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Abstract

Historically, probabilistic models for decision support have focused on discrimination, e.g., minimizing the ranking error of
predicted outcomes. Unfortunately, these models ignore another important aspect, calibration, which indicates the
magnitude of correctness of model predictions. Using discrimination and calibration simultaneously can be helpful for many
clinical decisions. We investigated tradeoffs between these goals, and developed a unified maximum-margin method to
handle them jointly. Our approach called, Doubly Optimized Calibrated Support Vector Machine (DOC-SVM), concurrently
optimizes two loss functions: the ridge regression loss and the hinge loss. Experiments using three breast cancer gene-
expression datasets (i.e., GSE2034, GSE2990, and Chanrion’s datasets) showed that our model generated more calibrated
outputs when compared to other state-of-the-art models like Support Vector Machine (p = 0.03, p = 0.13, and p,0.001) and
Logistic Regression (p = 0.006, p = 0.008, and p,0.001). DOC-SVM also demonstrated better discrimination (i.e., higher AUCs)
when compared to Support Vector Machine (p = 0.38, p = 0.29, and p = 0.047) and Logistic Regression (p = 0.38, p = 0.04, and
p,0.0001). DOC-SVM produced a model that was better calibrated without sacrificing discrimination, and hence may be
helpful in clinical decision making.
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Introduction

Supervised learning has been widely applied in bioinformatics

[1]. Given sufficient observations and their class memberships, the

prediction task is often modeled by supervised learning algorithms,

which aim at finding an optimal mapping between features and

outcomes (usually represented by the zero-one class membership).

In clinical predictions, discrimination measures the ability of a model

to separate patients with different outcomes (e.g., positive or

negative). In the case of a binary outcome, good discrimination

indicates an adequate distinction in the distributions of predicted

scores. That is, discrimination is determined by the degree of correct

ranking performance of predicted scores [2]. On the other hand,

calibration reflects the level to which observed probabilities match

the predicted scores [3], e.g., the prediction average is 60% for

every individual in a group of observations and the proportion of

the positive observations is also 60% in that group.

Traditionally, many machine learning models were developed

to optimize discrimination ability [4], (i.e., minimizing the errors

in making binary decisions based on the model’s estimates).

However, in many direct-to-consumer applications (i.e., using

molecular biomarkers for diagnostic or prognostic purposes [5,6]),

estimated probabilities are being communicated directly to

patients, hence calibration is very important. For example,

clinicians may use estimated probabilities to make decisions

related to prophylaxis for breast cancer. Achieving high levels of

calibration in predictive models has become very important in

clinical decision support and personalized medicine

[7,8,9,10,11].’’

Good discrimination may lead to good calibration, but this is not

guaranteed. A highly discriminative classifier, i.e., one with a large

Area Under the ROC Curve (AUC), might not necessarily be a

calibrated one. Figure 1 illustrates an example with 20 simulated

subjects. While two probabilistic model A and B have the same

AUCs, the values of probabilities from model B are ten times

smaller than those from model A. Although discrimination estimates

the ranking of subjects and their class membership, it does not

account for the consistency between probabilistic model predic-

tions and the true underlying probabilities. In extreme cases, a

classifier can draw a perfect decision boundary but produces

unrealistic risk estimates (e.g., by estimating a probability of ‘‘0.01’’

for negative observations and ‘‘0.011’’ for positive observations).

Thus, significant problems may occur when direct outputs of

supervised classification models are blindly used as proxies to

evaluate the ‘‘true risks’’.

In summary, although it is relatively easy to evaluate rank of

estimates, it is non-trivial to convert these rankings into reliable

probabilities of class membership, which is an important problem

in personalized clinical decision making [12]. We want to find an

accurate estimation of p(yDX ): the probability that a subject X

belongs to class y, without sacrificing the discriminative ability of the
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model. Note that we used X and y to denote the features and class

label of an observation because the former represents a vector,

while the latter refers to a scalar. In this article, we first investigate

relationships between discrimination and calibration, then we proceed

to show why it is beneficial to optimize discrimination and calibration

simultaneously. We developed the Doubly Optimized Calibrated

Support Vector Machine (DOC-SVM) algorithm that combines

the optimization of discrimination and calibration in a way that can be

controlled by the users. We evaluated our approach using real-

world data and demonstrated performance advantages when we

compared to widely used classification algorithms, i.e., Logistic

Regression [13] and Support Vector Machine [14,15].

Methods

Ethics Statement
We use two sets of breast cancer gene expression data with

corresponding clinical data downloaded collected from the NCBI

Gene Expression Omnibus,i.e., WANG (GSE2034) and SOTIR-

ITOU (GSE2990), as well as another breast cancer gene

expression data from Chanrion’s group [16] in studying the

occurrence of relapse as a response to tamoxifen. Because all these

data are publicly available, we do not need IRB approval to use

them.

Preliminaries
We first review discrimination and calibration before introducing

details of our methodology.

The Area Under ROC Curve (AUC) is often used as a

discrimination measure of the quality of a probabilistic classifier, e.g.,

a random classifier like a coin toss has an AUC of 0.5; a perfect

classifier has an AUC of 1. Every point on a ROC curve

corresponds to a threshold that determines a unique pair of True

Positive Rate (TPR =
TP

P
) and False Positive Rate (FPR =

FP

N
),

where TP, FP, P and N correspond to the number of true

positive, false negative, positive, and negative observations,

respectively. The AUC can be defined as the integral of TPR

(also called sensitivity) over FPR (corresponds to 1-specificity):

AUC~

ð1

0

TP

P
d

FP

N

~
1

PN

ðn

0

TPdFP

~
1

PN

X
X[fzg

X
O[f{g

p(X )§p(O)ð Þ,

ð1Þ

where p(X ) and p(O) correspond to the estimates for a positive

observation X and a negative observation O, respectively. Note

that P and N are the counts of positive and negative observations.

The last line of Equation (1) corresponds to the result showed in

[17] that AUCs can be seen as the total number of concordant

pairs out of all positive and negative pairs, which is also known as

the c-index [18]. For example, if all positive observations rank

higher or the same as the negative observations, the AUC becomes

1; on the other hand, if none of the positive observations rank

higher than any of the negative observations, the AUC value is 0.

Figure 2 illustrates the relationships between ROC, AUC and its

calculation. More details on parametric calculation of AUCs,

please refer to [19].

Calibration is a degree of agreement between predicted proba-

bility with actual risk, which can be used to evaluate whether a

probabilistic classifier is reliable (i.e., faithful representative of the

true probability). A probabilistic classifier assigns a probability ŷyi

to each observation i. In a perfectly calibrated classifier, the

estimated prediction ŷyi is equivalent to the percentage of positive

events out of the population that receives this score (e.g., for a

group of patients who receive a score of 0.25, one fourth will be

positive for the outcome of interest, such as breast cancer). When

there are few observations with the same probability, observations

Figure 1. An example of outputs for two probabilistic classifiers and their ROC curves, which do not evaluate calibration. In (a) and
(b), # indicates the observations, y corresponds to the class membership, and ŷy represents the probability estimate. In (c) and (d), each red circle
corresponds to a threshold value. Note that probabilistic classifier B has the same ROC as probabilistic classifier A, but their calibration differs
dramatically: estimates for B are ten times lower than estimates for A.
doi:10.1371/journal.pone.0048823.g001
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with similar probabilities are grouped by partitioning the range of

predictions into groups (or bins). For instance, observations that

were assigned estimates between 0.2 and 0.3 may be grouped into

the same bin. To estimate the unknown true probabilities for many

real problems, it is common to divide the prediction space into ten

bins. Observations with predicted scores between 0 and 0.1 fall in

the first bin, between 0.1 and 0.2 in the second bin, etc. For each

bin, the mean of predicted scores is plotted against the fraction of

positive observations. If the model is well calibrated, the points will

fall near the diagonal line, as indicated in Figure 3(a).

Calibration can also be measured by goodness-of-fit test statistic, a

discrepancy measure between the observed value form the data

and the the expected values under the model under consideration..

A widely used goodness-of-fit test in logistic regression is the

Hosmer-Lemeshow test (HL-test) [20]. Although the HL-test has

important limitations, few practical alternatives have been

proposed. In addition, most of these alternatives are model-

specific calibration measurements, which make them unattractive

for evaluating probabilistic outputs (i.e., ‘‘scores’’) across different

models. For practical purpose, we use the HL-test as a measure of

calibration in this article. The HL-test statistic can be written as

H~
XG

g~1
½ (og{pg)2

pg(1{pg=Ng)
�, where og, Ng and pg correspond to

observed positive events, number of total observations, and the

sum of predicted scores for the gth risk bin, respectively. HH is the

Hosmer-Lemeshow H test statistic if a bin is defined by equal-

length subgroups of fitted risk predictions, e.g., [0–0.1], [0.1–0.2],

…, [0.9–1]; HC is the Hosmer-Lemeshow C test statistic with an

equal number of predicted scores in each group, e.g., m elements

in group 1, m elements in group 2, …, m elements in the group G.

Usually, elements are divided into ten groups (G~10), and the

distribution of the statistics H is approximated by a x2 with G{2
degrees of freedom, where G indicates the number of groups.

Figure 3 illustrates a reliability diagram and two types of the HL-

test. Note that in Figure 3(a), the small point-to-line distances

roughly indicate that the model is reasonably calibrated, and it is not

consistently optimistic or pessimistic.

Discrimination-Calibration Tradeoff. Ideally, we want a

model with good discrimination (i.e., AUC&1) and good calibration

(i.e., HC&0). A perfect model occurs only when predictions are

dichotomous (0 or 1) and predictions match observed class labels

exactly. There are few conditions in which such black and white

cases exit in the real-world. Even under such cases, the result

might indicate the model overfits the training data. Figure 4(a)

illustrates the situation of perfect discrimination and calibration in a

training set. This usually does not guarantee the same behavior in

the test set. Therefore, a realistic concern is whether calibration

could be harmful to discrimination, and vice versa. In other words,

Figure 2. ROC, AUC and its calculation. The horizontal line shows sorted probabilistic estimates on ‘‘scores’’ ŷys. In (a) and (b), we show the ROC
and the AUC for a classifier built from an artificial dataset. In (c) and (d), we show concordant and discordant pairs, where concordant means that an
estimate for a positive observation is higher than an estimate for a negative one. The AUC can be interpreted in the same way as the c-index: the
proportion of concordant pairs. Note that Xi corresponds to an observation, ŷy(Xi) represents its predicted score, and yi represents its observed class
label, i.e., the gold standard. AUC is calculated as the fraction of concordant pairs out of a total number of instance pairs where an element is positive
and the other is negative. Note that I(:) is the indicator function.
doi:10.1371/journal.pone.0048823.g002
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suppose we construct a calibrated version of some classifier whose

predictions are not dichotomous, could this increase the ranking

error and hence decrease discrimination?

Figure 4(a, b, c, d) illustrates the relationship between calibration

and discrimination with individual predictions ŷyi, derived from a set

of probabilistic models. Each subfigure illustrates ten models

sampled at AUCs close to a given value (0.5, 0.8, and 0.95). In

each column, the upper row represents the ROC plot, and the

bottom row corresponds to the reliability diagram (i.e., calibration

plot). In the ROC plot, grey curves denote empirical ROCs and the

bold blue curve represents the averaged smooth ROC. In every

calibration plot, we show the boxplot and histogram of observed

event rates at predicted event rate intervals from 0.1 to 1. Note

Figure 3. Reliability diagrams and two types of HL-test. In (a), (b), and (c), we visually illustrate the reliability diagram, and groupings used for
the HL-H test and the HL-C test, respectively.
doi:10.1371/journal.pone.0048823.g003

Figure 4. Discrimination plots (ROC curves) and Calibration plots for simulated models. (a) Perfect discrimination (i.e., AUC = 1) requires a
classifier with perfect dichotomous predictions, which in the calibration plot has only one point (0,0) for negative observations and one point (1,1) for
positive observations. (b) Poor discrimination (i.e., AUC = 0.53+0.02) and poor calibration (i.e., HC = 251.27+65.2, p,1e210). (c) Good discrimination
(i.e., AUC = 0.83+0.03) and excellent calibration (i.e., HC = 10.02+4.42, p = 0.26+0.82). (d) Excellent discrimination (i.e., AUC = 0.96+0.01) and
mediocre calibration (i.e., HC = 34.46+2.77, p = 0+0.95). Note that a HL statistic smaller than 13.36 indicates that the model fits well at the
significance level of 0.1.
doi:10.1371/journal.pone.0048823.g004
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that a good calibration would be represented by boxplots that are

roughly aligned with the 45 degree line..

The order of (b, d and c) shows that improvement in calibration

on non-dichotomous predictions may lead to better discrimination,

but further improvements in calibration might result in worse

discrimination. The reason is that the perfect calibration for non-

dichotomous predictions has to introduce discordant pairs

(indicated by the red arrows in Figure 5(a)) to produce a match

between the mean of predictions and the fraction of positive

observations within each sub-group. Therefore, the model is

prevented from being perfectly discriminative. This conclusion is

concordant with the result of Diamond [21], who stated that the

AUC of a perfectly non-trivially calibrated model (constructed from

a unique, complementary pair of triangular beta distributions)

cannot be over 0.83. Similarly, enforcing discrimination might hurt

calibration as well. Figure 5(b) illustrates this situation using artificial

data. Clearly, there is a tradeoff between calibration and discrimi-

nation, and we will explore it in more detail in the next section.

Joint Optimization Framework. We will show that discrim-

ination and calibration are associated aspects of a well-fittedprob-

abilistic model, and therefore, they should be jointly optimized for

better performance. We start introducing this global learning

framework by reviewing the Brier score decomposition.

Brier Score Decomposition: The expectation of squared-losses

between yi and ŷyi is also called Brier score [22]

‘squared~
1

n

Xn

i~1

(yi{ŷyi)
2,

where n is the number of observations. Some algebraic manip-

ulation leads to the following decomposition.

Lemma 1. The Brier score can be expressed as

‘squared~
XDSD

s

a(s)(s{b(s))2z
XDSD

s

a(s)b(s)(1{b(s))

where a(s)~
1

n
DIsD, b(s)~

1

na(s)

X
i[Is

yi, and n is the total number of

observations, and s is a particular prediction value or score [23].

Proof. To prove that the Brier score can be decomposed into two

components, we cluster predictions with the same estimated score

s. Thus a(s) is the fraction of times that we predict the score s, and

b(s) is the fraction of times that the event y~1 happens when we

predict a score s. Note that Is indicates a set of instances fig such

that ŷyi~s, and DIsD corresponds to the cardinality of the set.

‘squared~
1

n

Xn

i~1

(y2
i {2ŷyiyizŷy2

i )

~
1

n

Xn

i~1

(yi{2ŷyiyizŷy2
i )

~
1

n

XDSD

s

X
j[Is

yj{2s
X
j[Is

yjz
X
j[Is

ŷy2
j

 !

~
XDSD

s

a(s)b(s){2sa(s)b(s)za(s)s2
� �

~
XDSD

s

a(s)s2{2sa(s)b(s)za(s)b2(s)za(s)b(s){a(s)b2(s)
� �

~
XDSD

s

a(s)(s{b(s))2z
XDSD

s

a(s)b(s)(1{b(s))

There are several versions of Brier score decompositions

[24,25,26,27], but for the interest of this article, we will focus on

the above two-component decomposition. The first term of Brier

score corresponds to dis-calibration (D) and its minimization

encourages b(s)~s, which is the exact condition required for

Figure 5. Tradeoffs between calibration and discrimination. (a) Perfect calibration may harm discrimination under a three-group binning. The
numbers above each bar indicate the percentage of negative observations (green) and positive observations (orange) in each prediction group (0–
0.33, 0.33–0.67, and 0.67–1). Note the small red arrows in the left figure indicate discordant pairs, in which negative observations ranked higher than
positive observations. (b) Enforcing discrimination may also hurt calibration. The blue curve and error bars correspond to the AUC while the green
curve and error bars represent the p-values for the Hosmer-Lemeshow C test (HC ). Initially, as discrimination increases, p-value of HC (calibration)
increases but it quickly drops after hitting the global maximum. We use red arrows in Figure 5(b) to indicate the location of optimal calibration and
discrimination for the simulated data.
doi:10.1371/journal.pone.0048823.g005
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well-calibrated estimations. The minimization of the second term,

called refinement [28], encourages b(s) to be confident (i.e., close to

0 or 1). The refinement term (R), which indicates the homogeneity of

predicted scores, is closely related to discrimination.

The Refinement Term. Refinement is a measure of discrimi-

nation but is often overlooked in favor of its sibling, AUC. Here, we

study its properties more closely.
Lemma 2. We can re-express refinement as

R~
X

i

a(si)b(si)(1{b(si))~
1

NzP

X
i

Nsi
b(si)(1{b(si)):

Note that Nsi
~DIsi

D indicates the number of examples with the

predicted score si, while N and P correspond to the number of

negative and positive examples, respectively.

Lemma 3. We can re-express the AUC calculated by the trapezoidal

method [29] as

A~
X

i

1

2

Nsi
(1{b(si))

N
2
Xi{1

j~1

Nsj
b(sj)

P
z

Nsi
b(si)

P

 !
: ð2Þ

Proof. Each point of the ROC curve has width and height:

W (s)~
Ns(1{b(s))

N

H(s)~
Nsb(s)

P
,

thus, the AUC can be approximated by summing over the

trapezoidal areas under it:

A~
XDSD

i~1

1

2
W (si)(Total height(si{1)zTotal height(si))

~
X

i

1

2
W (si)(

Xi{1

j

H(sj)z
Xi

j

H(sj))

~
X

i

1

2
W (si)(2

Xi{1

j

H(sj)zH(si))

~
X

i

1

2

Nsi
(1{b(si))

N
(2
Xi{1

j

H(sj)zH(si)):

Theorem 4. AUC is lower bounded by refinement:
2NP

NzP
A§R.

Proof. We can reorganize Equation (2) as

A~

1

2NP

X
i,jvi

2Nsi
Nsj

b(si)(1{b(sj))

 
z
X

i

N2
si

b(si)(1{b(si)

!
ð3Þ

Because Nsi
§1,

X
i

Nsi
b(si)(1{b(si))ƒ

X
i

N2
si

b(si)(1{b(si)):

Thus, if we multiply
2NP

NzP
to both sides of Equation (3) and

reorganize it,

2NP

NzP
(A{

1

2NP

X
i,jvi

2Nsi
Nsj

b(si)(1{b(sj)))

~
1

NzP

X
i

N2
si

b(si)(1{b(si))

§

1

NzP

X
i

Nsi
b(si)(1{b(si))

~R

Since
1

2NP

X
i,jvi

2Nsi
Nsj

b(si)(1{b(sj))§0, we showed that

2NP

NzP
A§R:

Theorem 4 indicates that maximizing refinement encourages the

maximization of AUC, which is a critical result for combining

calibration and discrimination into a unified framework.

Doubly Optimized Calibrated Support Vector

Machine. We developed a novel approach called Doubly

Optimized Calibrated Support Vector Machine (DOC-SVM) to

jointly optimize discrimination and calibration. We will quickly review

SVM to help understand the notation we use to explain DOC-

SVM. Consider a training dataset D~f(X1,y1), . . . ,
(Xn,yn)g5X|R, where X denotes the space of input patterns

(e.g. X~Rd ) and class labels yi[f{1,z1g. Here ‘‘+1’’ indicates a

positive case and ‘‘21’’ indicates a negative case. A Support

Vector Machine (SVM) [15] approximates the zero-one loss by

maximizing the geometric margin DDW DD2 between two classes of

data. The function it optimizes can be written as

min
W ,j

1

2
W T WzC

Xn

i~1

ji

" #
ð4Þ

s:t:yiW
T Xi§1{ji

ji§0,Vi,

where ji is the loss for the i-th data point Xi; W are weight

parameters; and C is a penalty parameter to weight the loss. We

can reorganize Equation (3) by absorbing the constraints into the

objective function

Doubly Optimized Calibrated Support Vector Machine
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min
W

1

2
DDW DD2zC

Xn

i~1

max(1{yiW
T Xi,0)

" #
: ð5Þ

The first term
1

2
DDW DD2 is responsible for the model’s complexity.

The second term max(1{yiW
T Xi,0), known as the hinge loss

‘hinge, penalizes the model for mis-classifications. SVM expects

label ‘‘1’’ cases to be f (X )~W T Xw0 and label ‘‘21’’ cases to be

f (X )v0. The final output of this optimization is a vector of weight

parameters, W , which forms a decision boundary that maximizes

the margin between positive and negative cases.

As the hinge loss function only deals with decision boundary,

SVM suffices in tasks where the mission is to provide good

calibration besides discrimination. Some researchers proposed ad-

hoc post-processing steps like Platt scaling [30] or Isotonic

Regression [31] to rectify its output. Our idea is to intro-

duce a second term, the squared loss, to be optimized

concurrently with the hinge loss of the original SVM. As we

discussed before, the squared loss (Brier Score) can be

decomposed into calibration and refinement components. The

major challenge for explicitly controlling the joint optimization

is to integrate the refinement component with the hinge loss com-

ponent to get a unified discrimination component. As we already

know there is a relationship between refinement and AUC, the

challenge boils down to identifying the relationship between the

hinge loss and the AUC. There are some related empirical studies

by Steck and Wang showing that the minimization of the hinge

loss leads to the maximization of the AUC [32,33] but we are

the first to give a formal proof. Our proof is an extension of

Lemma 3.1 in [34].

Theorem 5. Rank loss (i.e., one minus the Area Under the ROC

curve) is bounded by the hinge loss as 1{AUCƒ

1

min(p,1{p)
� ‘hinge,

where p is the probability of the positive class.

Proof. Given a classifier c and n observed events (Xi,yi)
n
i~1, we

can build the confusion matrix in Table 1, where TP, FP, FN, and

TN denote the counts of true positive, false positive, false negative,

and true negative instances, respectively.

The number of maximum discordant pairs C is bounded by

CƒTP � FPzFP � FNzFN � TN

~TP � FPzFP � FNzFN � TNzFP � FN{FP � FN

~FP � (TPzFN)zFN � (TNzFP){FP � FN:

Dividing both sides by (TPzFN) � (TNzFP), we get

C

(TPzFN) � (TNzFP)
ƒ

FP

TNzFP
z

FN

TPzFN
{

FP � FN

(TPzFN) � (TNzFP)
:

We can normalize TP,FP,FN,TN by the total number of records

to get TP’,FP’,FN ’,TN ’ and their replacement of the formers to

the above equation will not change the inequality. We can simplify

the equation to get

1{AUC(c)ƒ
p

1{p
z

g

p
{

gp

p(1{p)

where 1{AUC~ C

(TP’zFN ’) � (TN ’zFP’), FN ’~P(c(X )ƒ

0,y~1) (denoted as g), FP’~P(c(X )w0,y~0) (denoted as p),

TP’zFN ’~p as the probability of the positive class, and

TN ’zFP’~1{p as the probability of the negative class.

Therefore, as in Theorem 3.1 of Kotlowski [34],

1{AUC(c)ƒ
p

1{p
z

g

p

ƒ

pzg

min(p,1{p)

~
‘0=1(c)

min(p,1{p)
,

where ‘0=1(c)~
P

i (‘0=1(c(Xi),yi))~
P

i (I(c(Xi)yiƒ0)) indicates

the zero-one loss, yi and c(Xi) are the class label and the

prediction score of the i-th element, and I(:) is an indicator

function. Since the hinge loss function ‘hinge(c) upper bounds the

zero-one loss ‘0=1(c) for an arbitrary classifier c (i.e.,

‘0=1(c)ƒ‘hinge(c)), we proved that ‘rank~1{AUCƒ

1

min(p,1{p)
� ‘hinge:

Although it provides a loose bound, Theorem 5 indicates that

minimizing the hinge loss function leads to AUC maximization

because ‘hinge(c)?0 implies AUC?1. The following objective

function optimizes the Doubly Optimized Calibrated Support

Vector Machine (DOC-SVM),

min
w,j

1

2
W T Wzc1

XN

i~1

jizc2

XN

i~1

(W T Xi{yi)
2

" #
ð6Þ

s:t:yiW
T Xi§1{ji

ji§0,Vi,

where ji is the loss for the i-th data point Xi; W is the weight

parameter; c1 and c2 are the penalty parameters for the hinge loss

the squared loss, respectively. DOC-SVM optimizes discrimination

and calibration in a joint manner. Let us denote the hinge loss as

‘hinge, the squared loss as ‘squared , refinement as R, dis-calibration as D,

and AUC as A. Holding the regularization term 1
2

W T W as a

Table 1. Confusion matrix of a classifier c based on the gold
standard of class labels.

‘‘Gold standard’’

Positive Negative

Predictions Predicted positive True Positive (FP) False Positive (FP)

Predicted negative False Negative (FN) True Negative (TN)

doi:10.1371/journal.pone.0048823.t001
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constant, Equation (6) concurrently optimizes discrimination and

calibration, and it allows the explicit adjustment of the tradeoff

between the two giving,

min(c1‘hingezc2‘squared )

: {b1 max(A)zb2 min(RzD)

: {b1 max(A)zb2 min(R)zb2 min(D)

: {b1 max(A){kb2 max(A)zb2 min(D)

: {(b1zkb2)min(A)zb2 min(D),

where b1,b2 are weight parameters for different loss functions and

k is a constant factor. As A is lower bounded by a factor of R,

therefore, the minimization of A enforces the minimization of R.

Table 2. Details of the training and test datasets in our first
experiment.

#ATTR
TRAINING SET
SIZE TEST SET SIZE %POS

GSE2034 15 125 84 54%

GSE2990 15 54 36 67%

doi:10.1371/journal.pone.0048823.t002

Figure 6. Performance comparison between using GSE2034 and GSE2990.
doi:10.1371/journal.pone.0048823.g006
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The higher b2 is, the less discriminative and the more calibrated the

classifier is, and vice versa.

Experiments

We evaluated the efficacy of DOC-SVM using three real-world

datasets. We examined the calibration and discrimination of the LR,

SVM, and DOC-SVM. To allow for a fair comparison, we applied

Platt’s method to transform SVM’s outputs into probabilities [30].

We adopted ten-fold cross validation [35] to pick the best

parameters (i.e., c1, c2 for DOC-SVM and c for SVM) for each

model. Specially, we used the following metrics for evaluation:

AUC, AUC standard deviation, F-score, Sensitivity, Specificity,

Brier Score, and the p-value of the HL-C test, which are all among

the most commonly used in statistical model comparisons. The

null hypothesis in our HL-C test is that the data are generated by

the model fitted by the researcher. If test statistic is less or equal to

0.1, we reject the null hypothesis that there is no difference

between the observed and model-predicted values, which implies

that the model’s estimates do not fit the data well (i.e., the

calibration is poor). Otherwise, if the test statistic is greater than

0.1, as expected for well-fitting models, we fail to reject the null

hypothesis.

Our first experiment used breast cancer gene expression data

collected from the NCBI Gene Expression Omnibus (GEO). Two

individual datasets were downloaded, and were previously studied

by Wang et al. (GSE2034) [36] and Sotiriou et al. (GSE2990) [37].

Table 2 summarized the data sets. To make our data comparable

to the previous studies, we followed the criteria outlined by Osl et

al. [38] to select patients who did not receive any treatment and

had negative lymph node status. Among these pre-selected

candidates, only patients with extreme outcomes, either poor

outcomes (recurrence or metastasis within five years) or very good

outcomes (neither recurrence nor metastasis within eight years)

were selected. The number of observations after filtering was: 209

for GSE2034 (114 good/95 poor) and 90 for GSE2990 (60 good/

30 poor). All of these data have a feature size of 247,965, which

corresponds to the gene expression results obtained from certain

micro-array experiments. Both datasets have been preprocessed to

keep only the top 15 features by T-test, as previously described

[38].

Figure 6(a) and Figure 6(b) illustrate a number of comparisons

between LR, SVM, and DOC-SVM using the GSE2034 and

GSE2990 datasets over 30 random splits. In both experiments,

DOC-SVM showed higher AUCs when compared to other

models under one-tailed paired t-tests using p = 0.1 as the

threshold. Although the improvements to SVM are small

(GSE2034: p = 0.38, GSE2990: p = 0.29), DOC-SVM had signif-

icantly higher AUCs compared to LR in GSE2990 (p = 0.04).

Besides discrimination, DOC-SVM demonstrated better calibra-

tion in terms of HL-C test. In the experiment, DOC-SVM had

significantly higher p-values than the LR model (GSE2034:

p,0.01, GSE2990: p = 0.008) using a one-tailed paired t-test.

An improvement to SVM was significant for GSE2034 (p = 0.03)

but not for GSE2990 (p = 0.13). We also conducted one-tailed

paired t-tests to evaluate if DOC-SVM has smaller Brier scores

when compared to LR and SVM. The results were similar to what

we already observed in discrimination and calibration: the Brier

scores were smaller than those of LR (GSE2034: p = 0.14,

GSE2990: p = 0.002) and SVM (GSE2034: p = 0.28, GSE2990:

p = 0.12), but not all improvements were significant. In no

instances DOC-SVM performed significantly worse than SVM

and LR.

Our second experiment used another breast cancer gene

expression data, in which Chanrion and his colleagues predicted

the occurrence of relapse as a response to tamoxifen [16]. We

followed their experimental design, and conducted log2-transfor-

mation and median-centering per sample on the measurement

values. To ensure consistency, we selected 36 genes present in their

Table 3. Details of the training and test datasets in our
second experiment.

#ATTR DATASET SIZE %POS

Training 36 132 65%

Test 36 23 74%

doi:10.1371/journal.pone.0048823.t003

Figure 7. Performance comparisons between three different models using breast cancer datasets.
doi:10.1371/journal.pone.0048823.g007
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study and applied nearest shrunken centroid classification method

[39]. Note that we carefully split the 155 observations into training

and test sets to match what has been reported in that study. Data

sets used are shown in Table 3.

The evaluation of this experiment does not involve random split

as the training and test datasets were predetermined [16]. Figure 7

shows indices for all three models.

DOC-SVM demonstrated better discrimination performance

on the test data (AUC = 0.964), which was significantly higher

than the AUCs of SVM (0.848) and LR (0.683). Note that for the

comparison of a pair of AUCs, we used a z-test reviewed in Lasko

et al. [40]. DOC-SVM also had the lowest Brier score among the

three models. In addition, it was the only model that had a good

fit, with a HL-C test p-value equals 0.5, whereas p-values of the

other models were smaller than 0.0001.

In summary, DOC-SVM showed superior performance in all

these real-world datasets. The performance improvements were

observed for both discrimination and calibration, which indicates that

DOC-SVM may have better generalization ability compared to

LR and SVM due to the joint consideration of both factors.

Although these experiments are limited by the small sizes of

datasets, their outputs verified our theoretical results and served to

demonstrate the advantage of the proposed joint optimization

framework.

Conclusions

We explored the properties of discrimination and calibration, and

uncovered an important tradeoff between them, expressed in

terms of AUC, a popular measure of discrimination. Our investi-

gation also indicated that a supervised probabilistic model can be

improved when both discrimination and calibration are considered in

a joint manner. We developed a Doubly Optimized Calibrated

Support Vector Machine Model (DOC-SVM) to minimize the

squared loss concurrently with the hinge loss to account for both

aspects of discrimination and calibration. Experimental results from

using real-world breast cancer datasets indicate that the DOC-

SVM can potentially outperform Logistic Regression and Support

Vector Machine. Further studies are needed to investigate

strategies to tune weights for discrimination and calibration depending

on the learning problem.
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