resources, Formal analysis, Data
curation, Writing, Visualization, Funding acquisition, Investigation; D.-W.K. Software, Formal analy-
sis; J.-Y.C. Resources, Software. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the Bio & Medical Technology Development Program of
the National Research Foundation (NRF) funded by the Korean government (MSIT) (grant number
NRF-2018M3A9E8023860).

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Ajou University Hospital
(institutional review board approval number: BMR-SMP-18-248).

Informed Consent Statement: Informed consent was obtained from all patients.

https://www.mdpi.com/article/10.3390/jcm10102110/s1
https://www.mdpi.com/article/10.3390/jcm10102110/s1


J. Clin. Med. 2021, 10, 2110 14 of 16

Data Availability Statement: All data analyzed during this study are available in the following. Orig-
inal sequencing data: ArrayExpress (accession number: E-MTAB-10215) Coding and dataset: https:
//data.mendeley.com/datasets/z9f4ydxs9m/draft?a=40df002d-7286-4be7-af4c-09c40bff094b.

Acknowledgments: The biospecimens and data used for this study were provided by the Biobank of
Ajou University Hospital, a member of Korea Biobank Network.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res. 2017, 77, 1548–1552. [CrossRef]

[PubMed]
2. Karagiannis, G.S.; Condeelis, J.S.; Oktay, M.H. Chemotherapy-Induced Metastasis: Molecular Mechanisms, Clinical Manifesta-

tions, Therapeutic Interventions. Cancer Res. 2019, 79, 4567–4576. [CrossRef]
3. Vilalta, M.; Rafat, M.; Graves, E.E. Effects of radiation on metastasis and tumor cell migration. Cell. Mol. Life Sci. 2016, 73,

2999–3007. [CrossRef] [PubMed]
4. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
5. Heo, J.; Chun, M.; Oh, Y.T.; Noh, O.K.; Kim, L. Psychiatric comorbidities among ovarian cancer survivors in South Korea: A

na-tionwide population-based, longitudinal study. Psychooncology 2018, 27, 1021–1026. [CrossRef] [PubMed]
6. Fleshner, M.; Crane, C.R. Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends

Immunol. 2017, 38, 768–776. [CrossRef] [PubMed]
7. Grigsby, P.W.; Massad, L.S.; Mutch, D.G.; Powell, M.A.; Thaker, P.H.; McCourt, C.; Hagemann, A.; Fuh, K.; Kuroki, L.; Schwarz,

J.K.; et al. FIGO 2018 staging criteria for cervical cancer: Impact on stage migration and survival. Gynecol. Oncol. 2020, 157,
639–643. [CrossRef] [PubMed]

8. Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 2008, 9, 239–252. [CrossRef]
9. Wang, M.; Yu, F.; Ding, H.; Wang, Y.; Li, P.; Wang, K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer.

Mol. Ther. Nucleic Acids 2019, 16, 791–804. [CrossRef]
10. Cho, O.; Noh, O.K.; Oh, Y.-T.; Chang, S.-J.; Ryu, H.-S.; Lee, E.J.; Chun, M. Hematological parameters during concurrent

chemoradiotherapy as potential prognosticators in patients with stage IIB cervical cancer. Tumor Biol. 2017, 39. [CrossRef]
11. Cho, O.; Chun, M.; Oh, Y.-T.; Noh, O.K.; Chang, S.-J.; Ryu, H.-S.; Lee, E.J. Prognostic implication of simultaneous anemia and

lymphopenia during concurrent chemoradiotherapy in cervical squamous cell carcinoma. Tumor Biol. 2017, 39. [CrossRef]
12. Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014,

30, 523–530. [CrossRef] [PubMed]
13. Aqeilan, R.I.; Calin, G.A.; Croce, C.M. miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death

Differ. 2009, 17, 215–220. [CrossRef] [PubMed]
14. Jozic, I.; Stojadinovic, O.; Kirsner, R.S.; Tomic-Canic, M. Skin under the (Spot)-Light: Cross-Talk with the Central Hypothalamic–

Pituitary–Adrenal (HPA) Axis. J. Investig. Dermatol. 2015, 135, 1469–1471. [CrossRef] [PubMed]
15. Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodi-

esterases. Nat. Rev. Drug Discov. 2014, 13, 290–314. [CrossRef] [PubMed]
16. Wei, J.; Liu, C.-J.; Li, Z. ADAMTS-18: A metalloproteinase with multiple functions. Front. Biosci. 2014, 19, 1456–1467. [CrossRef]
17. Van der Spek, A.H.; Fliers, E.; Boelen, A. Thyroid hormone metabolism in innate immune cells. J. Endocrinol. 2017, 232, R67–R81.

[CrossRef]
18. Krashin, E.; Piekiełko-Witkowska, A.; Ellis, M.; Ashur-Fabian, O. Thyroid Hormones and Cancer: A Comprehensive Review of

Preclinical and Clinical Studies. Front. Endocrinol. 2019, 10, 59. [CrossRef] [PubMed]
19. Bergink, S.; Salomons, F.A.; Hoogstraten, D.; Groothuis, T.A.; de Waard, H.; Wu, J.; Li, Y.; Citterio, E.; Houtsmuller, A.B.; Neefjes,

J.; et al. DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev. 2006, 20,
1343–1352. [CrossRef]

20. Guo, Y.; Bao, Y.; Ma, M.; Zhang, S.; Zhang, Y.; Yuan, M.; Liu, B.; Yang, Y.; Cui, W.; Ansong, E.; et al. Clinical significance of the
correlation between PLCE 1 and PRKCA in esophageal inflammation and esophageal carcinoma. Oncotarget 2017, 8, 33285–33299.
[CrossRef]

21. Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874–885. [CrossRef] [PubMed]
22. Rao, C.V.; Janakiram, N.B.; Mohammed, A. Molecular Pathways: Mucins and Drug Delivery in Cancer. Clin. Cancer Res. 2017, 23,

1373–1378. [CrossRef] [PubMed]
23. Di Cara, F.; Andreoletti, P.; Trompier, D.; Vejux, A.; Bülow, M.H.; Sellin, J.; Lizard, G.; Cherkaoui-Malki, M.; Savary, S. Peroxisomes

in Immune Response and Inflammation. Int. J. Mol. Sci. 2019, 20, 3877. [CrossRef] [PubMed]
24. Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 2014, 35, 22–31.

[CrossRef] [PubMed]
25. Jeanson, L.; Copin, B.; Papon, J.-F.; Moal, F.D.-L.; Duquesnoy, P.; Montantin, G.; Cadranel, J.; Corvol, H.; Coste, A.; Désir, J.; et al.

RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. Am. J.
Hum. Genet. 2015, 97, 153–162. [CrossRef]

https://data.mendeley.com/datasets/z9f4ydxs9m/draft?a=40df002d-7286-4be7-af4c-09c40bff094b
https://data.mendeley.com/datasets/z9f4ydxs9m/draft?a=40df002d-7286-4be7-af4c-09c40bff094b
http://doi.org/10.1158/0008-5472.CAN-16-1536
http://www.ncbi.nlm.nih.gov/pubmed/28330928
http://doi.org/10.1158/0008-5472.CAN-19-1147
http://doi.org/10.1007/s00018-016-2210-5
http://www.ncbi.nlm.nih.gov/pubmed/27022944
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1002/pon.4628
http://www.ncbi.nlm.nih.gov/pubmed/29280223
http://doi.org/10.1016/j.it.2017.08.002
http://www.ncbi.nlm.nih.gov/pubmed/28838855
http://doi.org/10.1016/j.ygyno.2020.03.027
http://www.ncbi.nlm.nih.gov/pubmed/32248993
http://doi.org/10.1038/nrc2618
http://doi.org/10.1016/j.omtn.2019.04.027
http://doi.org/10.1177/1010428317694306
http://doi.org/10.1177/1010428317734303
http://doi.org/10.1093/bioinformatics/btt703
http://www.ncbi.nlm.nih.gov/pubmed/24336805
http://doi.org/10.1038/cdd.2009.69
http://www.ncbi.nlm.nih.gov/pubmed/19498445
http://doi.org/10.1038/jid.2015.56
http://www.ncbi.nlm.nih.gov/pubmed/25964265
http://doi.org/10.1038/nrd4228
http://www.ncbi.nlm.nih.gov/pubmed/24687066
http://doi.org/10.2741/4296
http://doi.org/10.1530/JOE-16-0462
http://doi.org/10.3389/fendo.2019.00059
http://www.ncbi.nlm.nih.gov/pubmed/30814976
http://doi.org/10.1101/gad.373706
http://doi.org/10.18632/oncotarget.16635
http://doi.org/10.1038/nrc2761
http://www.ncbi.nlm.nih.gov/pubmed/19935676
http://doi.org/10.1158/1078-0432.CCR-16-0862
http://www.ncbi.nlm.nih.gov/pubmed/28039261
http://doi.org/10.3390/ijms20163877
http://www.ncbi.nlm.nih.gov/pubmed/31398943
http://doi.org/10.1016/j.it.2013.10.005
http://www.ncbi.nlm.nih.gov/pubmed/24246475
http://doi.org/10.1016/j.ajhg.2015.05.004


J. Clin. Med. 2021, 10, 2110 15 of 16

26. Cockx, M.; Gouwy, M.; Ruytinx, P.; Lodewijckx, I.; Van Hout, A.; Knoops, S.; Pörtner, N.; Ronsse, I.; Vanbrabant, L.; Godding, V.;
et al. Monocytes from patients with Primary Ciliary Dyskinesia show enhanced inflammatory properties and produce higher
levels of pro-inflammatory cytokines. Sci. Rep. 2017, 7, 1–12. [CrossRef]

27. Baker, S.K.; Strickland, S. A critical role for plasminogen in inflammation. J. Exp. Med. 2020, 217, e20191865. [CrossRef] [PubMed]
28. Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [CrossRef]
29. Spann, N.J.; Garmire, L.X.; McDonald, J.G.; Myers, D.S.; Milne, S.B.; Shibata, N.; Reichart, D.; Fox, J.N.; Shaked, I.; Heudobler, D.;

et al. Regulated accumulation of desmosterol inte-grates macrophage lipid metabolism and inflammatory responses. Cell 2012,
151, 138–152. [CrossRef]

30. Liu, P.; Zhang, X.; Li, Z.; Wei, L.; Peng, Q.; Liu, C.; Wu, Y.; Yan, Q.; Ma, J. A significant role of transcription factors E2F in
inflammation and tumor-igenesis of nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 2020, 524, 816–824. [CrossRef]

31. Luyer, M.D.; Greve, J.W.M.; Hadfoune, M.; Jacobs, J.A.; Dejong, C.H.; Buurman, W.A. Nutritional stimulation of cholecystokinin
re-ceptors inhibits inflammation via the vagus nerve. J. Exp. Med. 2005, 202, 1023–1029. [CrossRef] [PubMed]

32. Yurchenko, M.; Skjesol, A.; Ryan, L.; Richard, G.M.; Kandasamy, R.K.; Wang, N.; Terhorst, C.; Husebye, H.; Espevik, T. SLAMF1
is required for TLR4-mediated TRAM-TRIF–dependent signaling in human macrophages. J. Cell Biol. 2018, 217, 1411–1429.
[CrossRef] [PubMed]

33. Van der Poel, C.E.; Spaapen, R.M.; van de Winkel, J.G.; Leusen, J.H. Functional characteristics of the high affinity IgG receptor,
FcγRI. J. Immunol. 2011, 186, 2699–2704. [CrossRef] [PubMed]

34. Killick, J.; Morisse, G.; Sieger, D.; Astier, A.L. Complement as a regulator of adaptive immunity. Semin. Immunopathol. 2018, 40,
37–48. [CrossRef]

35. Hou, W.L.; Yin, J.; Alimujiang, M.; Yu, X.Y.; Ai, L.G.; Bao, Y.Q.; Liu, F.; Jia, W. Inhibition of mitochondrial complex I improves
glucose metabo-lism independently of AMPK activation. J. Cell. Mol. Med. 2018, 22, 1316–1328. [PubMed]

36. E Calvo, S.; Tucker, E.J.; Compton, A.G.; Kirby, D.M.; Crawford, G.; Burtt, N.P.; Rivas, M.; Guiducci, C.; Bruno, D.L.; Goldberger,
O.A.; et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency.
Nat. Genet. 2010, 42, 851–858. [CrossRef]

37. Gómez-Valadés, A.G.; Méndez-Lucas, A.; Vidal-Alabró, A.; Blasco, F.X.; Chillon, M.; Bartrons, R.; Bermudez, J.; Perales, J.C. Pck1
Gene Silencing in the Liver Improves Glycemia Control, Insulin Sensitivity, and Dyslipidemia in db/db Mice. Diabetes 2008, 57,
2199–2210. [CrossRef]

38. Proctor, K.M.; Miller, S.C.M.; Bryant, N.J.; Gould, G.W. Syntaxin 16 controls the intracellular sequestration of GLUT4 in 3T3-L1
adi-pocytes. Biochem. Biophys. Res. Commun. 2006, 347, 433–438. [CrossRef]

39. Abdel-Halim, S.M.; Al Madhoun, A.; Nizam, R.; Melhem, M.; Cherian, P.; Al-Khairi, I.; Haddad, D.; Abu-Farha, M.; Abubaker, J.;
Bitar, M.S.; et al. Increased Plasma Levels of Adenylate Cyclase 8 and cAMP Are Associated with Obesity and Type 2 Diabetes:
Results from a Cross-Sectional Study. Biology 2020, 9, 244. [CrossRef]

40. Moritoh, Y.; Oka, M.; Yasuhara, Y.; Hozumi, H.; Iwachidow, K.; Fuse, H.; Tozawa, R. Inositol Hexakisphosphate Kinase 3
Regulates Me-tabolism and Lifespan in Mice. Sci. Rep. 2016, 6, 32072. [CrossRef]

41. Bernhard, F.; Landgraf, K.; Klöting, N.; Berthold, A.; Büttner, P.; Friebe, D.; Kiess, W.; Kovacs, P.; Blüher, M.; Körner, A. Functional
relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia 2012,
56, 311–322. [CrossRef]

42. Uboveja, A.; Satija, Y.K.; Siraj, F.; Sharma, I.; Saluja, D. p73—NAV3 axis plays a critical role in suppression of colon cancer
metas-tasis. Oncogenesis 2020, 9, 12. [CrossRef] [PubMed]

43. Zhang, H.Z.; Xia, X.Y.; Zhu, F.; Shen, H.; Song, K.; Shang, Z.J. Correlation of deregulated like-acetylglucosaminyl transferase
and ab-errant α-dystroglycan expression with human tongue cancer metastasis. J. Oral Maxillofac. Surg. 2014, 72, 1106–1118.
[CrossRef] [PubMed]

44. Van den Boom, J.; Wolter, M.; Blaschke, B.; Knobbe, C.B.; Reifenberger, G. Identification of novel genes associated with astrocytoma
progression using suppression subtractive hybridization and real-time reverse transcription-polymerase chain reaction. Int. J.
Cancer 2006, 119, 2330–2338. [CrossRef] [PubMed]

45. Li, L.; Cao, Y.; Zhou, H.; Li, Y.; He, B.; Zhou, X.; Nie, Z.; Liang, L.; Liu, Y.; Ye, L. Knockdown of CCNO decreases the tumorigenicity
of gastric cancer by induc-ing apoptosis. Onco Targets Ther. 2018, 11, 7471–7481. [CrossRef] [PubMed]

46. Salem, M.; O’Brien, J.A.; Bernaudo, S.; Shawer, H.; Ye, G.; Brkić, J.; Amleh, A.; Vanderhyden, B.C.; Refky, B.; Yang, B.B.; et al.
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