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A Microfluidic Fluorescent Flow 
Cytometry Capable of Quantifying 
Cell Sizes and Numbers of Specific 
Cytosolic Proteins
Xiufeng Li1,2, Beiyuan Fan1,2, Lixing Liu1,2, Deyong Chen1,2, Shanshan Cao3, Dong Men3, 
Junbo Wang1,2 & Jian Chen1,2

This study presents a microfluidics based cytometry capable of characterizing cell sizes and counting 
numbers of specific cytosolic proteins where cells were first bound by antibodies labelled with 
fluorescence and then aspirated into a constriction microchannel in which fluorescent levels were 
measured. These raw fluorescent pulses were further divided into a rising domain, a stable domain 
and a declining domain. In addition, antibody solutions with labelled fluorescence were aspirated 
through the constriction microchannel, yielding curves to translate raw fluorescent levels to protein 
concentrations. By using key parameters of three domains as well as the calibration curves, cell 
diameters and the absolute number of β-actins at the single-cell level were quantified as 14.2 ± 1.7 μm 
and 9.62 ± 4.29 × 105 (A549, ncell = 14 242), 13.0 ± 2.0 μm and 6.46 ± 3.34 × 105 (Hep G2, ncell = 35 932), 
13.8 ± 1.9 μm and 1.58 ± 0.90 × 106 (MCF 10 A, ncell = 16 650), and 12.7 ± 1.5 μm and 1.09 ± 0.49 × 106 
(HeLa, ncell = 26 246). This platform could be further adopted to measure numbers of various cytosolic 
proteins, providing key insights in proteomics at the single-cell level.

Quantitative analysis of single-cell protein expressions can provide information in understanding heterogeneities 
of cells within the fields of immunology and oncology1–3. Nowadays, flow cytometers are the golden instruments 
for quantifying protein numbers at the single-cell level in which cells bound with antibodies labelled with fluores-
cent or isotope probes travel rapidly through a detection region with corresponding fluorescent levels or isotope 
numbers measured4–6. Based on calibrating microbeads, flow cytometers enable absolute counting of membrane 
proteins of single cells7–10, pushing forward the developments of various diseases involving white and red cells5. 
However, when conventional flow cytometers are leveraged to estimate cytosolic proteins for deep phenotyp-
ing11,12 and signaling state characterization13–16, they are incapable of collecting numbers of specific cytosolic 
proteins since the corresponding calibration microbeads are missing, severely compromising developments in 
these fields1–3.

Microfluidics is a technology of processing fluids based on microchannels with critical geometries of tens to 
hundreds of μm17,18. Due to the dimensional comparisons between microfluidics and biological cells, microfluid-
ics has functioned as an enabling platform for single-cell protein analysis19,20. Currently, microfluidic platforms 
for single-cell protein analysis are divided into miniaturized flow cytometers21–23 and microfabricated arrays (e.g., 
microengraving24–28, barcoding microchips29–32, western blot of single cells33 and microwells for single-cell isola-
tion and characterization34–37).

Among these developed microfluidic platforms, microengraving and barcoding microchips can realize abso-
lute measurements of specific cytosolic proteins, by confining single cells in microfabricated domains with tar-
geted proteins captured by antibodies previously coated within the detection areas19,20. However, compared to 
flow cytometers, these microfluidic approaches have lower throughputs since they are not capable of processing 
cells continuously. As to the miniaturized flow cytometry, due to the lack of calibration beads, counting of specific 
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cytosolic proteins was not reported by the majority of micro flow cytometry21–23. Recently, a modified fluores-
cent micro flow cytometry was reported, enabling the translation of raw fluorescent signals into specific protein 
concentrations, which, however, cannot be further translated to absolute numbers due to the lack of the critical 
information of cell sizes38.

With the purpose of dealing with this problem, this manuscript reports a constriction microchannel based 
flow cytometer capable of simultaneously characterizing cellular sizes and specific cytosolic proteins. In the mod-
ified flow cytometry, cells bound with antibodies labelled with fluorescent probes are deformed through the con-
striction microchannel with cross-sectional areas smaller than cells where profiles of fluorescence are collected as 
a function of time, which are further processed to obtain cellular sizes and raw fluorescent intensities. In addition, 
fluorescent antibodies are aspirated through the constriction microchannel to produce calibration curves. Based 
on cell sizes, preliminary fluorescent intensities as well as the calibrating curve, counting of specific cytosolic 
proteins at the single-cell level can be obtained. Compared to well-established flow cytometers, this platform can 
provide a calibrating strategy of translating preliminary signals into protein numbers. In comparison to other 
microfluidic systems (e.g., barcoding microchips and microengraving), this study can enable the counting of 
single-cell cytosolic proteins in a high-throughput manner.

Materials and Methodologies
Materials.  If not specifically mentioned, reagents for cell cultures were bought from Life Technologies (USA). 
Materials used for cellular processing (e.g., protein fixation, membrane penetration, anti-fouling block and intra-
cellular staining) mainly include triton X-100 and bovine serum albumin (BSA) from Sigma-Aldrich (USA) as 
well as anti β-actin antibody from ABCAM (UK). Materials for microfabrications include photoresist of SU-8 
from MicroChem (USA) and elastomer of 184 silicone from Dow Corning (USA).

Working Principle.  The developed microfluidic flow cytometer is mainly composed of a constriction micro-
channel plus a microfabricated chrome window as the detection domain of fluorescence, a LED (light emitting 
diode) based light source and a PMT (photomultiplier tube) based fluorescent detector (please refer to Fig. 1).

In experiments, individual cells bound with antibodies labelled with fluorescent probes (refer to Fig. 1(A)) are 
deformed into the constriction microchannel (refer to Fig. 1(B)) and the excited fluorescent signals are captured 
by PMT (refer to Fig. 1(C)). Because the constriction microchannel is smaller than cells, cells are forced to deform 
through the constriction microchannel with an elongation length Lc, where the middle portion of the deformed 
cell fully fills the constriction microchannel38 while both the front and rear surfaces are treated as semi-spheres 
with diameters the same as the width of constriction microchannel (Wc) (refer to Fig. 1(D)).

The fluorescent profile of a representative cell as a function of time can be divided into three domains (refer to 
Fig. 1(D)), which includes a rising domain with a time duration of Tr, a stable domain with a fluorescent level of 
If and a time duration of Ts and a declining domain with a time duration of Td. In the rising domain, there is a 
gradual increase of fluorescent intensities indicating that the deformed cell with fluorescence labelled antibodies 

Figure 1.  The schematic of the constriction microchannel based microfluidic flow cytometry enabling the 
simultaneous characterization of cellular sizes and absolute numbers of specific cytosolic proteins. Cells stained 
with fluorescence labelled antibodies (A) were flushed into the constriction microchannel (B) with excited 
fluorescence detected by a photomultiplier tube (C). (D) The fluorescent profile of a representative cell can be 
divided into a rising domain of Tr, a stable domain of Ts with a fluorescent level of If and a declining domain of 
Td. The corresponding stages of the travelling cell are also included in (D) in which the deformed cell shows an 
elongation length of Lc, and the middle portion of the deformed cell fully fills the constriction microchannel 
and both the front and rear surfaces are modelled as semi-spheres with diameters the same as the width of 
constriction microchannel as Wc. Due to the constriction microchannel design, by flushing solutions with 
a group of concentrations of fluorescence labelled antibodies (E) into the constriction microchannel with 
fluorescent intensities recorded, the calibration curve (F) can be obtained. Based on raw parameters of Tr, Ts, If, 
and Td, as well as the calibration curve, cell diameters (Dc) and concentrations of the targeted proteins (Cp) per 
cells were quantified, leading to the absolute numbers of the specific protein (np) at the single-cell level (G).
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gradually fills the fluorescent detection region defined by the patterned chrome layer where the cellular traveling 
distance for this domain is mainly the chrome gap ( +G W /2c c ). As the deformed cell further moves in the con-
striction microchannel, there is a duration with a stable fluorescent intensity of If, which indicates the full occu-
pation of the constriction microchannel. The time duration Ts of this section corresponds to the travelling 
distance of cell elongation minus the width of the constriction microchannel ( − −L W Gc c c). As for the declining 
domain with a duration of Td, it corresponds to the gradual decrease in fluorescent intensities for the leaving of 
the deformed cell with the same travelling distance as +G W /2c c . Based on this analysis, the cell elongation length 
of Lc can be obtained by interpreting the fluorescent profile as a function of time, which is further translated to the 
diameters of cells Dc (refer to Fig. 1(D)).

Due to this unique design of cellular full occupations of the constriction microchannel, varied concentrations 
of antibodies labelled with fluorescent probes are flushed into the constriction microchannel where fluorescent 
signals are measured to form calibrating curves, illustrating the relation between intensities of fluorescence and 
concentrations of specific proteins (refer to Fig. 1(F)). Based on raw parameters of Tr, Ts, If, and Td, as well as the 
calibration curve, cell diameters (Dc) and concentrations of the targeted protein (Cp) per cells were quantified, 
resulting to the number counting of the targeted protein at the single-cell level (refer to Fig. 1(G)).

Culture, Processing and Characterization of Biological Cells.  All cell types were bought from the 
China Infrastructure of Cell Line Resources (China) and the cell culture was conducted with an incubator of 
Thermo Scientific (USA) under the conditions of 37 °C and 5% CO2. The adenocarcinomic human alveolar basal 
epithelial cell type of A549 was seeded in a RPMI-1640 medium plus 10% w/w FBS and 1% w/w antibiotics. 
The human hepatocellular tumorigenic cell type of Hep G2 was seeded in a DMEM medium plus 10% w/w FBS 
and 1% w/w antibiotics. The non-tumorigenic human breast epithelial cell type of MCF 10 A was seeded in a 
DMEM/F-12 medium plus NEAA (1% w/w), HS (5% w/w), insulin (10 μg/ml), EGF (20 ng/ml), cholera toxin 
(100 ng/ml), hydrocortisone (0.5 μg/ml), and antibiotics (1% w/w). The human cervical tumour cell type of HeLa 
was seeded in a DMEM medium plus 10% w/w FBS and 1% w/w antibiotics. Prior to experiments, adherent cells 
in the logarithmic phase (e.g, 24 hours after seeding of A549 and HeLa cells and 48 hours after seeding of Hep G2 
and MCF 10 A cells) were trypsinized, centrifuged and resuspended in phosphate buffer saline supplemented with 
0.5% bovine serum albumin at a concentration of ~10 million cells per mL.

Intracellular staining of β-actins was realized by using conventional protocols widely used in the experiments 
of flow cytometers, including major steps of protein fixation and immoblization, membrane penetration and 
permeabilization, anti-fouling blocking and staining of antibodies. Within this experiment, in the first step of 
fixation, the cells in suspensions were incubated with 2% formaldehyde (at 4 °C for a duration of 15 min). Then, 
the cells were incubated with triton X-100 for 15 min at 4 °C with membranes punched with holes. As to percent-
ages of triton X-100, a variety of concentrations were used for comparisons, which were 0.05%, 0.1% and 0.3% for 
A549 cells; 0.01%, 0.03%, 0.05% and 0.07% for Hep G2 cells; 0.05%, 0.10%, 0.15% and 0.20% for MCF 10 A cells; 
and 0.05%, 0.10%, 0.15% and 0.20% for HeLa cells.

Then anti-fouling blocking was done using 5% BSA at the room temperature for a duration of 30 min. 
Furthermore, β-actin antibodies with fluorescent probes at a dilution of 1:100 were applied for cell incubations at 
a group of time durations (e.g., 1 hour, 2 hours, 4 hours, or 8 hours) under the condition of 37 °C.

To evaluate the results of cellular staining, both bright-field and fluorescent images of stained cells were col-
lected based on a fluorescent microscopy and a CCD (IX 83 and DP73, Olympus, Japan). Stained cells were added 
on a glass slide and confined to the height of 100 μm with the help of a second cover slide. After placing the slides 
on the microscope, bright-field and fluorescent pictures were recorded at an exposure time of 40 ms to alleviate 
the concerns of photobleaching.

Based on bright-field images, the status of cellular aggregations due to excessive membrane penetrations was 
evaluated to optimize the percentages of triton x-100 used in the step of membrane permeabilization. ImageJ 
(National Institute of Health, USA) was used to process fluorescent images and extract cellular pixel intensities to 
optimize the time durations in the step of antibody staining.

Design and MicroFabrication of Constriction Microchannels.  Within this platform, constriction 
microchannels (8 μm in width and 8 μm in height) with 2.5 μm gaps made of chrome were fabricated to count 
specific type of cytosolic proteins at the single-cell level. The geometries of the constriction microchannel ensure 
that tumour cells (10–18 μm in diameter) could effectively deform and completely fill the constriction microchan-
nel. Furthermore, at the inlet of the constriction microchannel, a gradual decrease in the channel width was used 
in this study with the corresponding values changed from 25 μm to 8 μm, decreasing the possibilities of channel 
blockage by incoming large cells.

Furthermore, the choice of the width of the chrome gap can also affect the diameters of cells that can be meas-
ured. In order to quantify cellular diameters, the process of cellular travelling through the chrome gap has to be 
decoupled into the rising domain, the stable domain and the declining domain. If the gap of the chrome window 
is too big, small cells cannot fully occupy the detection room, resulting in misleading data. In order to address this 
issue, 2.5 μm, the minimal feasible gap of chrome based on microfabrication was chosen in this study.

The proposed device was fabricated based on conventional microfabrication techniques in which the pat-
terned PDMS layer including constriction microchannels was peeled away from a SU-8 mold based on twice 
photolithography. Meanwhile, a layer of chrome was first deposited on a quartz slide, which was further patterned 
to form gaps and then coated with a thin layer of unpatterned PDMS. Then the patterned PDMS layer and the 
glass layer with patterned chrome gaps were bonded together after plasma treatment (refer to Supp. Figure 1).

Briefly, SU-8 was spun on a glass slide, exposed without development to form the constriction microchannel 
(refer to Supp. Figure 1(A)). Then, SU-8 was spun again on the previous layer of photoresist, exposed with align-
ments and developed to form channels for cell transportations (refer to Supp. Figure 1(B,C)). Monomers and 
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crosslinking agents of PDMS (10:1 by weight) were thoroughly mixed with bubbles removed, and casted on SU-8 
molds, which were then put in an oven for crosslinking (overnight at 80 °C). After full crosslinking, the PDMS 
layers were removed from the mold of SU-8 and a metal puncher was used to form channel inlets and outlets 
(refer to Supp. Figure 1(D,E)).

Fabrications of chrome windows were realized by conventional microfabrication technologies including 
chrome sputtering on a quartz slide (refer to Supp. Figure 1(F)), micropatterning of photoresist (refer to Supp. 
Figure 1(G)), etching of chrome (refer to Supp. Figure 1(H,I)) and coating of an ultra-thin PDMS layer without 
patterning (refer to Supp. Figure 1(J)). More specifically, monomers and crosslinking agents of PDMS (10:1 by 
weight) were dissolved in hexane (1:16), thoroughly mixed, degassed, and spin coated on the patterned quartz 
slides to form a thin PDMS layer with a thickness of 0.8–1 μm. Finally, following the treatment of oxygen plasma, 
the PDMS layer with constriction microchannels and the chrome layer with microfabricated windows were sealed 
together (refer to Supp. Figure 1(K,L)).

Platform Operations and Result Analysis.  In experiments, the constriction microchannel based micro-
fluidic flow cytometry was rinsed with phosphate buffer saline with 0.5% bovine serum albumin and positioned 
on a fluorescent microscope (IX 83, Olympus, Japan) for photobleaching of 20 min. In this fluorescent micro-
scope, the LED (M470L3-C1, Thorlabs, USA) with a wavelength of 470 ± 40 nm and an output power of 150 mW 
was used as the light source. Then stained cells with antibodies labelled with fluorescent probes were aspirated 
through constriction microchannels using a pressure generator (DPI-610, Druck, UK). Note that different cell 
types have different distributions of cell diameters and thus aspiration pressures were finely tuned to suck indi-
vidual cell types through the constriction microchannel, which were 7–10 kPa for A549 cells, 5–7 kPa for Hep G2, 
15–20 kPa for MCF 10 A and 15–20 kPa for HeLa cells.

Fluorescence of single cells travelling in the constriction microchannel was measured by the PMT of H10722-
01(Hamamatsu, Japan), and then recorded by the DAQ of PCI-6221(NI, USA) at 100 kHz. In the step of cali-
bration, antibody solutions with dilution times of 10, 50, 100, 500, 1000 and 5000 were forced to travel in the 
constriction microchannels, consistent with experimental conditions of single-cell analysis.

The preliminary data collected by DAQ were further processed based on median filtering (fifty points) to get 
rid of dark currents generated by PMT. Then, basal signals without cells were represented as average ± standard 
deviation and electrical pulses with amplitudes higher than average + 3 x standard deviation were regarded as 
effective events with travelling cells.

These electrical pulses were then divided into three domains based on curve fitting, collecting four key param-
eters, which are Tr, Ts, Td and If. Then two intermediate parameters of Dc (cell diameters derived from Tr, Ts, Td) 
and Cp (the concentration of β-actins at the single-cell level derived from If and the calibration curve) were quan-
tified and further translated to np (the absolute number of single-cell β-actins).

Statistics.  For each experiment, more than three times were conducted and the results were expressed as 
average ± standard deviation. Comparison of multiple groups were conducted using ANOVA based Turkey Test 
and P < 0.05 (*) represented significances with statistical meaning.

Experimental Results with Discussions
As a housekeeping protein, β-actin is as an obligatory part of the cell cytoskeleton, playing key roles in main-
tenance of cellular shape, migration, division, growth and signalling39. Due to their constitutive expressions, 
β-actins are commonly used as internal controls in western blots based on the assumption that the expres-
sion levels of β-actins remain constant from cell to cell, sample to sample, treatment to treatment and patient 
to patient40–42. However, recent studies based on population analysis indicate that the expressions of β-actins 
can change in response to biochemical stimuli, during growth and differentiation, and in disease states41,43–49. 
Whether there also exists expression differences of β-actins among individual cells remains elusive. Thus, in this 
manuscript, a flow cytometry leveraging constriction microchannels was developed to quantitatively estimate the 
numbers of single-cell β-actins.

Intracellular Staining of β-Actins.  With the purpose of counting the numbers of single-cell β-actins, 
intracellular staining with β-actin antibodies labelled with fluorescent probes was conducted, including major 
steps such as protein fixation, membrane penetration, anti-fouling block and staining with antibodies. The use of 
triton X-100 for membrane permeabilization was optimized to ensure intracellular β-actins were fully exposed. 
Theoretically, a maximal concentration of triton x-100 should be used to fully penetrate cell membranes with-
out compromising cellular integrities. However, it was observed that high concentrations of triton x-100 lead to 
severe membrane compromises and cellular aggregations in the following step of antibody staining, which can 
produce uneven staining at the single-cell level. Thus, in this study, the percentages of triton x-100 were finely 
tuned for individual cell types, producing the optimal values of 0.05% for A549 cells, 0.03% for Hep G2 cells, 0.1% 
for MCF 10 A cells and 0.1% for HeLa cells.

Furthermore, in the step of cellular staining with fluorescence labelled antibodies, different incubation times 
were tested for these four types of cells in order to make sure that the majority of the exposed β-actins were taken 
by antibodies. As shown in Fig. 2(A), fluorescent images of stained A549, Hep G2, MCF 10 A and HeLa cells were 
demonstrated where the fluorescent levels of cells after the step of staining were measured as a function of time 
(refer to Fig. 2(B)).

Four types of cells showed similar trends where the stained fluorescent intensities increased as a function of 
the incubation time initially, and then saturate after four hours of incubation. Further extensions in the durations 
of incubation produced no dramatic improvements in the levels of fluorescence, suggesting that the majority of 
cytosolic β-actins was taken by corresponding antibodies after a four-hour duration of incubations. Note that 
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these fluorescent intensities obtained from microscopic images are “relative” values based on “black balances” 
of the fluorescent pictures and “zeroing” of the fluorescent intensities of unstained cells of a specific type. Thus, 
although these fluorescent intensities can demonstrate the trend of antibody staining as a function of time, the 
obtained fluorescent values of different cell types cannot be effectively compared since they are relative values.

Collection and Processing of Raw Fluorescent Pulses.  Stained cells were then aspirated to deform 
into the constriction microchannel with raw fluorescent levels recorded in a time sequence. Figure 3(A–D) rep-
resent raw characterization results of single A549, Hep G2, MCF 10 A and HeLa cells through the constriction 
microchannel where individual pulse stands for a travelling cell, which was further divided into the rising domain 
with a time duration of Tr, the stable domain with a fluorescent level of If and a time duration of Ts and the declin-
ing domain with a time duration of Td based on curve fitting.

Based on the curve fitting of these fluorescent pulses, several key parameters were further processed. First, 
the total travelling duration of a cell (Tc) as a sum of Tr, Ts, and Td was calculated, which were 7.8 ± 6.4 ms (A549 
cells, ncell = 14 242), 5.7 ± 9.1 ms (Hep G2 cells, ncell = 35 932), 8.7 ± 11.5 ms (MCF 10 A cells, ncell = 16 650) and 
7.4 ± 7.7 ms (HeLa cells, ncell = 26 246), respectively. These results indicate that the travelling durations of individ-
ual cells were estimated within 10 ms and thus the maximal throughput of this developed platform was estimated 
to be 100 cells per second (refer to Fig. 4). Since the response times of the PMT were in the range of 10 nm, there 
is a huge room for further improvement in the throughput of the developed system under the condition that the 
noises of the PMT can be controlled properly.

For the stable domains of the pulses, the obtained values of If can indicate to an extent the numbers of 
β-actins, which were quantified as 85 ± 24 mv (A549 cells, ncell = 14 228), 76 ± 26 mv (Hep G2 cells, ncell = 35 932), 
146 ± 58 mv (MCF 10 A cells, ncell = 16 650) and 130 ± 36 mv (HeLa cells, ncell = 26246), respectively (refer to 
Fig. 4). The stable domains suggest that the stage of full occupation of deformed cells within the detection region 
formed by the constriction microchannel and the chrome window. Since the β-actins were extensively expressed 
intracellularly, it was assumed that there is an even distribution of fluorescence labelled β-actin antibodies within 
the detection region, which were confirmed by the low standard deviation to average ratios of individual pulses 
(e.g., 106 ± 8 mv for an A549 cell and 180 ± 16 mv for a MCF 10 A cell).

Thus calibration curves can be obtained by directly flushing solutions of fluorescence labelled β-actin anti-
bodies with a group of concentrations into the detection region. As shown in Supp. Figure 2, in the calibration 
curve, there is a linear relationship between the intensities of fluorescence (If) and concentrations of proteins (Cp) 
where the detection range was 0.001–10 μM. Note that since fluorescent data were measured by PMT, fluorescent 
signals were averaged in the detection domain. Thus, cytosolic proteins without perfect even distributions can 
also be characterized by the developed platform under the condition that the standard deviation to average ratios 
of individual pulses are kept low38.

Furthermore, although fluorescent intensities are deeply affected by environmental media including pH and 
ionic strengths, the calibrating curve developed in this study may still function well because of the following 
reasons. After membrane permeability and staining of antibodies, the solutions of antibody staining dominate 
the components of cytosolic media. In the step of calibration, the antibodies with fluorescent probes are thor-
oughly mixed in solutions of cell staining and thus the environmental media in experiments and calibrations 
were comparable.

Meanwhile, the ratios of 2Ts/(Tr + Td) for these four types of cells were quantified as 2.53 ± 1.25 (A549 cells, 
ncell = 14 242), 1.89 ± 1.32 (Hep G2 cells, ncell = 35 932), 2.32 ± 1.31 (MCF 10 A cells, ncell = 16 650) and 1.66 ± 0.98 
(HeLa cells, ncell = 26 246), respectively. Based on the analysis in the section of “Working Principle”, this parameter 
can be correlated positively with the elongations of individual cells in the constriction microchannel, which can 
be further translated to cellular diameters (refer to Fig. 4). Note that variations in aspiration pressures, channel 

Figure 2.  (A) Fluorescent pictures of stained A549, Hep G2, MCF 10 A and HeLa cells where the intensities 
of stained cells were quantified as a function of time (B). Four types of cells showed similar trends where the 
intensities of stained cells were observed to initially increase with the incubation time, and then saturate after 
four hours of incubation. Further increases in the incubation durations (e.g., eight hours) didn’t lead to further 
significant increases in the fluorescent intensities, suggesting that after four hours of incubating cells with 
antibodies, the majority of the exposed cytosolic β-actins were bound with fluorescence labelled antibodies.
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Figure 3.  Preliminary fluorescent intensities of A549 (A), Hep G2 (B), MCF 10 A (C) and HeLa (D) cells where 
each pulse represents a passing cell, which was further divided into a rising domain with a time duration of 
Tr, a stable domain with a fluorescent level of If and a time duration of Ts and a declining domain with a time 
duration of Td based on curve fitting.

Figure 4.  3D scatter plots of Tc (a summary of Tr, Ts and Td, indicating travelling durations of individual cells), 
If (an indicator of the concentration of β-actins) and 2Ts/(Tr + Td) (an indicator of cell sizes) for A549 (ncell = 14 
242), Hep G2 (ncell = 35 932), MCF 10 A (ncell = 16 650) and HeLa (ncell = 26 246) cells.
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geometries, cellular diameters and stiffness, as well as frictions between deformed cells and the walls of constric-
tion microchannels may affect the travelling speeds of cells in the constriction microchannel. Thus, the dimen-
sionless parameter of 2Ts/(Tr + Td) rather than cellular travelling durations (e.g., Ts, Tr, Td) were used for the 
quantification of cell sizes.

Counting of Single-Cell β-Actins.  Based on the translation of preliminary fluorescent data and the 
calibrating curve, diameters of cells (Dc) and numbers of β-actins at single-cell level (np) were obtained as 
14.2 ± 1.7 μm and 9.62 ± 4.29 × 105 (A549, ncell = 14 242), 13.0 ± 2.0 μm and 6.46 ± 3.34 × 105 (Hep G2, ncell = 35 
932), 13.8 ± 1.9 μm and 1.58 ± 0.90 × 106 (MCF 10 A, ncell = 16 650), and 12.7 ± 1.5 μm and 1.09 ± 0.49 × 106 
(HeLa, ncell = 26 246), respectively (refer to Fig. 5).

In order to validate these bright-field microscopic images of suspended cells before they were flushed into 
the constriction microchannels were recorded and processed to quantify cell diameters as 15.7 ± 2.6 μm (A549, 
ncell = 394), 13.9 ± 2.5 μm (Hep G2, ncell = 196), 19.9 ± 3.8 μm (MCF 10 A, ncell = 228), and 14.1 ± 2.7 μm (HeLa, 
ncell = 269). For A549, Hep G2 and HeLa cells, comparable results were obtained based on these two approaches. 
For MCF 10 A cells, based on the observations of microscopes, the averaged diameters approached the upper 
detection limitation of this microfluidic device where large cells are difficult to be aspirated through the con-
striction microchannel. In comparison to large cells, MCF 10 A cells with small diameters are more prone to be 
aspirated by the constriction microchannel with higher travelling speeds. Thus, it was speculated that the diame-
ters quantified by the fluorescent pulses were derived from MCF 10 A cells with smaller diameters. These studies 
further suggest the developed microfluidic platform cannot be used to character cells with diameters much larger 
than the critical width of the constriction microchannel.

In addition, the numbers of single-cell β-actins of A549 cells were estimated as 9.62 ± 4.29 × 105, consist-
ent with 1) 3.57 ± 0.22 × 106 per cells obtained from conventional enzyme linked immunosorbent assays and 
2) ~0.96 × 106 at the single-cell level based on previously developed microfluidic platforms38. Compared to the 
results of single-cell analysis, conventional enzyme linked immunosorbent assays located a minute higher num-
ber of β-actins per cell, indicating that some portions of β-actins are not exposed in the step of intracellular 
staining, although intracellular staining has been intensively used for deep phenotyping11,12 and signaling state 
characterization13–16. In addition, the single-cell β-actin umbers estimated by the microfluidic platform were ten 
to one hundred folds of the functional proteins which were previously measured20. These results agree with the 
conventional assumptions that the numbers of β-actins are much higher those of functional proteins.

When the numbers of β-actins at the single-cell level were compared among four types of cells 
((9.62 ± 4.29 × 105 (A549), 6.46 ± 3.34 × 105 (Hep G2), 1.58 ± 0.90 × 106 (MCF 10 A), and 1.09 ± 0.49 × 106 
(HeLa)), significant differences were located, which suggests that expression differences exist among different cell 
types of β-actins, and the use of β-actins as the internal controls of western blotting need to be further considered. 
In addition, for each type of the cell, at the single-cell level, there is also a distribution difference in the expression 
of β-actins where ratios of the standard deviations to averages were estimated as ~50%, further questioning the 
proper use of β-actins as the internal control for single-cell analysis.

Conclusion
This manuscript showed the design, fabrication and characterization of a modified flow cytometry leveraging 
constriction microchannels, in which both cell sizes and counting of β-actins from 10 000 cells were obtained. 
Future technical improvements may extend multiplex capabilities, enabling the quantitative analysis of multiple 
types of proteins. In addition, this platform will be used to characterize key proteins such as p53 at the single-cell 
level, facilitating the study of tumour heterogeneity.

Data Availability Statement
All data generated or analysed during this study are included in this published article.

Figure 5.  (A) Scatter plots of Dc (cell diameter) vs. np (numbers of β-actins at the single-cell level) for 
A549 (ncell = 14 242), Hep G2 (ncell = 35 932), MCF 10 A (ncell = 16 650) and HeLa (ncell = 26 246) cells. (B) 
Distributions and (C) histograms of numbers of β-actins at the single-cell level for these four types of cells 
(*represents differences with statistical significance).
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