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Abstract

Background: Human schistosomiasis is one of the most prevalent and serious parasitic diseases worldwide. Schistosoma
japonicum is one of important pathogens of this disease. MicroRNAs (miRNAs) are a large group of non-coding RNAs that
play important roles in regulating gene expression and protein translation in animals. Genome-wide identification of
miRNAs in a given organism is a critical step to facilitating our understanding of genome organization, genome biology,
evolution, and posttranscriptional regulation.

Methodology/Principal Findings: We sequenced two small RNA libraries prepared from different stages of the life cycle of
S. japonicum, immature schistosomula and mature pairing adults, through a deep DNA sequencing approach, which yielded
,12 million high-quality short sequence reads containing a total of ,2 million non-redundant tags. Based on a
bioinformatics pipeline, we identified 176 new S. japonicum miRNAs, of which some exhibited a differential pattern of
expression between the two stages. Although 21 S. japonicum miRNAs are orthologs of known miRNAs within the
metazoans, some nucleotides at many positions of Schistosoma miRNAs, such as miR-8, let-7, miR-10, miR-31, miR-92, miR-
124, and miR-125, are indeed significantly distinct from other bilaterian orthologs. In addition, both miR-71 and some miR-2
family members in tandem are found to be clustered in a reversal direction model on two genomic loci, and two pairs of
novel S. japonicum miRNAs were derived from sense and antisense DNA strands at the same genomic loci.

Conclusions/Significance: The collection of S. japonicum miRNAs could be used as a new platform to study the genomic
structure, gene regulation and networks, evolutionary processes, development, and host-parasite interactions. Some S.
japonicum miRNAs and their clusters could represent the ancestral forms of the conserved orthologues and a model for the
genesis of novel miRNAs.
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Introduction

Schistosomes are members of the phylum Platyhelminthes.

However, unlike most other platyhelminths, dioecious schisto-

somes can cause severe human schistosomiasis, which remains one

of the most prevalent and serious parasitic diseases worldwide [1].

They are highly adapted for life inside their mammalian hosts,

where they can survive for years [2]. Although genomic

information has improved our understanding of the biology of

schistosomes and their interactions with hosts [3], increasing our

knowledge of microRNAs (miRNAs) may reveal unique classes of

riboregulators that shape evolutionary characteristics throughout

different animal phyla [4], uncover developmental genetic

switches [5], and develop novel biomarkers for the parasitic

disease [6,7].

MicroRNAs (,22 nt in length) play gene-regulatory roles in

numerous eukaryotic lineages, including plants, animals and fungi.

Identification of comprehensive sets of miRNAs and other small

regulatory RNAs in different organisms is a critical step to

facilitate our understanding of genome organization, genome

biology and evolution [8]. RNA interference (RNAi) has

previously been described in Schistosoma mansoni and S. japonicum,

for which the addition of exogenous dsRNA resulted in a

measurable suppression of target gene expression [9–12]. This

suggests that schistosomes possess the molecular machinery that

contains an effector nuclease complex, known as the RNA-

induced silencing complex (RISC), which recognizes and destroys

homologous target mRNAs in an endonucleolytic manner [13,14].

Recently, a Dicer-1 like (EF204544) multi-domain nuclease that is

responsible for cutting double-strand RNAs into short interfering

RNAs (siRNAs) approximately 21 nucleotides (nt) long, and

argonaute (Ago) effector proteins that target mRNA molecules for

silencing or destruction under guidance by miRNAs, were

identified in S. mansoni [15,16]. This implies that miRNAs could
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be generated by action of Dicer and play important roles in post-

transcriptional regulation. Actually, few miRNAs were recently

identified from S. japonicum [17]. However, the identification of

numerous schistosome miRNAs should be further performed for

characterizing evolutionary position of schistosomes spanning the

ecdysozoans and deuterostomes, gene regulation during develop-

ment, and host-parasite interplay of the blood flukes.

Methods

Preparation of schistosome specimens
Preparation of schistosome specimens was conducted as

previously described [3,18]. Briefly, cercariae of S. japonicum were

shed from naturally infected Oncomelania hupensis snails collected

from fields in Anhui Province of China. Each rabbit was

experimentally infected percutaneously with 1,000 cercariae.

Hepatic schistosomula and adult worms were obtained from the

mesenteric veins and liver of infected rabbits at 2 weeks and 6–7

weeks after infection, respectively. Mixed-sex adults and hepatic

schistosomula were then washed thoroughly in PBS to remove host

cell debris, and stored at 280uC for further analysis. All animals

were handled in strict accordance with the guidelines defined by

the relevant national and/or local animal welfare bodies, and all

animal experiments were approved by the ethics committee of the

Chinese National Human Genome Center (Shanghai, China).

RNA extraction, construction of small RNA libraries, and
DNA sequencing

The worms were dissected and homogenized in the lysis buffer.

Total RNA was then extracted with TRIzol (Invitrogen, Carlsbad,

CA) according to the manufacturer’s instructions. RNA concen-

tration and purity were evaluated photometrically by measuring

the absorbance at 260 nm and 280 nm, through NanoDrop ND-

1000 spectrophotometer (Nanodrop Technologies, Wilmington,

DE) and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo

Alto, CA). RNA samples were stored at 280uC.

For small RNA library construction and deep sequencing, the

18–30 nt size range of RNA was enriched by polyacrylamide gel

electrophoresis (PAGE) and then 20 mg of the purified small RNA

from each developmental stage was subject to DNA sequencing

with an Illumina Genome Analyzer (Illumina, San Diego, CA),

according to the manufacturer’s instructions. In brief, proprietary

adapters were then ligated to the 59 and 39 termini of these small

RNAs, which the ligated small RNAs were then used as templates

for cDNA synthesis. The cDNA was amplified with 18 PCR cycles

to produce libraries that were sequenced using Solexa’s proprie-

tary sequencing-by-synthesis method. DNA sequencing was

performed with an Illumina Genome Analyzer. The image files

generated by the sequencer were then processed to produce

digital-quality data. In this study, 35 nt small RNA reads (*.fq)

were produced by BGI (Beijing Genome Institute at Shenzhen)

using a Solexa/Illumina sequencer. This raw dataset was

processed with a bioinformatics’ pipeline as follows: (1) remove

low quality reads; (2) trim 39 prime adaptor sequences by a

modified dynamic programming algorithm; (3) remove adaptor

contaminants formed by adaptor and adaptor ligation; (4) collect

short RNAs ranged from 18–30 nt and draw size distribution; (5)

remove those sequences with ployA tail. And then we got the clean

reads of full-length small RNA sequences for further analysis.

Computational analyses
After low quality sequence reads were removed according to the

criteria of Solexa/Illumina, the identical sequence reads were

tabulated to produce a ‘read count’ score. Duplicated sequences

were eliminated from the initial dataset to produce a non-

redundant set of unique sequences, hereafter referred to as

sequence tags. After trimming the ligated adaptor sequences,

identical sequences were counted as their expression abundances.

To determine whether these small RNA sequences from S.

japonicum are considered as candidate miRNAs, these cleaned small

RNA sequences described above were mapped to the draft S.

japonicum genome sequences (sjr2_contig.fasta) using SOAP (Short

Oligonucleotide Alignment Program) (http://soap.genomics.org.

cn). Only those mapped perfectly onto the draft genome were

further considered as candidate miRNAs.

To identify potential miRNA genes, the MIREAP algorithm

(http://sourceforge.net/projects/mireap) was employed to obtain

all candidate precursors with hairpin-like structures that were

perfectly mapped by sequencing tags. In brief, two putative

miRNA precursor sequences (one encompassing 10 nt upstream

and 70 nt downstream, assuming the miRNA locates to the 59-

prime arm of the RNA hairpin; the other encompassing 70 nt

upstream and 10 nt downstream, assuming the miRNA locates to

the 39-prime arm of the hairpin) were folded using RNAfold [19].

The pairing numbers of the mature sequence within a given RNA

hairpin should not be less than 14 nt, while the maximal bulge

should be less than 4 nt and the asymmetry between miRNA and

miRNA star (miRNA*) should be less than 5 nt. Because the

miRNA and miRNA* duplexes are products of Drosha and Dicer

processing, a 39-terminus overhang of two nucleotide bases over

the 59-terminus was requested.

For homology analysis, these predicted mature S. japonicum

miRNAs were compared with known miRNAs from other

organisms (http://www.mirbase.org/). If both a given S. japonicum

miRNA and known miRNAs reciprocally share the highest

homology with more than 80% identical nucleotides, including

the same seed sequences (2–7 nt), the S. japonicum miRNA was

considered as a ortholog and thus named after the known miRNA.

In this work, we also employed these S. japonicum miRNAs to

predict the orthologs of S. mansoni, according to the same criteria,

through search against draft S. mansoni genome. Moreover, we

extracted 2–7 nt of these S. japonicum miRNAs as the potential

‘‘seed sequences’’ to search against all published known miRNAs

from other organisms. When a ‘‘seed sequence’’ was perfectly

matched with the sequence at the same location of a known

miRNA, the S. japonicum miRNA was considered to be homologous

with the known miRNA.

MiRNA target prediction
We first predicted the 39-untranslational regions (UTRs)

by integrating the predicted mRNAs (http://lifecenter.sgst.cn/

schistosoma/en/schistosomaCnIndexPage.do) and the released

EST annotation (http://192.168.13.13/sj-proteome/download.

htm) [3,18] for S. japonicum, and then employed the miRanda

program (http://www.microrna.org/microrna/getDownloads.do)

to predict the target genes for the 176 S. japonicum miRNAs [20].

The parameters used in miRanda were a gap opening penalty of

28; a gap extension penalty of 22; a score threshold of 50; an

energy threshold of 220 kcal/mol; a scaling parameter of 2.

Results

Screening of potential S. japonicum miRNAs
Increased knowledge of schistosome microRNAs may provide

further information about the unique classes of riboregulators. We

first conducted a search for potential homologues of the genes

involved in miRNA mechanisms against the draft S. japonicum

genome accordingly. In addition to Dicer-1 (Sjc_0069770) and

S.japonicum microRNAs
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three Ago genes (Sjc_0044720, Sjc_0045200 and Sjc_0103990): we

found that the S. japonicum genome could encode the homologues of

Drosha (Sjc_0048900) and Pasha (Sjc_0013270) (Table S1), which

could recognize the miRNA primary transcript and cleave it to

create the pre-miRNA hairpin [21]. This result supported the

hypothesis that S. japonicum is capable of generating endogenous

miRNAs that carry out post-transcriptional regulation.

To survey S. japonicum microRNAs and further understand their

biological function, we constructed complementary DNA libraries

derived from 18–30 nt RNAs isolated from both schistosomula

(SC), the immature unpaired worms, and mature pairing adults

(AW), respectively (Figure 1), where the pairing of schistosomes are

essential for their maturation and egg-laying. We then sequenced

them using an Illumina (Solexa) DNA sequencer, which yielded

,12 million raw reads containing a total of ,2 million non-

redundant tags with high-quality reads (1,001,353 and 1,009,575

sequence tags generated from AW and SC, respectively). The

sequencing tags were merged and the expression level of each

unique tag was normalized to transcripts per million (TPM) as

previously described [22–25]. Our results showed that the majority

of these small RNAs were between 20 to 24 nt in length

(Figure 2A).

To determine whether these small RNA sequences from S.

japonicum are considered as candidate miRNAs, these small RNA

sequences described above were mapped to the draft S. japonicum

genome sequences (sjr2_contig.fasta) (http://lifecenter.sgst.cn/

schistosoma/en/schistosomaCnIndexPage.do) using SOAP. The

result indicated that 237,492 and 270,325 non-redundant

sequence tags from AW and SC were perfectly mapped onto the

S. japonicum genome, respectively (Figure 1). Then, we further

excluded these small RNAs that matched with known rRNAs,

tRNAs, small nuclear RNAs (snRNAs) and small nucleolar RNAs

(snoRNAs) deposited in the Rfam database (ftp://selab.janelia.

org/pub/Rfam/) and NCBI GenBank (http://www.ncbi.nlm.

nih.gov/GenBank). We also masked the repeat sequences

using Exonhunter (http://lifecenter.sgst.cn/schistosoma/en/

schistosomaCnIndexPage.do) and RepeatMasker programs [26]

(http://www.repeatmasker.org), and ones mapped to protein-

coding exons. The data indicated that about 16–21% of the small

RNAs matched with rRNAs, tRNAs, snRNAs and snoRNAs

(Figure 2C and 2D), ,24% mapped to repeat sequences,

including transposons and retrotransposons, and ,1.2% mapped

to protein-coding exons. After removing the above small RNAs, a

total of 128,410 and 158,978 tags from AW and SC are further

analyzed for the identification of S. japonicum miRNAs (Table S2).

To identify potential miRNA genes, the MIREAP algorithm

[19] was then employed to obtain all candidate precursors with

hairpin-like structures that were perfectly mapped by sequencing

tags (see Methods). These tags were filtered by the following

criteria: (1) The minimum free energy (mfe) should be less than

,225 Kcal/mol; (2) at least 3 Solexa sequencing reads demon-

strating the same 59-terminus. The results showed that every

candidate precursor of 645 and 804 sequence tags from AW and

SC possesses a characteristic RNA hairpin structure, respectively

(Figure 1). Hence, these sequence tags were considered as potential

miRNAs to be further analyzed.

Identification of S. japonicum miRNAs
To further identify S. japonicum miRNAs, we considered the

following properties that have proved useful for distinguishing

bilaterian miRNAs from other types of small RNAs as the follow

criteria: (1) the presence of reads mapped to an inferred RNA

hairpin with pairing characteristics of known miRNA hairpins; (2)

the seed sequence with similarity to known miRNAs from other

species (miRBase 12.0) [27]; and (3) the RNA wasn’t mapped to a

genomic region with an annotation suggesting a non-miRNA

biogenesis (Figure 1) [28–30]. Based on above criteria, a total of

176 S. japonicum miRNA genes were identified (Table S3) (http://

omics.biosino.org:14000/kweb/sj_miRNA/index.html or http://

function.chgc.sh.cn/sj_miRNA/).

In addition to known S. japonicum miRNAs, sja-let-7, sja-miR-

71a, sja-miR-125 and sja-bantam [17], the remaining 172

miRNAs were first recognized in S. japonicum. Moreover, our data

showed that 141 (80%) of the 176 miRNAs were from the SC

library, while 116 (66%) were from the AW library, and 81 (46%)

of the miRNAs were found in both libraries. All mature miRNAs

are between 20–24 nt long (Figure 3A), of which 62% were 21 or

22 nt. All S. japonicum miRNA precursors are 66–101 nt in length

and demonstrated the typical RNA hairpin structure of RNA

hairpins. The size distribution of these hairpins was similar to that

of other bilaterian animals, including C. elegans, Drosophila, fish,

mice, and humans (Figure 3B).

As known, those duplex reads correspond to an intermediate of

miRNA biogenesis in which the miRNA and opposing segment of

the hairpin, called the miRNA star (miRNA*), are excised from

the hairpin through successive action of Drosha and Dicer RNase

Figure 1. The flowchart of screening and identifying S. japonicum
miRNAs. AW, mixed adult worms; SC, hepatic schistosomula.
doi:10.1371/journal.pone.0008206.g001

S.japonicum microRNAs
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III endonucleases [28–30]. Sequencing reads from one arm of the

RNA hairpin usually greatly exceeded those from the opposite

arm, enabling unambiguous annotation of the duplex miRNA and

the miRNA*. To explore the candidate miRNA* in S. japonicum,

the potential miRNA sequences were aligned to the miRNA

precursors. We found the presence of some reads from both arms

of the hairpin, which formed a duplex with 2-nucleotide 39-

overhangs when paired to each other. Notably, a pair of miRNAs,

the highly conserved miRNA-2e-3p and the newly identified

miRNA-2e-5p, were derived from two arms of the same RNA

hairpin precursor (Figure 3C).

To gain insight into possible mechanisms involving miRNAs

across the development stages of S. japonicum, we compared the

miRNA reads between the cDNA libraries of immature and

mature worms. The result showed that some miRNA genes,

including miRNA-2e-5p, miRNA-2e-3p, miR-71b, miR-2a,

miR-2f, miR-124 and miR-31, tended to be enriched in

immature worms, whereas miR-125, miR-8 and bantam

exhibited a higher abundance in mature adults (Figure 3D),

suggesting that different miRNAs could play a distinct role in

different development stages.

Genomic clusters of S. japonicum miRNAs
A subset of miRNA genes are well-known to reside in local

genomic clusters with possible operon-like organization [31]. To

explore whether there are miRNA clusters in S. japonicum genome,

all of the identified S. japonicum miRNAs were mapped to S.

japonicum genome. Here only two miRNA clusters identified by

this study exhibited the similar genomic structure and components

consisting of miR-71 and miR-2 family members. Interestingly,

these five highly expressed miRNAs, miR-71b, miR-2a, miRNA-

2e-5p, miRNA-2e-3p and miR-2f, were clustered in tandem at the

same genomic locus (CNUS0000011792.1) (Figure 4A), whilst

other miR-71 and miR-2 family members, miR-71a, miR-2d,

Figure 2. Size and frequency distribution of the sequencing reads from both cDNA libraries as well as the classification of small
RNAs. (A) Length distribution of the non-redundant sequencing reads. (B) Classification of the sequenced small RNA tags from adult worms (AW) and
immature hepatic schistosomula (SC), respectively.
doi:10.1371/journal.pone.0008206.g002

S.japonicum microRNAs
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miR-2b, and miR-2c, were clustered at another genomic locus

(CNUS0000007682.1) in an inverted orientation (Figure 4B).

In addition to these miRNA gene clusters, we also found that

both sense and antisense DNA strands within the same genomic

loci could generate the distinct miRNAs. For examples, the pairing

miRNAs, including miR-3052 and miR-3079 as well as miR-3038

and miR-3058, were produced by different strands with typical

RNA hairpin precursors located in the same genomic regions

(CNUS0000025876.1 and CNUS0000036392.1), where the sense

strands encode the miR-3052 and miR-3038 while antisense

strands generate the miR-3079 and miR-3058 (Figure 4C and

4D), respectively. It is known that distinct miRNAs derived from

both DNA strands of the same genomic loci could play crucial role

in regulating the development by targeting distinct genes [32].

Figure 3. Identification and properties of S. japonicum miRNAs. (A) Length distribution of all identified S. japonicum miRNAs. The left and right
Y-axes indicate the number and percentage of miRNAs, respectively. (B) Cumulative length distributions of miRNA precursors from S. japonicum and
other bilaterian animals. The size distribution of S. japonicum miRNA precursors is similar to that of other bilaterian animals, including C. elegans (cel),
Schmidtea mediterranea (sme), D. melanogaster (dme), Fugu rubripes (fru), mice (mmu), and humans (hsa). (C) The sequences and numbers of
sequencing reads matching the sja-miR-2e hairpin. The sequence of the sja-miR-2e hairpin is displayed above the bracket-notation of its predicted
secondary structure, as determined by RNAfold. Sequenced small RNAs from immature schistosomula (SC) and adult worms (AW) that map to the
hairpin are aligned below, with the number of reads shown on the right. Both miR-2e-5p and the conserved miR-2e-3p were designated as reciprocal
miRNA and miRNA* species and are indicated in red and in blue, respectively. (D) Relative expression levels of S. japonicum miRNAs, as indicated by
fold enrichment through normalizing the frequency of sequencing reads from the AW and SC samples.
doi:10.1371/journal.pone.0008206.g003

S.japonicum microRNAs
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Evolution of S. japonicum miRNA genes
To further explore the evolutionary features of S. japonicum

miRNAs, we compared the collection of miRNAs with published

miRNAs from other metazoans. Our data showed that 160 (91%)

of the 176 S. japonicum miRNAs share 90 different 59-seed

sequences (2–7 nt) with known miRNAs from other animals

(Table S4 and Table S5), of which 21 are orthologs of known

miRNAs within the metazoans (Figure 5A). It should be pointed

out that S. japonicum miR-3068 shares the same seed (1–8 nt) with

miR-2029 of Nematostella vectensis (sea anemone), one of the earliest

branching animals in the Eumetazoa; and that S. japonicum miR-

3040 possesses the same 2–9 nt as miR-2019 of Amphimedon

queenslandica (sponge), one of the earliest branching animals in the

Metazoa [4]. This implies that these miRNAs could be derived

from ancient ancestral genes.

Here we also employed these S. japonicum miRNA precursors to

interrogate against draft S. mansoni genome (http://www.genedb.

org/genedb/smansoni/index.jsp) by homologous comparison.

Those S. mansoni genomic sequences with more than 95%

homology to S. japonicum miRNA precursors were considered as

candidate miRNA precursors. The S. mansoni miRNAs were then

predicted according to the same criteria described above. The

result indicated that 31 potential S. mansoni miRNA precursors

with typical RNA hairpins and mature forms, which are

homologues of S. japonicum orthologs, were recognized (Table

S6). Some of the common Schistosoma miRNAs, including let-7,

miR-8, miR-10, miR-31, miR-92, miR-124 and miR-125, are

evolutionally conserved across bilaterian animals (Figure 5A). We

also noted that 15 S. japonicum miRNAs are orthologs of the

published orthologs from Schmidtea mediterranea (Figure 5A) [33], a

multicellular animal belonging to the phylum Platyhelminthes.

Moreover, schistosomes also share some known miRNAs, such as

bantam, miR-36, miR-60, miR-2 and miR-71 with Arthropoda and/

or Nematoda animals. Interestingly, Schistosoma miR-8, shared by both

schistosomes, was homologous with Arthropoda orthologs, as well as

Nematoda miR-236, Urochordata and Vertebrata miR-141, miR-200 and

miR-429 (Figure 5B). The tenth nucleotide uracil (U) of Schistosoma

miR-8 is significantly distinct from cytidine (C) of all orthologs or

their paralogs, including S. mediterranea miR-8. miR-8 of Platyhel-

minthes (Schistosoma and S. mediterranea) and Arthropoda share the same

eleventh adenine (A) with Nematoda miR-236, which is different from

U or guanine (G) of the same position of Urochordata and Vertebrata

miR-141, miR-200 and miR-429 (Figure 5B).

Phylogenetic analysis implying that Schistosoma miR-8, which

exhibited a different clade from the S. mediterranea ortholog, could

represent an ancient prototype of Arthropoda orthologs, and share the

ancestral miRNA gene origin with Urochordata and Vertebrata miR-141

and miR-200a (Figure S1). Similarly, we also aligned other highly

conserved miRNAs, such as let-7, miR-10, miR-31, miR-92, miR-

124 and miR-125, across bilaterian animals using WebLogo tool.

Some nucleotides at many positions of Schistosoma miRNAs are indeed

significantly distinct from other bilaterian orthologs (Figure S2).

Target gene prediction of S. japonicum miRNAs
Predictions of target genes are a very complex process and

require experimentation. Although so, we attempt to explore the

Figure 4. Genomic origin of S. japonicum miRNAs. (A) A miRNA cluster consisting of miR-71b, miR-2f, miR-2a miR-2e-5p, and miR-2e-3p in
tandem on the same genomic contig (CNUS0000011792.1). (B) A similar miRNA cluster containing miR-71a, miR-2d, miR-2b, and miR-2c was mapped
in an inverted orientation to another genomic contig (CNUS0000007682.1). (C,D) Two pairs of miRNAs, sja-miR-3052 and sja-miR-3079, as well as sja-
miR-3038 and sja-miR-3058 were generated from sense and antisense DNA strands within the same genomic loci (CNUS0000025876.1 and
CNUS0000036392.1), respectively.
doi:10.1371/journal.pone.0008206.g004

S.japonicum microRNAs
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potential functions of these S. japonicum miRNAs, through

predicting their potential target genes using miRanda software,

an open-source algorithm [34,35], via searching against the 39-

untranslational regions (UTR) of S. japonicum protein-coding

genes. The data set was deduced by integrating the predicted

mRNA with known important functions and published EST

data [3,18]. The result showed that each miRNA could regulate

many target genes, from several to hundreds, and some

development-associated genes could be regulated by many

miRNAs (Table S7).

We investigate the relationship between the genomic loci of S.

japonicum miRNAs and their host genes. We noted that 52 S.

japonicum miRNAs were located within the intronic regions of some

predicted protein-coding genes (Table S8), although the majority

(70%) of these miRNAs was mapped to intergenic regions. S.

japonicum miR-3148 was mapped to the sixth intron of the

heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Figure

S3). Interestingly, the miR-3148 sequence is highly similar to the

39-UTR of hnRNP K, implying that miR-3148 could regulate the

stability or translation of hnRNP K mRNA.

Discussion

Although the draft genomic information has provided a

profound understanding of schistosome biology and their host-

pathogen interactions [36], increased knowledge of schistosome

microRNAs may provide further information about the unique

classes of riboregulators that have helped shape evolutionary

characteristics throughout animal phyla, uncover developmental

genetic switches, and develop novel biomarkers for detection of the

parasitic diseases. In this study, we obtained ,12 million raw reads

containing a total of ,2 million non-redundant tags with high-

quality reads. We found that only one-third of these non-

redundant small RNA reads demonstrated a perfect match with

the draft S. japonicum genome, while two-thirds of the reads were

mapped to the genome with at least one mismatch. This could be

ascribed to the following reasons: (1) genetic polymorphisms. The

microRNA data were just matched with published draft S.

japonicum genome; where the sequences of only assembled contigs,

not all, were released into publish domain; (2) systemic errors. The

quality of the genomic DNA sequences generated by old DNA

Figure 5. Evolutionary analysis of S. japonicum miRNAs. (A) 21 S. japonicum miRNAs are orthologs of known miRNAs from other bilaterian
animals. ‘‘+’’ indicates the high homology with the orthologs of the indicated species or phylum of animals, while ‘‘2’’ indicates no homology with to the
orthologs. (B) Alignment of miR-8 homologues from some bilaterian animals. The nucleotides in red represent substitution that is specific to
schistosomes, while blue letters indicate nucleotide substitutions found in orthologs or their paralogs in some other species and black letters represent
the conserved nucleotides. Abbreviations: sja, S. japonicum; sma, S. mansoni; sme, S. mediterranea; dme, D. melanogaster; dre, D. rerio; fru, F. rubripes; gga,
G. gallus; hsa, H. sapiens; mmu, M. musculus; xla, X. laevis; cel, C. elegans; csa, C. savignyi; cin, C. intestinalis; oan, O. anatinus; xtr, X. tropicalis.
doi:10.1371/journal.pone.0008206.g005
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sequencing machines could be lower than those generated by new

generation DNA sequencer; (3) post-transcriptional edition of

miRNA also could contribute to the mismatches observed, which

needs to be confirmed.

According to the published criteria for distinguishing bilaterian

miRNAs from other types of small RNAs [4,28,29], a bioinfor-

matics pipeline (Figure 1) was performed and identified 176 S.

japonicum miRNAs, including four known S. japonicum miRNAs, sja-

let-7, sja-miR-71a, sja-miR-125 and sja-bantam [17]. The

remaining 172 miRNAs were first recognized and described in

S. japonicum.

The collection of miRNA data showed that 141 (80%) of the

176 miRNAs were identified in the SC library, while 116 (66%)

were identified in the AW library, 81 (46%) of the miRNAs were

found in both libraries. Some miRNA genes, including miRNA-

2e-5p, miRNA-2e-3p, miR-71b, miR-2a, miR-2f, miR-124 and

miR-31, seem to be preferentially enriched in immature worms,

whereas miR-125, miR-8 and bantam exhibited a higher

abundance in mature adults (Figure 3D). The different miRNAs

abundance during different developmental stages of S. japonicum

implied that some miRNAs could play a distinct role in

modulating development, maturation and procreation of the

worm, through interfering with the translation and/or mRNA

stability of target genes. However, whether the differential display

between both libraries is ascribed to the distinct roles of these

miRNAs in different life cycle stages is worthy of further

investigation.

In addition, 29 miRNA* were found in S. japonicum and a few

could play functional role due to higher sequencing reads in

certain developmental stages. The phenomenon that both a

miRNA and a functional miRNA* are derived from a single

hairpin precursor could represent a model for the genesis of

miRNA genes with novel functionality via the evolutionary

processes of subfunctionalization or neofunctionalization [29].

Interestingly, five miRNAs, miR-71b, miR-2a, miRNA-2e-5p,

miRNA-2e-3p and miR-2f, were clustered in tandem at the same

genomic locus (CNUS0000011792.1), along with the enrichment

in immature worms, implying that they might play an important

role in this developmental stage by acting in a synergistic manner

under the control of the same promoter. More interestingly, other

miR-71 and miR-2 family members, miR-71a, miR-2d, miR-2b,

and miR-2c, were clustered at another genomic locus

(CNUS0000007682.1) in an inverted orientation. It should be

pointed out that the cluster of miR-2 family members were found

in silkworm (Bombyx mori), however, the combination of both miR-

2 and miR-71 in the same clusters was not identified in other

bilaterian animals.

In addition to these miRNA gene clusters, we also found that

both sense and antisense DNA strands within the same genomic

loci could generate the distinct miRNAs. The observation that the

same genomic loci produce different miRNAs could represent the

requirement of ancestral gene for multiple functions [29].

Schistosomes belonging to Lophotrochozoa were considered as

lower bilaterian animals [37], and thus, the extensive repertoire of

S. japonicum miRNA genes could provide a unique chance to clarify

the evolutionary constraint of Schistosoma or Platyhelminthes miR-

NAs, through comparing other bilaterian miRNAs. Schistosoma

miRNAs with unique genetic characteristics could represent a

characteristic procession under selective pressure, or potential

ancient prototypes for bilaterian orthologs that would be further

evolutionally processed.

These novel types of S. japonicum miRNAs could play important

roles in development, maturation and host-parasite interplay via

modulating the translation and/or mRNA stability of target genes.

Although the predictions of miRNA target genes are a very

complex process and require experimentation, our prediction

could provide some clues for understanding of S. japonicum

miRNAs functions. For examples, TGF-b receptor II/activin

receptor IIA, which plays important roles in schistosomal

development including male-induced female reproductive devel-

opment and host-parasite interaction [38–40], could be regulated

by 16 miRNAs, including let-7. Some members of cathepsin

superfamily involved in hemoglobin proteolysis cascade that may

be essential to the mammal-parasitic stages of schistosomes [10],

including cathepsins A, B, C, D, K, L and cathepsin B-like cysteine

proteinase (Antigen Sj31), could be regulated by several miRNAs

(Table S7). Some genes, such as insulin-induced gene 1 protein

(INSIG-1), cytosolic thyroid hormone binding protein and thyroid

hormone receptor interactor 10, possibly associated with the

exploitation of host hormones, could be modulated by S. japonicum

miR-31 and miR-2d.

In summary, we have created a unique resource, a collection of

S. japonicum miRNAs that could be used as a new platform to study

the genomic structure, gene regulation and networks, evolutionary

processes, and developmental features of schistosomes and host-

parasite interactions. Although it is still not known how these

Schistosoma miRNAs are evolutionarily related to each other, the

observation that both the miR-71and miR-2 families lie within the

same genomic clusters presents a model for the genesis of novel

miRNAs, and implies that these genes exert their effects on worm

development in a synergistic manner.

Supporting Information

Figure S1 Phylogenetic analysis of Schistosoma miR-8 and its

orthologs or paralogs. Phylogenetic analysis was performed for the

known miR-8 and its orthologs or paralogs from bilaterian animals

using MEGA 4 software. Abbreviations: sja, Schistosoma japonicum;

sma, Schistosoma mansoni; sme, Schmidtea mediterranea; dme, Drosophila

melanogaster; dre, Danio rerio; fru, Fugu rubripes; gga, Gallus gallus; hsa,

Homo sapiens; mmu, Mus musculus; xla, Xenopus laevis; cel,

Caenorhabditis elegans; csa, Ciona savignyi; cin, Ciona intestinalis; oan,

Ornithorhynchus anatinus; xtr, Xenopus tropicalis.

Found at: doi:10.1371/journal.pone.0008206.s001 (0.36 MB TIF)

Figure S2 Evolutionary analysis of S. japonicum miRNAs.

Schisitosoma miR-10, miR-124, miR-125, miR-192, miR-31,

and let-7 were analysed by comparing all known orthologs from

bilaterian animals, excluding schistosomes, as described using

WebLogo described above. The nucleotides in red could represent

schistosome-specific substitutions that are distinct from all

orthologs or their paralogs of other bilaterian animals.

Found at: doi:10.1371/journal.pone.0008206.s002 (2.00 MB TIF)

Figure S3 The relationship between Sja-miR-3148 and the host

gene heterogeneous nuclear ribonucleoprotein K. Sja-miR-3148

was mapped to the sixth intron of the heterogeneous nuclear

ribonucleoprotein K (hnRNP K) gene, which was predicted as one

of the potential target genes for sja-miR-3148 by miRanda.

Found at: doi:10.1371/journal.pone.0008206.s003 (0.16 MB TIF)

Table S1 The numbers of enzymes and proteins involved

in the small-RNA machinery of schistosomes and representative

eukaryotes.

Found at: doi:10.1371/journal.pone.0008206.s004 (0.03 MB

XLS)

Table S2 Genomic mapping distribution of S. japonicum non-

redundant samll RNA tags from schistosomula (SC) and adult

worm (AW) cDNA libraries.
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Found at: doi:10.1371/journal.pone.0008206.s005 (0.03 MB

XLS)

Table S3 List of 176 Schistosoma japonicum miRNAs and their

associated information.

Found at: doi:10.1371/journal.pone.0008206.s006 (0.17 MB

XLS)

Table S4 Seed sequences of S. japonicum miRNAs and their

homology with known miRNAs.

Found at: doi:10.1371/journal.pone.0008206.s007 (0.07 MB

XLS)

Table S5 Some S. japonicum miRNAs with high homology to

known miRNAs.

Found at: doi:10.1371/journal.pone.0008206.s008 (0.05 MB

XLS)

Table S6 31 potential S. mansoni miRNAs with high homology to

S. japonicum orthologs.

Found at: doi:10.1371/journal.pone.0008206.s009 (0.03 MB

XLS)

Table S7 Predicted target genes of S. japonicum miRNAs.

Found at: doi:10.1371/journal.pone.0008206.s010 (3.08 MB

XLS)

Table S8 The S. japonicum miRNAs mapped to the introns of

some schistosome genes (host genes).

Found at: doi:10.1371/journal.pone.0008206.s011 (0.04 MB

XLS)
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