
RESEARCH ARTICLE

Selenium deficiency-induced alterations in ion

profiles in chicken muscle

Haidong Yao1, Xia Zhao1, Ruifeng Fan1, Hamid Sattar1, Jinxin Zhao1, Wenchao Zhao1,

Ziwei Zhang1, Yufeng Li2*, Shiwen Xu1*

1 Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China, 2 CAS Key

Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Center for Environmental Safety

and Health, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

* shiwenxu@neau.edu.cn (SX); liyf@ihep.ac.cn (YL)

Abstract

Ion homeostasis plays important roles in development of metabolic diseases. In the present

study, we examined the contents and distributions of 25 ions in chicken muscles following

treatment with selenium (Se) deficiency for 25 days. The results revealed that in chicken mus-

cles, the top ranked microelements were silicon (Si), iron (Fe), zinc (Zn), aluminum (Al), cop-

per (Cu) and boron (B), showing low contents that varied from 292.89 ppb to 100.27 ppm.

After Se deficiency treatment, essential microelements [Cu, chromium (Cr), vanadium (V) and

manganese (Mn)], and toxic microelements [cadmium (Cd) and mercury (Hg)] became more

concentrated (P < 0.05). Elements distribution images showed generalized accumulation of

barium (Ba), cobalt (Co), Cu, Fe and V, while Cr, Mn, and Zn showed pin point accumulations

in muscle sections. Thus, the ion profiles were generally influenced by Se deficiency, which

suggested a possible role of Se deficiency in muscle dysfunctions caused by these altered ion

profiles.

1. Introduction

Selenium (Se) is known to play crucial roles in many aspects of human and animal health [1,

2]. Se is an essential component of different types of enzymes and antioxidants, such as gluta-

thione peroxidase, and other selenoproteins [3, 4]. Numerous previous studies have shown

that Se involves in the process of muscle metabolism [4], redox regulation [5], neurobiology

process [6], and regulation of selenoproteins [7, 8]. However, Se deficiency has been associated

with cardiac and skeletal muscle diseases [9] such as white muscle disease in sheep, Keshan dis-

ease in human [10]. Se deficiency either induce typical clinical and pathological changes, or

cause various pathological responses at molecular levels [4]. In chicken, Se deficiency induces

the occurrence of exudative diathesis, and nutritional muscular dystrophy, so muscle is one

important target organ of Se deficiency [7]. Oxidative and inflammatory injury and apoptosis

are reported to involve in Se deficiency induced injury [11, 12], but the possible mechanism

still remains elusive.

Ion homeostasis plays important roles in the global epidemic trend of nutritional and meta-

bolic diseases and toxonosis in human and animals [13]. The disordered iron (Fe), calcium
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(Ca), magnesium (Mg) and zinc (Zn) are linked with hyperglycemia and type 2 diabetes [13],

and cardiovascular disease [14]. In addition, toxic elements (aluminium (Al), arsenic (As),

cadmium (Cd), lead (Pb), mercury (Hg), etc.) accumulation has also been linked to serious dis-

eases and developmental disorders, such as, reproductive impairment, immune-system dis-

eases, neurological disorders as well as carcinogenic effects [15]. These reports show that ion

contents have close relation with the development of types of diseases, so it is worth doing to

understand the trait of ion profiles in a specific disease or injury.

Se could interact with other toxic ions in plants and animals [16–18], indicating that Se

may serve as an antagonist to counteract the toxicity of metals. In contrary, Se deficiency also

influence the levels of Cd in rat [19], Hg in fish [20], and Ca in chicken muscle [21]. However,

it is still unclear about the initial molecular mechanism of this type of disorder. In chicken,

trace elements distribution and concentration have already been described in different devel-

opment stages of chicken [22]. However, whether the ion homeostasis is influenced by Se defi-

ciency is unclear. Therefore, we conducted the present study to determine: 1) the ion profiles

following the treatment of Se deficiency; 2) detect the relationship between different ions and

analyze the role of ions in the process of Se deficiency.

2. Material and methods

2.1 Birds and diets

All procedures used in this study were approved by the Institutional Animal Care and Use

Committee of Northeast Agricultural University [8]. 180 male broiler chickens (1 day old;

Weiwei Co. Ltd., Harbin, China) were randomly divided into two groups (90 chickens per

group). Over the entire experimental period (25 days), the chickens were allowed ad labium

consumption of feed and water. The chickens were maintained either on a Se-deficient diet

(-Se group) containing 0.008 mg Se/kg or on Se-adequate diet (supplemented with sodium sel-

enite) (Control group) containing 0.2 mg Se/kg. Each group, 90 chickens were separated into 6

pens (15 chickens each pen). Chickens were euthanized at 25 days old (when they get sick and

showed typical clinical symptom: depression and cannot move normally in the cage, exudative

diathesis under skin, bleeding under skin and muscle). Following euthanasia with sodium pen-

tobarbital, the pectoral muscles were removed. The tissues were rinsed with ice-cold sterile de-

ionized water, frozen immediately in liquid nitrogen, and stored at -80˚C until required. Some

parts of muscle tissue specimens were rapidly fixed in 10% neutral-buffered formalin solution

for elemental imaging.

2.2 Mineral element analysis

The mineral elements, lithium (Li), boron (B), sodium (Na), Mg, aluminum (Al), silicium (Si),

potassium (K), vanadium (V), chromium (Cr), Mn, Fe, cobalt (Co), nickel (Ni), copper (Cu),

Zn, arsenic (As), Se, molybdenum (Mo), Cd, stannum (Sn), stibium (Sb), barium (Ba), Hg,

thallium (Tl) and Pb, in pectoral muscles were determined using inductively coupled plasma

mass spectrometry ICP-MS (ThermoiCAPQ, American). The instrumental parameters of the

equipment used are summarized in S1 Table.

The mineral element concentrations were determined in acid digested samples according

to the method described by [22]. One gram of each sample was digested with 5 mL nitric

acid (HNO3) (65%) and 2 mL H2O2 (30%) in microwave digestion system and diluted into

10 mL with de-ionized water. A blank digest was carried out in the same way. Digestion

conditions for microwave system were applied as 3 min for 1800 W at 100 oC, 10 min for

1800 W at 150 oC and 45 min for 1800 W at 180 oC. The digested samples were filled with

ultrapure water to 10 mL before analysis by ICP-MS.

Se deficiency influences ion profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0184186 September 6, 2017 2 / 11

decision to publish, or preparation of the

manuscript.

Competing interests: The authors declare that

there are no conflicts of interest.

https://doi.org/10.1371/journal.pone.0184186


2.3 Elemental imaging in muscle tissues with SRμ-XRF

The SRμ-XRF technique is a powerful tool for non-destructive elemental analysis with excep-

tional sensitivity. To reveal the influence of Se deficiency on muscles, 2D elemental distribu-

tion of the microelements, were imaged using synchrotron radiation micro X-ray fluorescence

(SRμ-XRF). Muscle tissue specimens were rapidly fixed in 10% neutral-buffered formalin solu-

tion for at least 24 h. The fixed specimens were dehydrated through a graded series of ethanol

(70%, 80%, 95%, 95%, 100%, and 100%) for 1–2 h at each concentration, cleared in xylene for

15 min, embedded in paraffin, and then cut into 5-mm-thick sections. The slices were fixed

onto 1 mm-thick glass slide, and then analyzed by SRμ-XRF according to the method by Li

[23].

Elemental distribution was imaged using SRμ-XRF and analyzed according to [18]. The

storage ring ran at an energy of 3.5 GeV with a current intensity of 200–300 mA. An excitation

energy of 13 keV was chosen to excite the elements. The SR beamline was monochromatized

with a Si (111) double-crystal monochromator and focused to 5 × 5 μm2 with a K-B system for

analysis of the muscle slices. The samples were fixed on a moving platform and moved along

the horizontal × vertical direction using stepped motors and the pixel step size was set to 5 μm

for muscle slices scanning, with a dwell time of 2 seconds.

2.4 Statistical analysis

Statistical analysis of the obtained data was performed using Statistical Product and Service

Solutions (SPSS) for Windows (version 13, SPSS Inc., Chicago, IL). The differences between

the Se deficiency group and the control group were assessed by using paired t-test. The data

were expressed as the mean ± standard deviation. Differences were considered to be significant

at P< 0.05. In addition, principal component analysis (PCA) was used to define the most

important parameters that could be used as key factors for individual variations.

The fluorescence intensities of the elements were recorded and analyzed using element

detector combined with a multiple channel analyzer. The counts of the elements were normal-

ized to that of the I0 to correct the effect of the SR beam flux variation on the signal intensity,

and then imaged using OriginPro. 9.0 software. The normalized X-ray fluorescence intensities

are scaled from blue (minimum) to red (maximum). These images visually demonstrate the

distributions and accumulations of microelements.

3. Results

3.1 Effect of Se deficiency on macroelements in chicken muscle

In the present study, we examined macroelements including Na, Mg, and K in chicken muscle

by ICP-MS. The results (Fig 1A) showed that the contents of K were the highest followed by

Na and Mg. Following Se deficiency treatment, the contents of the macroelements were not

significantly influenced (P> 0.05). Similar to the results detected by ICP-MS, the elements dis-

tribution (Fig 2) examined by SRμ-XRF also showed that the distribution of K, Na and Mg

were visually not influenced. In addition, we found that Se deficiency decreased Ca content in

chicken muscle in our previous study [21]. The results showed that the effect of Se deficiency

on the levels of macroelements was not significant.

3.2 Effect of Se deficiency on essential microelements in chicken muscle

We examined the contents of essential microelements such as B, Ba, Co, Cr, Cu, Fe, Mn, Mo,

Ni, Se, Si, Sb, Tl, V and Zn by ICP-MS. The results (Fig 1B) showed that among these detected

microelements, Cr, Cu, Mn, and V were significantly increased by Se deficiency, but Se was
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decreased (P < 0.05). The distribution of essential microelements was examined by SRμ-XRF

(Fig 2). However, only Ba, Co, Cr, Cu, Fe, Mn, Ni, Se, V and Zn were detected in the present

study. The distribution images showed that Ba, Co, Cu, Fe and V were generally accumulated

in Se-deficient muscle sections, but Cr, Mn, and Zn were focused on small points in Se-defi-

cient muscle sections, however, the distributions of Se and Ni were not visually significant.

3.3 Effect of Se deficiency on toxic microelements in chicken muscle

In the present study, we detected 7 toxic microelements, Al, As, Cd, Hg, Li, Pb and Sn, using

ICP-MS. The results showed that Se deficiency significantly increased the contents of Cd and

Hg (P< 0.05) (Fig 1C), but not other elements (P > 0.05). The images of toxic microelements

detected by SRμ-XRF (Fig 2) showed that Al, As and Pb were visually accumulated in muscle

sections. Although the difference was not significant in the distribution images of Cd and Hg,

the signal was also higher in the Se deficiency groups than the control. Furthermore the

Fig 1. The ion profiles in chicken muscles detected by ICP-MS. A. the contents of macroelements; B. the

contents of essential microelements; C. the contents of toxic microelements.* Significant difference from the

corresponding control (P < 0.05). The data are expressed as the means ± SD, n = 6.

https://doi.org/10.1371/journal.pone.0184186.g001
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distributions of these microelements were generally consistent with the elements contents

detected by ICP-MS.

3.4 Principal component analysis

In the present study, we further analyzed the interaction between these elements by using PCA

(Table 1). All parameters were distinguished on ordination plots corresponding to the first

and second principal components (34.48, and 55.74%, respectively) (Fig 3). The correlation

between different ions was confirmed and quantified according to Pearson correlation test.

The results showed both positive and negative correlations between different ions. B, Mg, Si,

As and Sb showed positive correlation with Se, however other elements showed negative corre-

lations. In addition, Na, Al, and Sb showed positive correlation with component 2, but nega-

tive correlation with component 1, which was similar to Se. Li, Si, Cr, Fe, Zn, As, Cd, Ba, Hg

and Pb showed positive correlation with both component 1 and 2. The results showed that the

correlation between ions in chicken muscle was complex, and in response to Se deficiency

these elements could be divided into several groups.

Fig 2. The distributions of ion profiles in chicken muscles. 5-mm-thick muscles sections were detected

by SRμ-XRF.

https://doi.org/10.1371/journal.pone.0184186.g002

Table 1. Rotated component matrixa.

Components Li B Na Mg Al Si K V Cr Mn Fe Co Ni Cu Zn As Se Mo Cd Sn Sb Ba Hg Tl Pb

Component 1 0.03 0.04 -0.01 0.04 -0.03 0.09 0.06 0.12 0.12 0.11 0.06 0.04 0.09 0.08 0.07 0.01 -0.10 0.03 0.11 0.00 -0.01 0.12 0.08 -0.01 0.06

Component 2 0.00 -0.04 0.09 -0.07 0.06 0.15 -0.10 0.02 0.01 -0.02 0.15 -0.12 -0.03 -0.08 0.15 0.10 0.01 -0.13 0.04 -0.05 0.08 0.09 0.01 -0.08 0.09

a Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 3 iterations.

https://doi.org/10.1371/journal.pone.0184186.t001
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4. Discussion

Ions are involve in broad range of important biological processes, and are closely related to

human and animal health. In the present study, we detected 25 ions including macroelements

(K, Na, Mg) and microelements (Li, B, Al, Si, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd,

Sn, Sb, Ba, Hg, Tl and Pb) using ICP-MS and SRμ-XRF technologies in chicken muscles in a

state of Se deficiency. In chicken muscles, V, Cr, Mn, Cu, Cd, and Hg were significantly influ-

enced by Se deficiency.

Levels of trace elements in chicken products and various parts of chicken samples have

been widely reported in previously [22, 24]. Levels of trace elements contents in chicken sam-

ples are different in different chicken tissues, vary from the animal age [25], and involved in or

related to the chicken health or the process of disease development [26, 27]. In the present

study, the samples were collected from 25 days old chicken exhibiting typical signs of exudative

diathesis. In this development stage, element distribution of 97.77% for macroelements, 2.20%

for essential microelements and 0.031% for toxic microelements was observed. Among the

detected macroelements, K (4343.77 ppm) was the top rank ion followed by Na (433.62 ppm),

and Mg (353.48 ppm). Among the microelements, the essential microelement possessed

98.60%, but the potential toxic microelements only possessed 1.4%. In the present study, the

top six microelements (S2 Table) were Si (100265.4 ppb), Fe (7307.22 ppb), Zn (6392.32 ppb),

Al (1540.75 ppb), Cu (597.92 ppb), and B (292.89 ppb). This microelement distribution was

significantly different from 90 day old chicken [27]. The top ranked microelement were Fe

(183227 ppb), Si (131358 ppb), Zn (33968 ppb), Cu (5589 ppb), Mn (4890 ppb), Al (880 ppb),

Se (706 ppb), and Pb (387 ppb) in the liver of 90 days old chicken, which are collectively higher

than our observations [27]. In addition, Se levels (85.46 ppb) in chicken from control group

was also lower than most of the microelements. Clinical symptom observed from our

Fig 3. Ordination diagram of the principal component analysis (PCA) of parameters measured in

chicken muscles.

https://doi.org/10.1371/journal.pone.0184186.g003
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established models (data not shown) showed that chicken were more prone to get exudative

diathesis between age of 20 days and 35 days (all birds showed typical symptoms of exudative

diathesis in the present study), however, less or no chicken showed typical exudative diathesis

or muscular dysfunction when chicken is above 50 days old. Moreover, chicken within 15 to

35 days old showed lower glutathione peroxidase (Gpx) activity but higher oxidative injury

marker, MDA, and apoptosis genes, Bax and Caspase 3 than chicken from 55 days after Se

deficiency treatment [7]. Except for the diet and age influencing factors, it may indicate the

need and importance of sufficient microelements in chicken at this particular age, we also

hypothesize that chicken at this stage (20–35 days old) are more sensitive to Se deficiency due

to the lower body Se levels and selenoprotein expression and activity [7]. However, except the

clinical observation more analysis such as specific genes expression or enzyme synthesis are

needed to support our hypothesis.

In the present study, we analyzed 25 ions in Se deficiency muscles by ICP-MS and analyzed

the elements distributions by SRμ-XRF. The results showed that the contents of V, Cr, Mn,

Cu, Cd, and Hg were significantly increased; however, other elements were not influenced.

This response indicated that there may be antagonistic effect between Se and these elements,

which was consistent with previous reports in some organs or species. Se deficiency elevated

Cu content without influencing Zn and Fe levels in rat liver [19], increased Zn and Cu levels in

testis [28]. However, there were also some different voice about the effect of Se and these ele-

ments, in which Se deficiency did not influence the Hg concentration in fetal brain of mice

[29], Se deficiency decreased Zn content but had no effect on Cu, Fe and Mn in mice plasma,

and decreased Cu and Mn and increased Zn in kidney [28]. Thus, types of elements preserve

altered responses to various levels of Se, also showed different responses in different tissues.

Therefore, Se plays an important role in regulating ions profile in different organism or tissues.

To confirm and identify the effect of Se deficiency on elements, we further detected the ele-

ments distribution in muscles sections. However, due to low sensitivity and low traces, some

elements such as Se was not detected by SRμ-XRF technology. These findings support the idea

that Se deficiency influences the elements distribution in muscle sections. However, the chang-

ing distribution images of elements showed different patterns. Ba, Co, Cu, Fe and V showed

generalized accumulation while Cr, Mn, and Zn showed accumulation at various small points

in muscles sections. We do not know why this different distribution happened for different

elements, but in our previous study we found that Se deficiency decreased Ca levels in chicken

muscles, and induced generally reduction of Ca in muscles section detected by SRμ-XRF

method. This generally reduction of Ca in muscle was closely related to the expression levels of

Ca channels and selenoproteins, and redox state of muscles [7]. In addition, Fe, Mn, Cu, and

Zn are important components of enzyme, such as catalase (CATs), Cu, Zn-superoxide dismut-

ase (SOD), and Mn-SOD, and the levels of these elements and the activities of these enzymes

were also influenced by Se in different rat tissues, thus the levels of the elements also related to

the status of redox, and the activities of these enzymes [28]. So the interaction between Se and

other elements is not just synergistic or antagonistic effect, there are also some complicated

modulating effect, such as gene modulation, transportation, Se compound forming, etc [18,

28]. So the different distribution patterns of Ba, Co, Cu, Fe, Cr, Mn, and Zn in muscles section

may be correlated with these possible mechanisms. Complex correlation between Se and other

elements were also observed through PCA. Se preserved positive correlation with B, Mg, Si, As

and Sb, but negative correlations with other elements. In response to Se deficiency, these ele-

ments could be divided into several component groups and showed different correlation each

other. Although there are some different microelements correlation between chicken muscles

and rat liver [19], testis [28], mice brain [29], plasma, and kidney [28], and chicken liver [27].
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These results showed the special microelements interaction in chicken muscles, and the differ-

ence between species and organs.

Among these affected ions, Cr, Cu, and Mn are the essential microelement for both animals

and humans. Cu and Mn are the essential component of key enzymes such as glutamine syn-

thetase, arginase, phosphoenolpyruvate decarboxylase, and mitochondrial superoxide dismut-

ase [30–32]. Imbalance in levels of Cr, Cu and Mn influence the activity of types of enzymes

and the normal biological function of organisms. Previous studies showed that Cu and Cr

were involved in the induction or defense of oxidative stress [33]. Moreover, Cu, Mn and Cr

were related to types of diseases such as neurological disorders, diabetes, cardiovascular dis-

ease, disturbed glucose tolerance, and fasting hyperglycemia [32, 33]. In our previous study,

we observed that Se deficiency induced the oxidative stress, influenced the activities of antioxi-

dative enzymes such as Gpx, and SOD in chicken muscles [7]. Therefore, combining the ion

profiles and the related molecular changes may help us focus on some specific pathway and

ion in Se deficiency disease. This study further indicates the important role of ion profile dur-

ing studying some disease in chicken.

In the present study, Se deficiency also significantly induced higher levels of microelements

that belong to potential toxic elements such as Cd, and Hg. As indicated in previous studies, Se

may serve as antagonist counteracting the toxicity of toxic metals such as Hg, Cd, As, Ag, Pb,

and Cu in plants and animals [16, 34–36]. Se also protects against Cd in chicken cells or tissues

as reported in our previous studies [37, 38]. Therefore, the data in the present study well sup-

ports the results of these reports. The accumulation of these toxic microelements such as Cd,

Pb, Mn, Hg, etc, may induce types of injuries in different tissues, such as the kidney dysfunc-

tion, cardiovascular disease, and muscular weakness [22, 39]. However, the concentration of

Cd and Hg in the Se deficiency chicken muscles is just 0.52 ppb and 1.11 ppb that is much

lower than the toxic concentration [40–43]. So the abnormal increase of the toxic element may

not contribute to the muscular injuries induced by Se deficiency. However, the increased con-

tents of these ions and accumulation in muscle sections showed that the Se deficiency may

influence the transportation or discharge of these microelements as indicated in previous stud-

ies. This finding may provide some idea to further investigate the toxic or non-toxic mecha-

nisms of these elements, as observed previously [17, 18, 36].

In summary, in the present study we analyzed 25 ions profile in chicken muscles. The ions

profile in Se deficiency chicken showed its characteristic that has a different microelement lev-

els and especially Se level. The lower Se levels combining with lower expression of selenopro-

tein may explain why chicken in this stage was more sensitive to Se deficiency. Se deficiency

affected the contents of essential microelements (Cu, Cr, V and Mn), and potential toxic ele-

ments (Cd and Hg) in chicken muscles. In addition, difference in visual distribution of ions

was generally consistent with the contents detected by ICP-MS, suggesting that the transporta-

tion or discharge of these microelements may be different in response to Se deficiency. PCA

analysis also suggests the existence of complex correlation between different elements. Based

on these findings It was elicited that Se may plays important and complex role in regulating

ion profiles in chicken muscles.
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