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Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a
continuum of replication autonomy. On numerous occasions during microbial
evolution, diverse MGE lose their autonomy altogether but, rather than being quickly
purged from the host genome, assume a new function that benefits the host, rendering the
immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This
mini-review highlights the diversity of the repurposed (exapted) MGE aswell as the plethora
of cellular functions that they perform. The principal contribution of the exaptation of MGE
and their components is to the prokaryotic functional systems involved in biological
conflicts, and in particular, defense against viruses and other MGE. This evolutionary
entanglement betweenMGE and defense systems appears to stem both frommechanistic
similarities and from similar evolutionary predicaments whereby both MGEs and defense
systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for
survival including horizontal mobility, causing host addiction, and exaptation for functions
beneficial to the host. The examples discussed demonstrate that the identity of an MGE,
overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or
parasitic) are all factors that affect exaptation.
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INTRODUCTION

Coevolution of mobile genetic elements (MGEs) and cellular organisms spans billions of years
and is thought to have spurred innumerable evolutionary innovations (Werren, 2011; Koonin,
2016). Diverse MGEs that jointly comprise a vast mobilome are associated with essentially all
known cellular organisms, with the possible exception of some intracellular parasitic and
symbiotic bacteria (Frost et al., 2005; Iranzo et al., 2016; Carr et al., 2021). The relationship
between MGEs and their cellular hosts spans a continuum, ranging frommutualistic to parasitic,
changing between different MGE-host pairs as well as within the same pair over time (Jalasvuori
and Koonin, 2015). One form of this dynamic relationship can be described as antagonistic
coevolution, where an incessant arms-race takes place between the MGE and the host, driving
the evolution of ornate defense and counter-defense systems encoded by both parties (Duggal
and Emerman, 2012; Feschotte and Gilbert, 2012; Bernheim and Sorek, 2020). Intensive
investigation of defense and counter-defense systems, such as CRISPR-Cas, uncovered back-
and-forth shuttling of the system’s components between MGEs and their hosts over evolutionary
time (Koonin et al., 2019). The evolutionary entanglement between MGEs and hosts is not
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restricted to defense systems alone, but to our knowledge, the
full extent of such exchanges has not been systematically
reviewed.

One key aspect of the evolutionary exchange between MGEs
and cells is exaptation. Exaptation refers to the recruitment,
driven by natural selection, of a biological entity for a new
role unrelated to the original one with respect to the biological
function, while exploiting the mechanistic features of the
recruited entity (Gould and Vrba, 1982; Gould, 1997). We use
this term instead of the more common “domestication” to
emphasize the functional shifts that occur upon recruitment of
MGEs or their components for cellular functions (Koonin and
Krupovic, 2018; Koonin and Makarova, 2022). For example, a
nuclease originally involved in transposition of a distinct variety
of IS200/IS605-like transposons evolved into Cas9, the effector of
type II CRISPR-Cas adaptive immunity (Kapitonov et al., 2016;
Altae-Tran et al., 2021), whereas the transposase of another type
of transposons gave rise to Cas1, the integrase involved in spacer
acquisition by CRISPR-Cas systems (Krupovic et al., 2014).
Exaptation can occur at different “depths”, ranging from the
recruitment of an entire MGE for a new role to repurposing of a
single component of an MGE (Koonin and Krupovic, 2018).
Exaptation of MGE genes is linked to horizontal gene transfer
(HGT), the major evolutionary force in prokaryotes (Doolittle,
1999; Koonin et al., 2001). Due to their high horizontal mobility,
MGE double as vehicles for HGT. Indeed, some MGE carry large
repertoires of diverse “cargo” genes, some of which increase the
fitness of the recipient host cell and can even make the hosts
“addicted” to the respective MGE (Nicolas et al., 2015; Hülter
et al., 2017; Benler et al., 2021). An obvious example includes
horizontally transferred antibiotic resistance genes that become
essential in the presence of antibiotics (Liebert et al., 1999).
Antibiotic resistance or other cargo genes are determinants of
MGE-host symbioses that in many cases are mutualistic.
However, in this review, we focus on exaptations of genes
directly involved in MGE mobility, replication or persistence
as well as exaptation of entire MGEs.

MAIN

Exaptation of Mobile Genetic Elements and
Their Components for Host Defense
Functions
The potential for MGE to replicate at the expense of their hosts
necessitates the evolution of systems that can discern self from
non-self and protect the host from the deleterious effects of the
parasites by curtailing their reproduction (Rimer et al., 2014).
Defense systems can be partitioned into two discrete classes,
based on whether they respond to fixed non-self patterns (innate
immunity) or memorize variable non-self patterns and mount a
response against specific parasites (adaptive immunity). The
evolution of both types of immune systems and the parasites
which they defend against are intrinsically entangled through
exaptations (Koonin et al., 2017; Koonin and Makarova, 2017;
Koonin et al., 2019)

The adaptive arm of prokaryotic immunity is effectuated by
CRISPR-Cas, which is the evolutionary product of a constellation
of mobile genetic elements. The memory function of CRISPR-Cas
is achieved via Cas1 and Cas2, which jointly excise segments of
nucleic acid from foreign genetic elements and insert the
segments into the CRISPR repeat arrays in the host
chromosome (Nuñez et al., 2014; Amitai and Sorek, 2016).
Phylogenomic study of Cas1 uncovered ancestral homologs
encoded by a distinct family of MGE, self-synthesizing
transposons dubbed casposons (Krupovic et al., 2014;
Krupovic et al., 2017). The evolutionary relationship between
Cas1 and the homologous transposases of the casposons (dubbed
‘casposases’) is matched by extensive biochemical similarities
between the two enzymes (Hickman and Dyda, 2015; Béguin
et al., 2016; Hickman et al., 2020). Similarly, phylogenetic analysis
of Cas2 demonstrates an evolutionary connection to mRNA-
degrading toxins of the VapD family (Koonin and Makarova,
2013). The VapD ribonucleases are toxin components of toxin-
antitoxin (TA) modules, which themselves exhibit properties of
selfish elements and can be considered a type of MGE that
typically piggy-back on plasmids (Jalasvuori and Koonin, 2015;
Jurėnas et al., 2022). In the CRISPR adaptation complex, Cas2
performs a structural, scaffolding role, whereas the function of the
nuclease activity, which is retained by most but not all Cas2
proteins, remain unknown (Amitai and Sorek, 2016; Sternberg
et al., 2016). Thus, a transposase and a toxin apparently were the
evolutionary grist for the memory capability of CRISPR-Cas, the
defining feature of adaptive immunity.

Numerous type III CRISPR-Cas systems include a reverse
transcriptase (RT) that is typically fused to Cas1 and enables
adaptation by capturing spacers directly from RNA, either
transcripts of DNA genomes of MGE, or possibly, RNA
viruses (Koonin and Makarova, 2017; Silas et al., 2017). This
CRISPR-associated RT is most closely related to the RT of
prokaryotic retrotransposons (group II self-splicing introns),
from which it was apparently recruited for the role in CRISPR
adaptation (Koonin and Makarova, 2017; Silas et al., 2017). Thus,
in these systems, the RNA-memorizing capability of CRISPR-Cas
was endowed by the exaptation of a third mobile genetic element.

The effector complexes of CRISPR-Cas systems are highly
diverse, apparently, owing to their capture from distinct mobile
genetic elements. The architecture of the effector module
distinguishes the two classes of CRISPR-Cas. The effector is
either a multisubunit complex composed of several Cas
proteins (class 1) or a single, large, multidomain protein (class
2) (Makarova et al., 2015; Makarova et al., 2020). The origins of
class 1 effector modules remain murky. Nevertheless,
comparative genomic analysis points to a likely ancestral
relationship with a distinct variety of Abortive Infection (ABI)
modules (Burroughs et al., 2015; Koonin and Makarova, 2019;
Burroughs and Aravind, 2020). The ABI modules are a type of
toxin-antitoxin systems that, after being activated by virus
infection, induce cell dormancy or death, via a variety of
mechanisms, of which the most common one is indiscriminate
RNA cleavage, thus preventing virus reproduction and spread
(Harms et al., 2018; Fraikin et al., 2020). Type III CRISPR-Cas
systems possess the same functionality whereby the non-specific
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“altruistic” response is triggered by the specific target recognition.
The inferred origin of type III effector modules from ABI systems
implies that Class 1 CRISPR effectors started out as innate
immunity systems that became the executive component of
adaptive immunity though the merger with the adaptation
module derived from casposons and TA.

The class 2 effectors have a completely different evolutionary
history, being derived from nucleases encoded by MGE on
multiple, independent occasions (Shmakov et al., 2015; Faure
et al., 2019). One particular superfamily of transposable elements,
the IS200/IS605, donated the nucleases (IscB and TnpB,
respectively) that gave rise to Cas9 and Cas12, the effectors of
type II and type V CRISPR-Cas systems (Kapitonov et al., 2016;
Altae-Tran et al., 2021). The link between IscB and Cas9 is
apparent from the shared, unique domain architecture of these
proteins, in which an HNH nuclease domain is inserted with the
RuvC-like nuclease. In contrast, Cas12 proteins only contain the
RuvC-like nuclease domain, similarly to TnpB. The ancestral
status of the transposon-encoded nucleases with respect to the
CRISPR effectors is supported by general considerations, namely,
the small size and compactness of IscB and TnpB, and the simple
organization of the transposons themselves compared to the
CRISPR-Cas systems (Koonin and Makarova, 2022). More
importantly in the phylogenetic trees of the two nuclease
families, Cas9 forms a single clade embedded amongst
transposon-encoded IscBs (Altae-Tran et al., 2021), whereas
different Cas12 variants comprise several such clades in the
TnpB (Faure et al., 2019). Thus, while Cas9 was derived from
a transposon-encoded nuclease IscB in a single evolutionary event
(Kapitonov et al., 2016; Altae-Tran et al., 2021), Cas12 apparently

evolved from transposon nucleases of the TnpB family on
multiple, independent occasions (Faure et al., 2019; Altae-Tran
et al., 2021). Similarly to Cas9 and Cas12, the nucleases of IS200/
IS605-like transposons form a complex with a distinct guide RNA
encoded within the same transposon (Altae-Tran et al., 2021).
However, in these elements, the guide RNAs are not responsible
for cleaving foreign DNA, but rather might direct the transposons
to specific integration sites in the host chromosomal DNA; the
details of the functions of these nucleases in transposons remain
to be studied (Altae-Tran et al., 2021; Karvelis et al., 2021).
Collectively, these observations indicate that most if not all
major components of CRISPR-Cas systems originated via
exaptation of MGE genes.

Prokaryotes harbor a multifarious armament of innate
immune systems that defend against parasites, and many of
these defense machineries were captured from MGE. In
particular, bacteriophage (phage) superinfection exclusion
systems serve as a rich depot from which prokaryotes can arm
themselves for defense. Superinfection exclusion refers to the
ability of a primary infecting phage to prevent a subsequent
infection by another phage (Gentile et al., 2019; Owen et al.,
2021), a form of inter-MGE competition. For example, phage P2
carries three genes, fun, tin, and old, which endow its host with
immunity against phage T5, T-even phages, and lambdoid
phages, respectively (Haggård-Ljungquist et al., 1989; Mosig
et al., 1997; Odegrip et al., 2006) (Figure 1A). In both phage
and bacterial genomes, the fun gene is flanked by inverted repeats
that enable site-specific recombination and exchange of fun
between bacteria and P2-like phages (Nilsson et al., 2004).
Thus, through site-specific recombination, bacteria directly
capture a superinfection exclusion gene from one phage that
provides immunity to infection by other phages. Similarly, OLD
is the archetypical member of a family of ABC-ATPases fused to a
TOPRIM nuclease domain that is found in diverse defense
contexts (Aravind et al., 1998; Krishnan et al., 2020). In
combination with a UvrD-family helicase and RNAseH-family
exonuclease, OLD is part of a widespread system that provides
cells with innate immunity against several distinct bacteriophages
(Doron et al., 2018; Cheng et al., 2021). The old and fun
superinfection exclusion genes are just two examples of innate
immune systems found in prokaryotic genomes associated with
mobile genetic elements (Makarova et al., 2013), reflecting a
broad evolutionary pattern of continuous back and forth gene
shuffling.

Beyond the possession of genes dedicated to defense, mobile
genetic elements themselves double as immune systems. As
discussed above, bacteriophages furnish their hosts with
immunity against secondary infections by related or unrelated
phages through diverse mechanisms (Figure 1A). Plasmid
incompatibility groups also can be viewed through the lens of
inter-MGE competition, whereby the presence of one plasmid in
a host cell precludes replication of another plasmid of the same
incompatibility group (Cooper and Heinemann, 2000; Haase
et al., 1996) (Figure 1B). Certain transposons including Tn7,
Tn3 and Mu-like ones also exhibit defense phenotypes by
rendering hundreds of kilobases of their genomic
neighborhood refractory to integration of a second transposon

FIGURE 1 | Entire mobile genetic elements double as defense systems.
Autonomous MGEs, such as bacteriophages, plasmids, transposons and
retrons, encode genes that defend the host cells against invasion by related or
unrelated MGEs (A–D). For example, trbK encoded by the broad host
range plasmid RP4 excludes plasmid R702. Such defense-related genes are
frequently shuttled back and forth between MGEs and their host cells, such
as, for example, the Old family nuclease encoded by phage P2.
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(Arciszewska et al., 1989; Lambin et al., 2012; Stellwagen and
Craig, 1997; Walker and Harshey, 2020) (Figure 1C). A distinct
class of MGE, the reverse transcriptase-utilizing Retrons also
abrogate bacteriophage infection of their hosts via mechanisms
that remain to be characterized in detail (Gao et al., 2020;
Millman et al., 2020) (Figure 1D). These “defensive” retrons
might have been derived from an ancestral retrotransposon
(group II intron). Generally, the dual role played by MGEs in
both parasitizing and immunizing their host cells reflects the
‘shared interests’ between the two entities, which may be long-
lasting or ephemeral.

Recruitment of Mobile Genetic Elements
Genes for Replication, Recombination and
Repair
Chromosome Replication
Most prokaryotic chromosomes and some MGE replicons are
covalently closed circular DNA molecules. Circular DNA poses a
topological challenge for the proper segregation of genetic

material upon cell division (Midonet et al., 2014). To face this
challenge, MGEs and prokaryotes utilize resolvases to cleave
dimers of covalently closed DNA molecules into monomers
(Aravind et al., 2000). There is substantial evidence that
prokaryotes repurposed tyrosine superfamily resolvases
encoded by MGE for the faithful chromosome segregation.

A well-characterized resolution system featuring a tyrosine
superfamily resolvase is Xer/dif. Xer enzymes catalyze site-
specific recombination at dif sites to resolve a circular DNA
molecule into two individual molecules (Midonet et al., 2014)
(Figure 2A). The bacterial XerC are closely related to the
resolvases that mediate dimer resolution of plasmids and some
Tn3-like transposons (Nicolas et al., 2015). Xer family
recombinases are almost universal in bacteria and archaea
(Smyshlyaev et al., 2021), but appear to have been displaced
by homologs from MGEs on several occasions. In particular,
chromosome segregation in Streptococcus and Lactobacillus is
effectuated by XerS, a resolvase more closely related to those of
bacteriophages than it is to XerC (Le Bourgeois et al., 2007; Cortez
et al., 2010). In archaea, XerA resolves chromosomes, but can also

FIGURE 2 | Proteins involved in DNA replication, recombination and repair freelance between MGEs and cells. Homologous resolvases mediate the resolution of
both MGE and chromosome replication intermediates (A). DNA inverting serine recombinases direct the expression of alternative phage tail fiber genes or host flagellum
genes (B). Exapted bacteriophage genes endow the host DNA repair pathways via homologous recombination (C) or nonhomologous end-joining (D).
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recombine dif sites located on plasmids and exhibits signatures of
recent acquisition from an integrated mobile element (Cortez
et al., 2010; Midonet et al., 2014). Thus, prokaryotes routinely
recruit MGE-encoded tyrosine resolvases to solve the topological
problem of replicating a circular chromosome. Conversely,
plasmids and phages can hijack bacterial Xer recombinases for
the resolution of replication intermediates or, via the exaptation
route, to integrate the phage genome into the bacterial
chromosome (Midonet et al., 2014; Midonet et al., 2019).

MGEs also encode serine resolvases, which are unrelated to the
tyrosine resolvases but play an analogous role (Aravind et al.,
2000; Midonet et al., 2014; Smyshlyaev et al., 2021). To our
knowledge, there is currently no evidence that prokaryotic
chromosome segregation is ever mediated by serine resolvases,
despite their analogous functionality.

Not all prokaryotes and MGE possess circular DNA replicons,
some instead have linear molecules and covalently closed hairpin
termini (Kobryn and Chaconas, 2002). Replication of such
molecules also poses a topological challenge because
bidirectional replication yields a circular dimer (Casjens, 1999;
Kobryn et al., 2014). To face this challenge, MGE and prokaryotes
encode telomerases that ensure the faithful segregation of linear
DNA replicons. The paradigmatic telomerase is ResT, which is
encoded by a linear plasmid in Borrelia burgdorferi. Indeed, loss
of the plasmid-encoded ResT is lethal to B. burgdorferi due to
defects in replicating the linear chromosomes (Byram et al.,
2004). Thus, B. burgdoreferi outsources this critical step in
DNA replication to an MGE.

Repurposed Mobile Genetic Element Enzymes
Mediate Programmed Rearrangements of Host DNA
and Proteins
Prokaryotes co-opted recombinases encoded by mobile genetic
elements on multiple occasions to rearrange segments of
chromosomal DNA. These recombinases belong to two
unrelated superfamilies that are defined by the amino acid in
their active site, either a serine or tyrosine. Chromosomal
rearrangements mediated by enzymes of either superfamily
serve to regulate transcription or create novel combinations of
genes involved in various cellular processes (Weightman et al.,
2002; Honarvar et al., 2003; Jiang et al., 2019).

One mechanism by which recombinases effectuate
regulation is through DNA inversions, which either link
alternative genes to the same promoter or switch the
orientation of an individual gene’s promoter (Johnson,
2015). For example, DNA inversion mediated by the
Salmonella enterica serine recombinase Hin results in the
expression of one of two distinct flagellins (Johnson, 2015)
(Figure 2B). Hin bears close sequence similarity to the serine
recombinases encoded by the bacteriophages Mu and P1 (82%
amino acid identity over the recombinase catalytic domain),
which perform equivalent DNA inversion events in the phage
genome to direct expression of different phage tail fibers
(Harshey, 2015). Indeed, either phage enzyme can
complement Hin-mutants to restore phase variation in
Salmonella enterica (Simon et al., 1980). Such
interchangeability of the DNA inverting serine recombinases

between MGEs and their hosts has been documented for other
pairs as well (Tominaga, 1997; Kutsukake et al., 2006). Thus,
serine DNA invertases are frequently exchanged between
MGEs and cells to regulate gene rearrangements.

A second mechanism by which recombinases effectuate
regulation is through integration and excision of DNA.
Enzymes from both serine and tyrosine recombinase
superfamilies mediate the integration of all varieties of MGE,
including plasmids, viruses and transposons, into prokaryotic
chromosomes (Askora et al., 2011; Landy, 2015; Rice and Craig,
2015). In numerous cases where the MGE becomes incapable of
horizontal transfer, such as via the loss of genes required for
mobility, that MGE is repurposed as an excisable ‘switch’. For
example, a defective prophage in L. monocytogenes is integrated
into the comK gene, splitting the gene into two ORFs that are
restored upon excision of the prophage (Pasechnek et al., 2020).
Functionally analogous events mediate sporulation (Haraldsen
and Sonenshein, 2003; Abe et al., 2017), nitrogen fixation (Golden
et al., 1988; Carrasco et al., 1995) and DNA repair (Scott et al.,
2008) in other prokaryotes. Thus, in many cases, integration and
excision of MGEs catalyzed by their integrases serve to regulate
transcription in prokaryotes.

Mobilization of prokaryotic self-splicing introns appears to
provide a level of regulatory control to the benefit of the host cells,
in which these elements reside. Mobile introns consist of a
catalytic, self-splicing RNA (a ribozyme) and either a homing
endonuclease (group I introns) or a RT-containing protein
(group II introns) (Edgell et al., 2011). Although the
mechanisms of mobility differ between group I and group II
introns, ribozymes from both types of elements catalyze the
intron excision from the parental RNA molecules (Hausner
et al., 2014). Excision from parental RNA involves pairing of
the extreme 5′ and 3′ ends of the intron at the intron-exon
boundary and, consequently, restoration of the interrupted exon
(Hausner et al., 2014). If the exon is a protein-coding gene, such
restoration yields a fully functional protein upon translation. In
Clostridium difficile, a group I intron is inserted upstream of a
gene involved in bacterial virulence such that, upon excision, the
ribosome-binding site is restored, stimulating translation (Lee
et al., 2010). Critically, this group I intron lacks a homing
endonuclease, and furthermore, the ribozyme activity is
stimulated by a second messenger, cyclic diGMP, indicating
that the ribozyme was exapted to tune translation (Lee et al.,
2010). In other organisms, excision of group I or group II introns
occurs in response to specific stimuli related to the gene product
in which they reside (Belfort, 2017). For example, light stimulates
excision of a group I intron from the photosynthesis gene psbA in
Chlamydomonas chloroplasts (Deshpande et al., 1997; Lee and
Herrin, 2003), suggesting that some introns function as molecular
sensors of environmental cues.

Mobilization of a second, unrelated class of MGE, inteins,
provides a degree of post-translational regulatory control. Like
introns, inteins are mobilized to new DNA sites by homing
endonucleases and are capable of self-splicing. Unlike introns,
intein self-splicing and excision occurs after translation, from
parental polypeptides (Novikova et al., 2016). Intein excision
yields conditional post-translational regulatory control that is
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conceptually analogous to post-transcriptional control achieved
by introns. For example, Pyrococcus horikoshii RadA hosts an
intein that splices specifically in response to the presence of
single-stranded DNA, the natural RadA substrate (Lennon
et al., 2016). The RadA intein lacks a homing endonuclease
and is therefore incapable of self transfer to new DNA sites,
yet retains self-splicing capability (Lennon et al., 2016).
Numerous other proteins host inteins that splice in response
to environmental stimuli (Belfort, 2017), indicating that these
inteins were repurposed as post-translational regulatory switches.

Capture of Mobile Genetic Elements Enzymes That
Endow Prokaryotes With DNA Recombination and
Repair Pathways
A cardinal mechanism of DNA repair is homologous
recombination between paired strands of DNA. In E. coli,
genetic analyses identified a homologous recombination
pathway catalyzed by RecET (Kolodner et al., 1994). The
nuclease activity of RecE generates single-stranded DNA
overhangs that are subsequently bound by RecT to promote
pairing and strand exchange between homologous segments of
DNA (Kolodner et al., 1994) (Figure 2C). These enzymes are
encoded by a defective prophage in E. coli, termed Rac (Kaiser
and Murray, 1979). Rac is a prophage that lost ~60% of its
original DNA and is therefore incapable of replication or
production of progeny virions (Casjens, 2003). Fully infectious
Rac-like phages encode RecE homologs in similar genomic
positions and mediate homologous recombination in their
hosts (Figueroa-Bossi et al., 1997). This evidence indicates that
the E. coli RecET homologous recombination pathway was
captured from a temperate phage, perhaps, relatively recently
because other, even closely related bacteria lack this prophage.
Other bacteriophages encode ssDNA-binding proteins that
promote homologous recombination, which belong to three
unrelated superfamilies, RecT, Rad52 and ERF (Iyer et al.,
2002). Like RecT, members from the other two superfamilies
were captured from temperate phages because they are encoded
sporadically throughout the bacterial domain and are flanked by
phage-related genes that code for proteins involved in DNA
recombination and repair (e.g., Holliday junction resolvases)
(Iyer et al., 2002). Thus, genes of three unrelated superfamilies
were recruited by bacteria from phages on multiple occasions for
roles in homologous recombination.

A second mechanism of DNA repair is non-homologous end-
joining (NHEJ). The joining reaction requires a DNA ligase and a
DNA end-binding protein, known as Ku in eukaryotes.
Homologs of Ku are present in prokaryotes (Aravind and
Koonin, 2001; Doherty et al., 2001) and also mediate NHEJ by
recruiting a DNA ligase and stimulating ligation of the two DNA
ends (Weller et al., 2002). The prokaryotic Ku homologs are
encoded within defective prophages related to the fully infectious
E. coli phage Mu (di Fagagna et al., 2003). In Mu, the Ku homolog
is known as gam, which is primarily involved in protecting Mu
progeny from destruction by RecBCD during the lytic cycle, but
can also mediate NHEJ of host DNA (Bhattacharyya et al., 2018)
(Figure 2D). These observations collectively point to the
shuttling of gam between phages and their bacterial hosts.

A special case of exaptation of MGEs to manipulate bacterial
DNA is represented by Diversity-Generating Retroelements
(DGR). DGRs are genetic cassettes composed of a reverse-
transcriptase (RT) related to group II intron RTs, an accessory
gene and cis-acting regulatory sequences (Doulatov et al., 2004;
Handa et al., 2018). The DGRs broadly colonize both prokaryotic
and phage genomes and introduce multiple mutations into
specific target genes via highly error prone reverse
transcription and retrohoming (Paul et al., 2017; Benler et al.,
2018; Roux et al., 2021). The DGRs primarily introduce
hypervariation into genes encoding cell-cell and virus-cell
attachment but might contribute also to other cellular
processes (Arambula et al., 2013; Vallota-Eastman et al., 2020).
The frequent trafficking of DGRs between chromosomes,
plasmids and phages (Wu et al., 2017) evinces the utility of
accelerated protein sequence evolution mediated by this
domesticated MGE.

Co-Option of Transcription Factors From
Mobile Genetic Elements for Host Cell Gene
Regulation
On multiple occasions, prokaryotes seem to have adopted
MGE-encoded transcription factors to regulate
transcriptional networks. The most common DNA-binding
moiety in prokaryotic transcription factors is the ubiquitous
helix-turn-helix (HTH) domain (Brown et al., 2003;
Cuthbertson and Nodwell, 2013; Hoskisson and Rigali,
2009). Due to the small size of the HTH domain, robust
phylogenetic reconstruction of the evolutionary history of
HTH domain-containing genes proves difficult.
Nevertheless, apparent monophyletic groups can be
identified, several of which show clear signs of exchange
between prokaryotes and MGEs (Aravind et al., 2005). The
principal signature of such an event is the widespread
presence of a given family of HTH domain-containing
proteins in MGEs and a restricted distribution in
prokaryotes. For example, Xre is the archetypical member
of one of the families of HTH domains with tetrahelical
quaternary structure (Aravind et al., 2005). Xre regulates
the lysis-lysogeny of a degraded prophage in B. subtilis
(McDonnell and McConnell, 1994), and homologs of Xre
regulate the lysis-lysogeny decisions of autonomous
bacteriophages, for example, the ner gene encoded by
E. coli phage Mu (Tolias and Dubow, 1986) (Figure 3A).
Ner exhibits 68% amino acid identity to SfsB (NP_417655.1),
a transcription factor that is conserved in Enterobacteriaceae
and regulates genes involved in maltose metabolism (Autexier
and Dubow, 1992) (Figure 3B). The high sequence similarity
between Ner and SfsB suggests a relatively recent exchange.
Furthermore, overexpression of ner can complement sfsB by
stimulating the expression of maltose metabolic genes in
E. coli (Autexier and Dubow, 1992), underscoring the ease
with which a transcription factor from a MGE can be recruited
into the host regulatory cascades.

The antitoxins of toxin-antitoxin (TA) pairs have also been
shown to double as cellular transcription factors, illustrating
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another plausible route of exaptation. Specifically, Xre-family
HTH domains are widespread in antitoxins of type II TA
systems (Freire et al., 2019; Makarova et al., 2009; Skjerning
et al., 2019). Typically, the TA complex autoregulates its own
transcription by binding to an operator(s) upstream of the TA
operon via the HTH domain (Page and Peti, 2016). In E. coli, two
different antitoxins bind to the operators of genes located outside
of the cognate TA pair and simultaneously regulate multiple
operons (Lin et al., 2013; Soo and Wood, 2013) (Figure 3C).
These observations suggest that antitoxins first assume regulatory
control of host genes, and then, disassociate from the TA pair and
become dedicated transcription factors. Transcription factors
containing Xre-family HTH domains regulate operons
involved in various processes, such as virulence (Trouillon
et al., 2020), acetate metabolism (Gerstmeir et al., 2004),
asparagine metabolism (Sun and Setlow, 1993) and propionyl
coenzyme A assimilation (Carter and Alber, 2015) (Figure 3D).
Overall, Xre homologs function as transcription factors that often
switch between regulatory roles in MGE and host gene
expression.

The incorporation of MGE-encoded transcription factors into
host regulatory networks likely extends beyond the Xre-family of
HTH domains. For example, Ribbon-Helix-Helix (RHH)
domains are common in MetJ/Arc-family transcription factors
as well as in TAs, suggesting that the bacterial transcription
factors of this family were originally derived from antitoxins
(Aravind et al., 2005). Given that TAs and other MGEs are
activated by various signals, such as DNA damage (Knowles
et al., 2017) or the presence of other MGE (McKitterick and Seed,
2018; LeGault et al., 2021), recruitment of MGE-encoded
transcription factors could be favorable for the host, enabling
it to respond to the same stressors (Benler and Koonin, 2020).

Exaptation of Mobile Genetic Elements
Genes for Functions in Cell Cycle Control,
Cell Division, Chromosome Partitioning
Both MGEs and prokaryotic cells employ partitioning systems
that ensure inheritance of DNA by the daughter cells upon binary
fission of a parental cell. Three well-characterized partitioning
systems all require an NTPase, a centromere-like site and a DNA-
binding adaptor protein that connects the two (Gerdes et al.,
2010). The paradigmatic ParABS system contains a P-loop
superfamily ATPase (ParA) and was originally characterized
for its role in plasmid segregation (Ogura and Hiraga, 1983).
ParA can also orchestrate the segregation of the chromosome on
which they reside (Gerdes et al., 2010). Phylogenetic analysis
largely separates plasmid and chromosomal parA genes, but in
some cases, ParA genes of plasmid origin are encoded on
chromosomes (Gerdes et al., 2000) and are necessary for their
segregation (Yamaichi et al., 2007). Furthermore, even within the
plasmid-dominated branch of ParA homologs, a subgroup exists
that is represented by the cell division proteins MinD and Mrp of
E. coli (Gerdes et al., 2000). Therefore, the parsimonious
evolutionary scenario appears to involve exaptation of ParA
from an MGE for the function in bacterial chromosomal DNA
segregation and cell division.

Beyond the capture of MGE-encoded partitioning enzymes,
the chromosomes of some prokaryotes themselves might
originate from MGEs. One prominent example is the second
chromosome of Vibrio cholerae, which is hypothesized to derive
from an ancestral plasmid (Heidelberg et al., 2000), given the
presence of multiple TA systems that are common addiction
modules carried by plasmids and other MGEs (Makarova et al.,
2009). Furthermore, as discussed above, the Par genes encoded by
chromosome II of V. cholerae are phylogenetically closely related

FIGURE 3 | Recruitment of transcription factors from MGEs to regulate host gene expression. One example is Ner, which contains an Xre-family HTH domain and
regulates the lysis-lysogeny switch of bacteriophage Mu (A). The amino acid sequence of Ner is 68% identical to the maltose operon-activating transcription factor SfsB,
indicating the recent recruitment of a Ner homolog for the regulation of host carbon metabolism (B). Xre domains are widespread in antitoxin proteins, such as HipB,
which autoregulate their own expression and the expression of other host genes (C). Antitoxins often disassociate from their TA operons and assume dedicated
roles as transcription factors (D).
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to plasmid Par genes, in contrast to those encoded on
chromosome I that appear to be genuine cellular genes
(Gerdes et al., 2000). Deletion of the par genes on
chromosome II results in its loss upon cell division and is
followed by cell death, which phenotypically resembles
programmed cell death caused by free toxins released from
their cognate antitoxins (Yamaichi et al., 2007). Together,
these observations suggest that V. cholerae chromosome II
evolved from a TA-carrying plasmid the maintenance of
which was further reinforced by the capture of essential,
housekeeping genes (McGeoch and Bell, 2008; Hülter et al.,
2017). In other bacteria with multiple chromosomes, the ParS
sites differ substantially between the primary and secondary
chromosomes, again suggesting distinct evolutionary histories,
with the secondary chromosomes evolving from plasmids (Livny
et al., 2007). Thus, conversion of plasmids into chromosomes
could be a common route of evolution in prokaryotes and seems
to represent a distinct form of exaptation that involves
“domestication” of an MGE replicon itself.

Mobile Genetic Elements Repurposed for
Intra- and Intercellular Trafficking,
Secretion and Vesicular Transport
Bacteriophage tails have been domesticated on multiple
independent occasions for the secretion and transfer of gene
products from bacterial cells and/or transfer to other cells. In

particular, some Uroviricota phages (e.g., T4) possess contractile
tails that puncture their host cell envelopes and serve as a conduit
for the delivery of encapsidated DNA and proteins into the
cytoplasm (Miller et al., 2003). Phage tails were
neofunctionalized to secrete proteins to the benefit of the cell
(Leiman et al., 2009; Lossi et al., 2013; Pell et al., 2009). Such
devices, known as type VI secretion systems, are widespread and
were likely captured from different phages on independent
occasions (Böck et al., 2017; Denise et al., 2020) (Figure 4).
The proteins transferred by type VI secretion systems are
commensurately diverse. but many function as toxins that
exert anti-bacterial or anti-eukaryotic activity (Cherrak et al.,
2019). One such toxin apparently evolved from the phage tail tip
protein (M. Iyer et al., 2021), whereas numerous other T6SS
toxins possess cognate antitoxins (Nolan et al., 2021), suggesting
that TA systems were recruited for inter-species competition.
Other proteins secreted via phage tails perform non-competitive
roles (Russell et al., 2014). For example, a phage tail-like structure
produced by Pseudomonas luteoviolacea delivers a cargo protein
that stimulates the metamorphic transition of marine tubeworm
larvae into juveniles (Ericson et al., 2019; Cavalcanti et al., 2020).
Overall, domesticated bacteriophage tails represent a major route
for the secretion of diverse proteins from prokaryotic cells and
their delivery to various targets.

Prokaryotes transfer proteins and DNA across cell envelopes
via an apparatus that was captured from conjugative mobile
genetic elements. The MGEs that self-transfer via conjugation

FIGURE 4 |Multiple contributions of distinct mobile genetic elements to intercellular transfer pathways and eukaryogenesis. Exaptations of toxin-antitoxins (TAs),
integrative and conjugative elements (ICE), bacterial retrotransposons and double-stranded DNA bacteriophages are diagrammed. An RNA-cleaving toxin apparently
was incorporated into the eukaryotic nonsense-mediated RNA decay system. The conjugation apparatus of ICE was exapted for the transfer of proteins (type 4 secretion
systems). Recruitment of the reverse transcriptase from bacterial retrotransposons yielded the key component of the eukaryotic spliceosome, Prp8 (accompanied
by inactivation of the reverse transcriptase), as well as telomerases which retain the activity. The structural module of double-stranded DNA bacteriophages was
repurposed for the delivery of proteins (type 6 secretion systems) or host DNA (GTAs) between cells. The replication and lysis modules donated multiple genes that play
diverse roles in both prokaryotes and eukaryotes.
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include plasmids and transposons. One of the key enzymes
involved in conjugation is an HUH-superfamily endonuclease
(Ilyina and Koonin, 1992), which nicks a DNA strand of theMGE
prior to transfer (Alvarez-Martinez and Christie, 2009). A second,
conserved enzyme is an FtsK/HerA-superfamily ATPase that
pumps DNA bound to the endonuclease through mating
bridges (Iyer et al., 2004). Phylogenomic analysis of the
conserved ATPase shows that conjugation systems of MGEs
repeatedly lose the endonuclease and thus can no longer
mediate self-transfer (Guglielmini et al., 2012). These non-
autonomous MGEs mediate non-conjugation-related secretion
of protein and DNA (Guglielmini et al., 2012). By coopting the
conjugative machinery from MGEs (Figure 4), prokaryotes
opened up another route for the transfer of macromolecules
out of the cell.

Another route by which prokaryotes transfer DNA is
through repurposed bacteriophage virions. Highly degraded
and fragmented phage genomes integrated in the genomes of
many bacteria package host DNA, rather than the prophage
DNA, into mini-phage virions (Bárdy et al., 2020; Esterman
et al., 2021; Kogay et al., 2019; Lang et al., 2012; Shakya et al.,
2017) (Figure 4). Because these mini-phage particles lyse the
cell from within and transfer the packaged DNA to a recipient
host, they are known as Gene Transfer Agents (GTA), where
the transfer of DNA from the primary host cell is thought to
confer a selective advantage for the recipient cells and
ultimately for the population as a whole (Lang et al., 2012).
Thus, the GTAs are domesticated, defective phages that have
been exapted to serve as dedicated vehicles for DNA transfer
within microbial populations. A notable, related system are the
pirate phages, such as Staphylococcus aureus pathogenicity
islands (SaPis). The SaPis and other pirate phages spread by
hijacking the particles of a superinfecting phage (Novick and
Ram, 2017; Novick, 2019). However, the SaPi particles are
harmless to the host bacterium because they have no
capacity to reproduce via the lytic cycle. In this process, the
pirate phage both spreads its genome and protects the host
population from killing by the pirated phage.

Besides mediating intercellular transfer of macromolecules,
capsids of dsDNA phages might have been enlisted for the
intracellular trafficking and compartmentalization of proteins.
All tailed dsDNA bacteriophages and archaeal viruses (virus
realm Duplodnaviria) encase their genomes within icosahedral
capsid made of the HK97-fold major capsid protein (Koonin
et al., 2020). Shells built from HK97-fold proteins with
significant similarity to phage capsid proteins are encoded by
standalone genes in numerous bacterial and archaeal genomes,
where they form icosahedral particles known as encapsulins,
which sequester diverse cargo proteins (Fontana et al., 2014;
Giessen and Silver, 2017; Twarock and Luque, 2019; Nichols
et al., 2021). Although the specific evolutionary relationships
between encapsulins and phage capsids remain to be elucidated,
a plausible evolutionary scenario is that encapsulins were
domesticated from double-stranded DNA viruses on one or
more occasions (Krupovic and Koonin, 2017) (Figure 4),
providing prokaryotes with a means to sequester reactants
into a nanocompartment.

Genes captured from bacteriophages contribute to the
formation of bacterial biofilms, vesicles and spores. The
proteins encoded in the phage lysis gene cassettes permeabilize
cytoplasmic membranes and enzymatically degrade host cell
peptidoglycan from within, releasing progeny viral particles for
subsequent infections (Cahill and Young, 2019). Programmed
lysis by phage lytic genes releases the macromolecular
components of the cell, in particular DNA, a principal
constituent of biofilm matrices. Biofilm matrix formation
mediated by the lysis cassette of a domesticated bacteriophage
has been observed in Pseudomonas aeruginosa (Heussler et al.,
2015). In Bacillus subtilis, phage lysis cassettes insteadmediate the
formation of membrane vesicles (Toyofuku et al., 2017) or spores
(Real et al., 2005). In Caulobacterales, a phage lytic enzyme was
coopted as a key gene required for cellular morphological
development (Randich et al., 2019). These examples highlight
the utility of phage lysis cassettes for cellular wall remodeling or
destruction of individual cells within larger populations, resulting
in population level benefits.

Multiple Contributions of Prokaryotic
Mobile Genetic Elements to
Eukaryogenesis
Apart from their diverse input to the evolution of various
functional systems in bacteria and archaea, prokaryotic MGE
made major contributions to the origin of eukaryotes, partly,
through the mitochondrial endosymbiont. Here we can give only
a brief account of these recruitments of MGE genes, but leaving
them out would fail to give justice to the evolutionary role of these
MGE. Most bacteriophages encode polymerases that replicate
and transcribe their genetic information, and on at least one
occasion, such polymerases displaced the functionally analogous
bacterial polymerases during eukaryogenesis. Strikingly, three
enzymes that are encoded in eukaryotic nuclear genomes and
involved in the replication and transcription of mitochondrial
genomes have readily traceable phage ancestry. Specifically, the
mitochondrial DNA-dependent DNA polymerase (DNAP) of the
A family, DnaB-DnaG-like helicase-primase and single-subunit
DNA-directed RNA polymerase (RNAP) are all more closely
related to the corresponding polymerases of T7/T3-like phages
than to any bacterial polymerases (Filée et al., 2002) (Figure 4).
The case of the RNAP is particularly notable because the phage
single subunit RNAP, originally apparently derived from a
bacterial A family DNAP (Cheetham and Steitz, 2000),
became the enzyme responsible for the expression of the
mitochondrial genome, displacing the multisubunit RNAP that
is universal in all cellular life forms. Most likely, all these enzymes
were exapted from a prophage that was integrated in the genome
of the ancestral α-proteobacterium that gave rise to mitochondria
as a result of endosymbiosis (Filée and Forterre, 2005; Shutt and
Gray, 2006). The non-orthologous displacement of the RNAP
occurred early in the evolution of the mitochondria, but probably,
many millions of years post-endosymbiosis because the
mitochondrial genomes of at least some jacobids, such as
Reclinomonas americana, encode a typical bacterial
multisubunit RNAP (Burger et al., 2013; Gray et al., 2020).
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Many components of eukaryotic innate immune and damage
control systems as well as repair and splicing machineries seem to
derive from prokaryotic MGEs. Such connections include the
apparent origin of components of the eukaryotic nonsense-
mediated mRNA decay system from bacterial TA modules
(Anantharaman and Aravind, 2003) and the animal apoptosis
proteins Bax/Bak from phage lysis cassettes (Saier et al., 2015). A
component of the eukaryotic RNAi machinery, the QDE1 family
RNA-dependent RNA polymerase, appears to have evolved from
a distinct bacteriophage RNAP (Drobysheva et al., 2021; Iyer
et al., 2003; Shabalina and Koonin, 2008) (Figure 4). Two
proteins that play central roles in homologous recombination
and NHEJ (double-strand break repair) in eukaryotes, Rad52 and
Ku, respectively, appear to have originated in bacteriophages
(Aravind and Koonin, 2001; di Fagagna et al., 2003). Both the
telomerase that restores chromosomal termini and the key
protein of the eukaryotic spliceosome were captured from a
reverse-transcriptase encoded by group II introns, that is,
bacterial retrotransposons (Dlakić and Mushegian, 2011;
Gladyshev and Arkhipova, 2011; Lambowitz et al., 2015)
(Figure 4). The relationships between eukaryotic proteins and
their ancestors from prokaryotic MGE are often subtle and hard
to detect, so the full extent of the contribution of these elements to
eukaryogenesis awaits a systematic investigation with the most
powerful available tools for protein sequence and structure
comparison.

CONCLUDING REMARKS

The broad repertoire of exaptations surveyed here extends to
numerous functional systems, abundantly illustrating the
evolutionary entanglement between MGEs and their
prokaryote hosts. Nevertheless, the overarching principle
inferred from the study of defensive exaptations is readily
applicable. That is, molecular components evolved by MGEs
are expediently recruited for mechanistically similar but
biologically distinct roles in the cell owing to their
fundamental biochemical utility. This principle has been
captured in the “guns for hire” metaphor (Koonin et al.,
2019), which emphasizes the perennial shuttling of genes, gene
modules and whole replicons between MGE and their hosts. The
most prominent contribution of prokaryotic MGE is to the
molecular componentry of functional systems that are
involved in various biological conflicts, in particular, defense
against viruses and other MGEs. To wit, the complex
molecular machinery of CRISPR, the prokaryotic adaptive
immune system, apparently was assembled primarily if not

completely from components exapted from MGE. Moreover,
restriction-modification and TA modules, the most common
innate immunity systems in prokaryotes, themselves can be
considered a distinct variety of MGE that, while lacking their
own replicative machinery, attain extensive horizontal mobility
by routinely piggy-backing on plasmids and viruses (Kobayashi,
2001; Fraikin et al., 2020). This evolutionary entanglement of
MGE and defense systems appears to be far from accidental but
rather reflects a deep unifying feature. Indeed, both types of
genetic elements are generally deleterious, stronger in the case of
MGE and weaker in the case of defense systems (that are
beneficial only during the brief periods of exposure to the
respective MGEs), to the organisms in which they reside
(Iranzo et al., 2017). Therefore, these elements evolved and
exploit various mechanisms of survival that include horizontal
mobility, causing host addiction, and exaptation for roles
beneficial to the host.

It has been noted that replicators form a continuous
spectrum with regard to the degree of their replicative
autonomy and cooperativity (Jalasvuori and Koonin, 2015;
Koonin et al., 2019). The numerous cases of exaptation and
shuttling of components between MGE and hosts as well as
among different varieties of MGE show that this continuity
also encompasses uninterrupted flow of genetic material
across the spectrum. Crucially, the coevolution of MGEs
and their cellular hosts cannot be reduced to arms race, but
rather involves the entire gamut of cooperation, inter-MGE
competition, and exaptation. Exaptation of MGE and their
components pervades the history of most if not all cellular
organisms, and hardly any MGE seem to evade exaptation of
at least some of their components. Moreover, these
exaptations substantially contributed to evolutionary
transitions, such as the origin of eukaryotes.
Comprehensive investigation of the flow of genetic
information between MGE and cellular life forms should
provide major insight into the evolution of life.
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