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Abstract 
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant 
bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling 
and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path 
in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are 
responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, research-
ers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial 
adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation 
via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including 
physico-chemical modification and application of cold plasma technologies, were also presented.
 
Key points  
•  Factors surrounding pathogenic bacteria influence biofilm development.
• Controlling bacterial adhesion prevents biofilm formation.
• Materials can be coated via cold plasma to inhibit bacterial adhesion.

Keywords Biofilm · Cold plasma · Antiadhesive · Surface treatment

Introduction

The presence and growth of bacterial species on many natural 
and synthetic surfaces leading to the formation of biofilms 
are a major problem affecting different fields, especially food 
and medical sectors (Abdallah et al. 2014; Ciofu et al. 2015; 
Galié et al. 2018). As a matter of fact, the biofilm formation 
is a complex process characterized by a succession of steps 
already described by different works (Stoodley et al. 2002; 
Donlan and Costerton 2002; Abdallah et al. 2014). In the bio-
film formation system, the bacteria switch from a free floating 

(Planktonic) state where they function as individuals, to a ses-
sile state where they function as communities. Adsorption, 
or reversible adhesion of bacteria, is the first and essential 
step in biofilm formation on abiotic surfaces. The adherent 
bacteria in this step are not all initiated to be in the differen-
tiation mechanism leading to biofilm formation, and many 
can actually escape from the surface and return to the plank-
tonic lifestyle (Stoodley et al. 2002; Khelissa et al. 2019). This 
phase is reversible and promoted by numerous non-covalent 
interactions. Indeed, when microorganisms reach a certain 
distance from the surface (between 2 and 50 nm), bacterial 
adhesion is induced, by non-covalent forces, such as Van der 
Waals, acid–base, and electrostatic interactions. The result-
ing force of these interactions allows bacterial adsorption on 
the support. Moreover, environmental conditions surround-
ing the bacteria, like temperature, pH, and organic matter 
may influence the bacterial and surface properties leading 
to a modification in the bacterial adhesion behavior. At this 
stage, exopolymeric substances (EPS) are secreted by bacte-
ria that become irreversibly attached to the surface. Adhered 
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bacteria multiply and form microcolonies while secreting an 
extracellular matrix containing a mixture of polysaccharides, 
nucleic acids, proteins, and lipids. Then, the biofilm matura-
tion process leads to development of a mature and complex 
biofilm. The final step of a biofilm lifecycle is the detachment 
or dispersion of bacterial cells from the biofilm and colonizing 
new surfaces. This step has a key role in the dissemination of 
bacteria and the spread of infections (Fig. 1).

These persistent pathogenic structures are responsible for 
a variety of nosocomial infections and foodborne illnesses 
(Abdallah et al. 2014; Veerachamy et al. 2014). Moreover, 
the plans of disinfections carried out by hospitals and indus-
trials do not remove completely the biofilms formed on the 
equipment, especially the resistant ones (Kostakioti et al. 
2013). These plans aiming to restrain the biofilm formation 
have a negative environmental footprint and an important 
economic impact on these fields (Pace et al. 2006). Indeed, 
it is of significant relevance to find solutions to get rid of 
bacterial contamination and biofilm formation. The devel-
opment of surfaces that limit the formation of biofilms is 
an aim that researchers and industrials have been trying to 
reach. Several investigations have been carried out to elabo-
rate effective, harmless, and stable antiadhesive and antimi-
crobial coatings in order to prevent biofilm structuration. In 
the passive approach aiming to prevent biofilm formation, 
surfaces have an antiadhesive property towards pathogenic 
microorganisms. In this approach, the surface’s chemical 
and physical aspect modification is investigated. The resist-
ance to bacterial adhesion is owed, on those films, to the 
interactions between bacteria and modified surface. The 
surface properties are adjusted to inhibit bacterial adhesion 

mechanisms. Indeed, physical properties like surface wetta-
bility, roughness, and surface charge are adapted according 
to the desired characteristics (Rodrigues 2011; Guo et al. 
2016). One of the possible ways to develop these modified 
surfaces is cold plasma treatments (Saulou et al. 2012).

Cold plasma treatment is a valuable coating technol-
ogy since it imparts a homogenous and stable surface 
modification. Several studies have proven the stability of 
plasma-deposited coatings such as organosilicon, oxides, or 
fluorocarbon films. Cold plasma also permits researchers 
to tailor the functionalization of the surface according to 
the properties needed. Regarding the prevention of biofilm 
formation, surfaces elaborated by plasma can act passively 
with antiadhesive character towards bacteria, and actively 
with antimicrobial properties depending on the molecules 
and parameters used in the coating elaboration (Chan 1993; 
Saulou et al. 2012). In this review, the plasma technology 
for coating elaboration is highlighted. A special attention is 
given to the developed surfaces with antiadhesive property 
for its importance as a first step in preventing biofilm forma-
tion. Indeed, this research presents the cold plasma coating 
strategies, for biofilm formation prevention, as a passive 
approach.

Factors influencing the bacterial adhesion 
to a substrate

The factors influencing the initial adhesion of bacteria to 
substrates involves multiple parameters. The adhesion fac-
tors are linked to the microorganism, the target surface, and 

Fig. 1  Biofilm lifecycle. Step 
(1) Adsorption or reversible 
attachment of bacteria to the 
surface. Step (2) Irreversible 
adhesion due to the production 
of eps. Step (3) Microcolony 
formation. Step (4) Maturation 
of biofilm structure. Step (5) 
Dispersion and detachment of 
bacteria from the biofilm to 
regain the planktonic stage or 
recontaminate other surfaces
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the surrounding environment (An and Friedman 1998). 
The relative impact of these characteristics depends on the 
microbial strain studied (Katsikogianni and Missirlis 2004). 
However, these factors must be carefully considered in order 
to develop effective strategies in the prevention of microbial 
colonization. The most significant factors influencing this 
adhesion were discussed hereafter and summarized in Fig. 2.

A solid surface is systematically covered with a layer of 
organic contamination because of the air pollution (Corn 
1961). After being cleaned, surfaces such as glass, plastics, 
or metallic materials are prone to re-contaminate them-
selves in order to acquire a thermodynamically stable state. 
During manufacturing processes, material surfaces might 
be contaminated by micro-particles. Since materials are 
frequently in contact with other material types, drugs, or 
foods during production processes (Bohinc et al. 2016). 
This contamination may affect the bacterial adhesion to 
the substrate. Indeed, the presence and accumulation of 
organic soil on surfaces affect its surface roughness and 
the bacterial adhesion behavior (James et al. 2017). A 
material adsorption with macromolecules like organic and 
inorganic compounds is called the “conditioning film.” 
Moreover, the surface modification by grafting molecules 
via multiple coating techniques, using classical chemistry 
or plasma technology, permits the elaboration of various 
coating types. All those reactions result in a significant 
modification of the physical and chemical characteristics of 
the support like its roughness, hydrophobicity, and charge. 

It influences positively or negatively microbial adhesion. In 
addition, when microorganisms are detached from a surface 
by mechanical stress, the constituents of their membrane 
might remain adhered to the surface and promote other 
microbial attachment (Donlan 2002; Lorite et al. 2011; 
Chouirfa et al. 2019).

The chemical type of surface encountered by the microor-
ganisms strongly influence the development of the biofilm, 
more specifically the first stage of bacterial adhesion. For 
example, Verheyen et al. (1993) showed that Staphylococ-
cus aureus adheres more preferentially to the metal 316L 
steel than to the polymeric surface poly(L-lactide) due to 
the differences in chemical composition and polarity of these 
surfaces. Moreover, a study by Alam and Balani (2017) 
investigated the adhesion force of Staphylococcus aureus on 
different biomaterial surfaces. The UHMWPE surface (ultra-
high molecular weight poly ethylene) showed a weak adhe-
sion force (~ 4 nN) whereas stainless steel showed strong 
adhesion force (~ 15 nN) owing to their surface roughness 
and surface energy.

Surface roughness is one of the most discussed param-
eters influencing the bacterial adhesion. Indeed, it seems that 
microbial adhesion can be impacted positively or negatively, 
depending on the bacterial size and on the surface topogra-
phy that includes several parameters like the width/depth 
of the “micro-cracks” and the presence of stripes. Thus, the 
presence of cracks and “Micro-cracks” increases the contact 
area and can promote adhesion mechanisms by protecting 

Fig. 2  Factors influencing bacterial adhesion on a substratum
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bacteria from hydrodynamic shear stress and chemical dis-
infection agents. In fact, a study by Dantas et al. (2016) ana-
lyzed the relationship between the bacterial adhesion and 
surface roughness of acrylic polymethyl methacrylate sub-
strates. This investigation showed that the increase in surface 
roughness of the samples was directly related to an increase 
in bacterial adhesion of Streptococcus sanguinis. On the 
same wave, Hage et al. (2021) studied a plasma-modified 
stainless steel by organosilicon monomer 1,1,3,3-tetrame-
thyldisiloxane mixed with oxygen, using a nitrogen flow 
microwave post-discharge plasma polymerization process. 
The influence of cold plasma parameters on coating charac-
teristics, coated surface structure, and attachment of Salmo-
nella Enteritidis cells was investigated. The results demon-
strated that the surface structure affected the rate of bacterial 
adhesion. Indeed, rough coatings did not repel Salmonella 
Enteritidis as the numbers of adhered cells on these surfaces 
ranged from 30 ± 4 to 65 ± 4 bacteria per microscopic field. 
However, the smoother coatings exhibited an anti-adhesive 
nature as the number of adhered cells was almost nil on these 
surfaces. In addition, Whitehead et al. (2005) showed that 
titanium surfaces, with holes of similar or larger size than 
those of the bacteria S. aureus (diameter ~ 0.5–1 µm) and 
Pseudomonas aeruginosa (diameter ~ 1–3 µm), as well as 
Candida albicans yeast cells (diameter ~ 2 µm), offer a bet-
ter adhesion. For other authors, roughness has no influence 
on biofilm initiation and it inevitably grows after a period 
of time (Vanhaecke et al. 1990; Rodriguez et al. 2008). In 
addition, Flint et al. (2000) observed no correlation between 
arithmetic roughness of AISI 304L stainless steel surfaces 
(Ra between 0.5 µm and 3.3 µm) and the attachment of heat-
resistant staphylococci. However, they have shown an inter-
esting adhesion for a value of Ra equal to 0.9 µm, suggesting 
a trapping of microorganisms linked to their size. Moreover, 
according to other studies, the increase of surface rough-
ness reduces the contact surface between the substrate and 
the microorganism when its size is higher than the surface 
roughness, promoting cell detachment (Boulangé-Petermann 
et al. 1997). The surface roughness parameter effect on bac-
terial adhesion is frequently associated with the surface wet-
tability which is a very important parameter.

The hydrophobicity and surface free energy of a material 
are recognized to influence bacterial adhesion (Quirynen 
et al. 1994; Subramani et al. 2009). The non-specific phys-
ico-chemical interactions are constituted of Van der Waals 
forces, electrostatic and acid–base interactions, which char-
acterize the surface free energy of a substratum (Grivet et al. 
2000). Results from several investigations that relate surface 
wettability to bacterial adhesion are conflicting (Grivet et al. 
2000; Oh et al. 2018). However, it is known that according to 
the bacterial adhesion thermodynamic model, hydrophobic 
bacteria preferentially colonize hydrophobic substrates and 
vice versa (Mabboux et al. 2004; Wassmann et al. 2017). A 

recent study investigated the effects of surface texture and 
roughness on the bacterial adhesion. Staphylococcus aureus 
adhesion behavior, towards a bio-ceramic joint implants 
with different roughness grades (Ra 205–1.1 nm) and sur-
face texture (uniform and unidirectional textures), elabo-
rated via polishing technologies, was studied. The results 
showed that when the surface roughness reduces from the 
sub-micron scale to the nano-scale level, the surface state 
gradually changes from hydrophobic to hydrophilic. In this 
case, it turns unsuitable for the adhesion of Staphylococ-
cus aureus which is hydrophobic. Moreover, the anchor-
ing points for bacterial adhesion gradually disappear, and 
then the bacterial-surface bonding strength weakens. It was 
concluded that the preparation of a smooth surface and the 
elimination of unidirectional surface textures can inhibit the 
initial adhesion of Staphylococcus aureus on those surfaces, 
reducing the occurrence of implant-related infections (Lu 
et al. 2020). Another study aimed to investigate bacterial 
adhesion on different ceramic and titanium surfaces, and 
analyzed the relationship between surface hydrophobicity 
and surface roughness defining the predominant factor for 
bacterial adhesion on each material. Results showed that the 
variations in surface roughness did not show any differences 
in the adhesion of Staphylococcus epidermidis. However, 
higher surface roughness showed an increase in Streptococ-
cus sanguinis adhesion. In contrast, for Staphylococcus epi-
dermidis, the bacterial adhesion rates detected were higher 
on the hydrophobic surfaces than on the hydrophilic surfaces 
but not for Streptococcus sanguinis. The adhesion potential 
of Streptococcus sanguinis was higher on the ceramic sur-
faces than on the titanium surfaces while no such preference 
was detected for Staphylococcus epidermidis. Indeed, both 
surface wettability and roughness can impact the adhesion 
behavior of bacteria on biomaterials. In this context, the pre-
dominant factor is dependent on the bacterial species (Was-
smann et al. 2017).

Several studies have established that the surface charge 
of materials plays an important role during cell adhesion 
(Behrens and Grier 2001; Palmer et al. 2007; Choi et al. 
2017). A recent study demonstrated the relationship between 
the surface charge and the bacterial adhesion. Indeed, Guo 
et al. (2018) elaborated layer-by-layer films via branched 
polyethylenimine and synthesized polyanions bearing either 
alkylcarboxylic or poly (ethylene glycol) side chains. This 
development was carried out with control over wettability 
and surface charge parameters. Adhesion test results showed 
that the Escherichia coli and Staphylococcus aureus adhe-
sion was guided by surface charge and wettability.

Several factors linked to the microorganism properties 
influence the bacterial adhesion. Investigations showed 
that when the microbial concentration increases, the 
number of adhered cells gets higher, until the surface is 
completely covered (Piette and Idziak 1992). In addition, 
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the presence of primary microorganisms colonizing a sur-
face can facilitate the occurrence of other microorganisms 
(Beloin et al. 2008). This phenomenon, known as “co-
aggregation” has been highlighted in a study of the oral 
cavity presenting adhered bacteria to the teeth (Whittaker 
et al. 1996). Other studies have demonstrated the existence 
of this cooperation in food, agriculture, and biomedical 
sectors (El-Azizi and Khardori 1999). The biochemical 
composition and the architecture of the bacterial cell 
surface (presence of proteins, fimbriae, flagella, exopol-
ymers, peptidoglycan in Gram-positive bacteria, and 
lipopolysaccharides in Gram-negative bacteria) contrib-
ute to the adhesion of microorganisms to the substrates. 
For example, the fimbriae contain a high proportion of 
hydrophobic amino acids, which leads to the establish-
ment of hydrophobic interactions with the material (Don-
lan 2002). The flagella allow the bacterium to be mobile 
and play an important role in the early stages of adhesion 
by counteracting electrostatic repulsion forces (Pratt and 
Kolter 1998). Lipopolysaccharides (LPS) are present in 
the wall of Gram-negative bacteria, and more specifically 
the carbohydrate part (O antigen) of these LPS, give the 
cell hydrophilic properties. As a result, mutants of Pseu-
domonas fluorescens unable to produce LPSs adhere in 
greater numbers to hydrophobic substrates (Williams and 
Fletcher 1996). The teichoic acids, specific components of 
Gram-positive bacteria, affect their adhesion mechanism 
since they give the cell a negative surface charge. Indeed, 
Gross et al. (2001) demonstrated that a mutant of Staphy-
lococcus aureus, whose teichoic acids do not contain 
D-alanine, was unable to adhere to the polystyrene, due 
to the increased negative surface charge compared to the 
D-alanine-containing strain. Surface proteins, frequently 
referred to as “adhesins,” are also strongly involved in the 
bacterial adhesion to surfaces via hydrophobic interactions 
(Flint et al. 1997). For example, Cucarella et al. (2001) 
identified in Staphylococcus aureus a protein called BAP 
(“Biofilm Associated Protein”). They have shown that the 
bacteria producing this protein strongly adhered to plastic 
surfaces (polystyrene, polyvinyl chloride) while mutants 
BAP-deficient adhered poorly to the two tested surfaces. 
Moreover, several studies showed that polysaccharides, 
present on the bacterial surface, are involved in their initial 
attachment. Polymers excreted by bacteria (EPS) induce a 
reinforcement of adhesion to the support, making it irre-
versible (Atabek and Camesano 2007). Moreover, regard-
ing physico-chemical properties of the material affecting 
the adhesion, the hydrophobicity, and the surface charge 
of the cell wall play also a major role in the adhesion 
mechanism (Palmer et al. 2007). Indeed, those properties 
are linked to the composition of the cell surface that are 
influenced by the growth rate and the physiological state 
of the bacterial strain. The adhesion of a bacterial strain to 

a receptor substrate permits the development of a different 
perception of its environment (Kimkes and Heinemann 
2020). Specific genes are then over- or under-expressed 
according to the new bacterial needs. Thus, the genes 
coding for flagella are inhibited, since the microorganism 
turned to the sessile state (Kuchma and O’Toole 2000). 
Otherwise, the expression of genes involved in quorum 
sensing or EPS production or parietal proteins increases 
(Prigent-Combaret et al. 1999; O’Toole et al. 2000).

Environmental characteristics affect directly the bacterial 
adhesion to a substrate. The increase in contact time between 
the microorganism and the support induces a reinforcement 
of established linkages (Nejadnik et al. 2008).

The temperature of the surrounding environment influ-
ences microbial colonization, because growth temperature 
is maximal for a so-called optimal temperature, specific to 
each microorganism. In addition, numerous studies have 
proven the influence of the ionic strength of the medium 
on microbial adhesion, through the electrostatic interactions 
established between the microorganism and support (Bos 
et al. 1999; Poortinga et al. 2002).

The pH of the surrounding environment has an influence 
on bacterial growth and on their surface physico-chemical 
properties. The pH value has also an impact on the surface 
charge of the substrate, especially in the case of metals such 
as stainless steel, for which the oxidation state depends on 
the pH (Palmer et al. 2007). The presence of surfactants 
in the bacterial environment modifies the solid/liquid and 
microorganism/liquid interfaces, influencing cell adhesion 
and detachment, as noted by McEldowney and Fletcher 
(1986). Moreover, the presence of nutrients, such as carbon 
and nitrogen, affects the bacterial metabolism and has an 
influence on the bacterial surface properties, thus on the 
initial adhesion (Strevett and Chen 2003; Nitschke and Silva 
2018). Hydrodynamic conditions influence bacterial adhe-
sion. Indeed, when the flow regime is laminar or slightly 
turbulent, the boundary layer at the material/liquid inter-
face is thick and the adhesion of microorganisms depends 
on their ability to penetrate it according to their mobility 
and size and the flow velocity. Moreover, depending on the 
Brownian motion, gravity or convection movements can 
favor the initial adhesion of microorganisms. Otherwise, 
when the regime is turbulent, the numerous eddies can 
facilitate contact between bacteria and surface. However, 
the decrease in the thickness of the hydrodynamic boundary 
layer reduces the interaction time between the cell and the 
substrate. Indeed, the establishment of weak bonds hinders 
the irreversible attachment of the bacteria (Donlan 2002; 
Palmer et al. 2007; Nejadnik et al. 2008). In conclusion, 
microbial adhesion on surfaces is a multifactorial phenome-
non constantly evolving over time. It involves many different 
parameters linked to the substrate, the microorganisms, and 
the suspending medium. Controlling all of these parameters 
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is a challenge, for both industrial and biomedical fields, in 
which the microbial colonization of surfaces is at the origin 
of particularly negative impacts.

Cold plasma technologies

The treatment of surfaces with plasma techniques per-
mitted to develop surfaces according to desired proper-
ties. Plasma has been defined as a gas that is partially or 
fully ionized into charged particles and neutral molecules 
(Moreau et al. 2008). It is regarded as the fourth state of 
matter and obtained when gases are excited into energetic 
states by radiofrequency, microwaves, or electrons from a 
hot filament discharge (Bogaerts 1999; Chu et al. 2002). 
Concerning the types of plasmas, they are divided into 
two main categories: Thermal plasmas and non-thermal 
plasmas also called atmospheric cold plasma, cold atmos-
pheric plasma, or simply cold plasma (Mandal et al. 2018). 
The thermal and cold plasmas can be defined according to 
the conditions in which they are created.

Cold plasma technologies provide a uniform modifi-
cation of the whole surface with less material degrada-
tion than several wet chemical treatments (Karam et al. 
2013). In fact, the imparted functionalization type can be 
controlled by plasma gas selection like Ar,  N2,  O2,  H2O, 
 CO2, or  NH3, and by experimental conditions such as pres-
sure, power, time, or gas flow rate (Kang and Neoh 2009). 
plasma-surface modification (PSM) allows changing the 
chemical composition and properties such as wettabil-
ity, hardness, chemical inertness, and biocompatibility of 
material surfaces (Neděla et al. 2017). There are two very 
interesting things about cold plasma technology. Firstly, 
cold plasma is source of elevated temperature electrons 
at ambient conditions. Secondly, the cold plasma, when 
interacting with an atmospheric or controlled environ-
ment, elaborates many reactive components. Indeed, cold 
plasma is produced at low levels of power and pressures, 
with absence of localized thermodynamic equilibrium; it 
is indeed defined as non-equilibrium plasma. The provided 
energy breaks the gas into a several reactive species, fol-
lowing other reactions such as ionization, excitation, and 
de-excitation. Moreover, the specific procedure carried out 
during cold plasma production determines the orientation 
for application alongside composition of reactive spe-
cies (Taccogna and Dilecce 2016). Those reactive species 
can be applied for many chemical reactions in different 
domains of science (Gorbanev et al. 2016). Such plasma is 
of particular interest technically and industrially because 
they do not require extreme conditions that might change 
the material properties (Wiesemann 2014).

There are options concerning the delivery of the gen-
erated plasma species to the substrate. Firstly, the direct 

exposure in which the substrate is directly exposed to the 
plasma discharge itself. It can be the splash of a plasma 
jet or the field between two electrodes. The other option 
is the indirect or remote exposure that requires placing the 
surface at a distance from the plasma discharge. The long-
lived components interact with the surface after recom-
bination with several induced species (Sarangapani et al. 
2018).

It is therefore important to first define the technological 
trajectory for cold plasma generation, which comprise those 
developed under reduced pressure and induced by atmos-
pheric pressure.

Cold plasma generated under reduced pressure is known 
as microwave plasma directed by electromagnetic waves 
generated at frequencies of hundreds of MHz. In contrast to 
methods presenting electrodes, the microwave discharges are 
produced via a magnetron supplying microwaves, guided by 
a coaxial cable, into a process chamber. The irradiation is 
then absorbed and heat is produced (Fig. 3A) (Isbary et al. 
2013). The inelastic collisions generate ionization reactions. 
The absence of electrodes in microwave plasma is consid-
ered beneficial and can be easily restarted in air. Moreover, 
the gas required in this technique is low comparing to the 
large quantities of reactive species released. In addition, this 
plasma is limited in space and its application to wide zones 
is non-workable in comparison with plasma jets. Plasma jet 
is a particular configuration discharge. In general, the active 
region is characterized by a flow of auxiliary gas, producing 
a burning small jet of ionization waves and active particles. 
High power and local practicability are profitable in those 
plasma types called jet, plasma torch, plasma needle, or 
plasma pen (Fig. 3B) (Scholtz et al. 2015).

Cold plasma induced at atmospheric pressure includes 
dielectric barrier discharges (DBD) (Fig. 3C), corona dis-
charge (Fig. 3D), radio frequency plasma (Fig. 3E), and glid-
ing arc discharge (GAD) (Fig. 3F). DBD plasma is induced 
by an alternating current emitted when two metallic elec-
trodes are retained apart using a dielectric material at a dis-
charge gap ranging from 100 mm to a few centimeters. The 
dielectric impedes the generation of sparks due to charges 
movement. The DBD technique encloses the application of 
different gases, reduction of gas flow rate, a uniform dis-
charge activation over several meters, and is characterized by 
a good adaptability since the electrode geometries employed 
can be varied. However, prevention and security measures 
are requested since DBD needs high ignition voltages of 
10 kV (Cullen et al. 2018; Fg et al. 2017).

Corona discharge plasma is elaborated surrounding 
sharp pointed electrodes that contain substantial electric 
field for developing the ionization energy of arbitrarily 
created electrons to the expedition for gas, molecules, or 
atoms. High voltage is needed to generate this discharge. It 
is not expensive and simple to employ. Corona discharges 
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are carried out for surface treatment and fighting microbial 
contamination. However, it is constrained to heterogene-
ous diminutive areas. Otherwise, radiofrequency plasma 
is generally produced when a gas is localized within an 
oscillating electromagnetic field, achieved by distinct 
electrodes maintained outside the reactor or by an induc-
tion coil. Comparable to microwaves, this class of plasma 
are produced at frequencies ranging hertz to megahertz 
(Scholtz et al. 2015; Fg et al. 2017; Mandal et al. 2018).

GAD are elaborated in a reactor comprising two or more 
diverging metallic electrodes working at a high potential 
difference. In this technique, an inlet gas, composed of 
humid air, is pumped into the discharge gap between the 
electrodes. This leads to the formation of an arc in between 
the narrowest inter-electrode area, which is directly blown 
away into the diverging area by the inlet gas. Generally, 
GAD develops both thermal and cold plasmas, depend-
ing on the conditions. This technique is applied for both 
liquid and surface treatments. It is employed for chemi-
cal contaminant (e.g., organic solvents, industrial wastes) 
degradation and for antibacterial effect (Patil et al. 2016; 
Dasan et al. 2017).

Cold plasma is considered in this review since its suit-
able for surface coating elaboration. Indeed, cold plasma 

technology applied for deposition and coating production 
is divided hereafter in three approaches that will be high-
lighted: the plasma functionalization, polymerization, and 
plasma-induced grafting.

Approaches for cold plasma surface 
modification

Plasma functionalization approach concerns a plasma treat-
ment leading to the incorporation of new functionalities 
on the material surface. In fact, different reactive and inert 
gases are used alone or in combination in order to generate 
active plasma species on polymers (Karam et al. 2013). The 
active plasma species bombard the atom surface and break 
the covalent bonds between them, conducting to hydrogen 
abstraction and creation of surface radicals. Radicals have 
the potency to react with the gas-phase species to form 
several chemically active functional groups on the surface 
(Bogaerts et al. 2002). The type of the formed functional 
groups rely on the gas used for functionalization as well as 
the experiment conditions such as the excitation type, reactor 
geometry, applied power, time, temperature, flow rate, and 
gas pressure (Chan et al. 1996; Chu et al. 2002). Oxygen 

Fig. 3  Schematic setups of different low and atmospheric pres-
sure cold plasma. (a) Microwave plasma, (b) plasma jet needle, (c) 
dielectric barrier discharge, (d) corona discharge, (e) radiofrequency 

plasma, (f) gliding arc discharge.  Adapted from Surowsky et  al. 
(2015), Scholtz et al. (2015), and Coutinho et al. (2018)
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plasma guides to the set-up of a variety of oxygen func-
tional groups like carboxylic acid groups, peroxide groups, 
and hydroxyl groups on the polymer surfaces (Fig. 4) (Chan 
et al. 1996; Sanchis et al. 2006). Otherwise, carbon dioxide 
plasmas can form hydroxyls, ketones, aldehydes, esters, and 
carboxyl groups on a selected surface (Desmet et al. 2009). 
Nitrogen and ammonia plasmas introduce primary, second-
ary, and tertiary amines, as well as amides on the material 
surface (Tušek et al. 2001; Kull et al. 2005). However, the 

plasma functionalization technique is believed to be disad-
vantageous regarding its inability to form a single functional 
group and the instability of the changes induced to the sur-
face. This ageing procedure is due to post-plasma oxida-
tion, reorientation of polar groups on the surface towards 
the bulk, diffusion of molecules with low molar mass to the 
polymer, and the environmental conditions like humidity 
that causes the absorption of water molecules by hydrophilic 
coating, resulting in the disturbance of the surface properties 
(Schönherr et al. 2000; Upreti et al. 2006; Siow et al. 2006; 
Tsougeni et al. 2009) (Fig. 5).

Another approach is the induced-plasma chemical graft-
ing. It is a technique where there is an association of plasma 
functionalization and classic chemistry (Karam et al. 2013). 
In this technique, a polymer surface is exposed to a cold 
plasma of a gas such as oxygen, helium, or argon to activate 
the surface and create free radicals (Bogaerts et al. 2002). 
The material is then exposed to atmospheric air that oxidizes 
the radicals, resulting in the formation of peroxide func-
tions that will allow the grafting of monomers in a further 
step (Legeay et al. 2006; Ma et al. 2007). The immersion in 
the monomer solution is carried out under heating (50 °C). 
Indeed, the heating enhances the decomposition of peroxide 
and oxygen is avoided in the solution since it can stop the 
reactions (Gupta et al. 2001; Chu et al. 2002; Legeay et al. 
2006). This method prevents the ageing effects since graft-
ing chemicals onto the surface increases the stability of this 
treatment (Kang et al. 1996; Goddard and Hotchkiss 2007).

In addition, the plasma polymerization (Fig.  6) is 
essentially a plasma-enhanced chemical vapor deposition 
(PE-CVD) procedure which is an effective technique to 
elaborate organic thin coatings on a material, and offering 

Fig. 4  Plasma functionalization process

Fig. 5  Ageing mechanisms
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proper control over the film character (Hamedani et al. 
2016). This approach uses electrical energy for generat-
ing a plasma that turn on the reaction by transmitting 
the energy of its compounds to the precursors leading to 
free radical creation followed by polymerization process 
(Vasudev et al. 2013). This polymerization is chemically 
and physically different from conventional polymerization 
involving radicals and ions even if the same monomers 
are used in both polymerization techniques (Chu et al. 
2002).

Plasma polymerization technique presents remarkable 
properties, like chemical stability, because of its highly 
cross-linked nature, the variety of monomers and materi-
als that can be used in this technique, and the film uniform 
thickness. Moreover, plasma polymerization technology has 
diversity of potential applications that make it a spot of inter-
est for industrials and researchers (Chu et al. 2002; Hamed-
ani et al. 2016). With this depositing process, the selected 
substrates can be covered with various types of coatings 
starting with gaseous precursors. In general, a short-chain 
monomer is cross-linked, fragmented, rearranged, and 

polymerized under the influence of the plasma to generate a 
long-chain polymer (Dessaux et al. 1998) (Fig. 7).

Plasma polymerization method permits the elaboration of 
thin films using organic monomers that polymerize on the 
surface, thanks to this technique, while other conventional 
methods do not permit their polymerization.

Plasma physico‑chemical modification 
to surface

In this section, the main physico-chemical changes intro-
duced to the surface after plasma surface modification 
(PSM) are mentioned. Biomaterial surface properties are 
usually described in terms of surface energy (wettability), 
chemistry, topography, roughness, and electrostatic charge. 
PSM with reactive gas leads to the introduction of active 
chemical function species and then, the modification of 
chemical properties (Károly et al. 2019).

The surface chemistry controls the charge and the hydro-
phobicity of a material. Thus, it has a direct effect on the cell 

Fig. 6  Plasma polymerization 
process

Fig. 7  Structures of polymers 
formed by conventional polym-
erization and plasma
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adhesion to plasma-modified surfaces. The nature of intro-
duced chemical groups depends on the gas used to generate 
plasma (Amani et al. 2019).

The surface wettability is an important parameter that sig-
nificantly changes after PSM. Surface wettability before and 
after PSM is usually characterized by water contact angle (θ) 
measurements. θ is used to measure the surface hydrophilic-
ity using organic (non-polar) or polar solvents by placing a 
droplet of liquid on a dry surface (Iqbal et al. 2019). Gener-
ally, the lower the θ, the more hydrophilic is the surface. 
Surface energy can be altered by PSM techniques to strongly 
influence cell adhesion (Rezaei et al. 2014). The free radicals 
generated during the plasma process react with the environ-
mental  O2 leading to the formation of polar groups (such 
as -OH, -COOH). Those functions provide more hydrogen 
bonding, resulting in a decreased contact angle, and hence 
lowering of θ (Goddard and Hotchkiss 2007). Furthermore, 
it was found that PSM increased the hydrophilicity and sur-
face energy without altering the bulk properties of the mate-
rials (Sharma et al. 2002; Govindarajan and Shandas 2014; 
Jaganathan et al. 2015).

Surface topography and roughness are considerably mod-
ified after PSM on the micron and nanometer scale, resulting 
in microorganisms’ behavior modification that could interact 
with plasma-treated materials (Jing et al. 2007a, 2007b). In 
fact, it has been reported that PSM of biomaterials have the 
ability to regulate cell functions such as proliferation, dif-
ferentiation, and apoptosis (Ito 1999). Oxygen plasma treat-
ment has been used by Ha et al. (1997) to modify the sur-
face characteristics of polyether ether ketone (PEEK). They 
showed that PSM created spherulitic surface irregularities of 
PEEK characterized by an increased roughness. Moreover, 
it has been shown that plasma-treated polyurethane (PU) 
had homogeneous surfaces after treatment, which did not 
lead to significant changes in PU film topography (Sanchis 
et al. 2007).

Furthermore, plasma treatment affects the hardness and 
elastic modulus of treated polymer surfaces owing to the 
effects of densification and cross-linking (Shi et al. 2001; 
Powles et al. 2005). Shi et al. (2001) study showed that the 
nano-hardness and elastic modulus of plasma-treated ultra-
high molecular weight polyethylene UHMWPE doubled, 
whereas the wear resistance coefficients was significantly 
enhanced by a factor of three compared with the untreated 
samples. They concluded that improvement of wear resist-
ance can be mainly attributed to ion bombardment–induced 
cross-linking, and thus surface hardening. Surface charge is 
determined mainly by zeta potential measurements based 
on the quantification of electrophoretic mobility of materi-
als in solution, depending on the polarity (charge) of the 
absorbed counter ions in the electric double layer, and the 
ionic concentration of the solvent (Khorasani and Mirzadeh 
2007). Basically, PSM results in the introduction of different 

charged species (anionic and cationic), functional groups, 
and free radicals, on the surfaces of materials. These cre-
ated species are directly involved in the modification of the 
original zeta potential of initial surface. In fact, many studies 
have demonstrated the impact of PSM on material surface 
charge. Shao et al. (2017) used atmospheric-pressure dielec-
tric barrier discharge for the modification of epoxy material 
surface and refine the dissipation of surface charge aiming 
to reduce the accumulation of surface charge. Another study 
demonstrated that cold plasma treatment participates in 
charging organic surfaces. In this investigation, the surface 
density of the electrical charge of lentil seeds and pepper and 
polymers like polystyrene, polyethylene, poly(methyl meth-
acrylate), and polycarbonate was established experimen-
tally (Shapira et al. 2018). Moreover, it has been reported 
that the electronegativity of PVC showed a high increase 
from − 9, to − 22 mV after PSM (Khorasani and Mirzadeh 
2007; Khorasani et al. 2008). In addition, in human surgery, 
plasma surface polymerization has been applied to set up 
non-thrombogenic cardiovascular implant surfaces based on 
the electrostatic interaction between the negatively charged 
plasma proteins and cationic coating due to the introduction 
of -NH2 and -COOH groups (Lassen et al. 1992).

Cold plasma applications

Researchers are continuously fascinated by the applications 
offered by plasma science. Thanks to the low heat capac-
ity of cold plasma, its production cost efficiency and the 
diversity of its applications, a very high interest in plasma 
technology is prevailing. Figure 8 illustrates the main cold 
plasma applications.

The potential employment of thermal plasma processing 
technology comprises a large range of activities, such as the 
extraction of metals, the refining of metals, the production 
of fine ceramic powders, spray coatings, and the destruction 
and consolidation of hazardous wastes (Taylor and Pirzada 
1994; Samal et al. 2010).

Otherwise, in material science, cold plasma is applied 
for surface property modifications, for example, in the pro-
duction of computer chip (Weltmann et al. 2018). Plasma 
polymer film application includes anti-adhesion surfaces, 
humidity sensors, electrical resistors, optical filters, protec-
tive coatings, chemical barrier coatings, and scratch resist-
ance coatings that have been successfully applied on opti-
cal lenses. In environmental sciences, it finds application in 
air and water purification (Foster 2017), for example, it can 
be applied for pesticide degradation in water (Pankaj and 
Keener 2017).

In biomedicine fields, cold plasma technology is applied 
for teeth and skin therapy, sterilization of medical equip-
ment, and the development of coatings for antibacterial 
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purposes (Popelka et al. 2012; Hoffmann et al. 2013). This 
technology is also employed for wound healing and disease 
treatments (Pankaj and Keener 2017). Concerning the appli-
cation of cold plasma in virus inactivation, a recent study 
showed that cold atmospheric plasma with argon plasma 
gas was efficient in the inactivation of coronavirus SARS-
CoV-2 on several surfaces like metal, plastic, and cardboard. 
These results proof the interesting potential of cold plasma 
in the prevention of virus transmission for different surfaces 
that are generally in frequent contact with individuals (Chen 
et al. 2020). SARS-CoV-2 infection involves recognizing 
and linking to the human angiotensin-converting enzyme 2 
receptor on cells via the receptor-binding domain (RBD) of 
the spike protein, and perturbation of this mechanism can 
effectively inhibit SARS-CoV-2 proliferation. Plasma-acti-
vated water impact on coronaviruses has been investigated 
by Guo et al. (2021). Indeed, in this study, pseudoviruses 
with SARS-CoV-2 protein S were employed as a model, and 
plasma-activated water effectively inactivated pseudovirus 
infection by inhibiting of the protein S. RBD was employed 
to investigate the molecular particularities. Results showed 
that the binding activity of RBD was effectively knocked out 
by plasma-activated water via modification of RBD. These 
demonstrations present a new opportunity for the engineer-
ing scientific, and medical sectors.

Moreover, non-thermal plasma can be used in food 
industries for the development of coated surfaces with anti-
adhesive and antibacterial properties aiming to fight biofilm 
formation (Ma et al. 2012). In this field, cold plasma is also 

used in the packaging process as well as in food produc-
tion to reduce the risk of bacterial contamination since it 
can be applied for decontamination and toxins degrada-
tion. Indeed, it can help for products shelf-life extension 
and improve the packaging integrity (Karam et al. 2013). 
Plasma technology can be carried out to design functional 
films with different biocidal agents, including quaternary 
ammonium salts, silver, or antibiotics (Wang et al. 2004; 
Bruckert and Weidenhaupt 2010). In addition, it is applied 
in surface modification, functionalization, reticulation, and 
thin film deposition of polymer surface (Pankaj and Keener 
2017). The plasma-based techniques are profitable for dif-
ferent purposes; they can be applied for coating/depositing, 
cleaning/sterilization, and modification of surface chemistry 
of substrates. Plasma treatment can also be used as a pre-
treatment to other surface modification techniques (Sabir 
et al. 2009; Joshy et al. 2019).

Cold plasma treatments of materials 
for preventing bacterial adhesion

Aiming to fight biofilm formation in medical and food fields, 
many studies were carried out to produce anti-bacterial and 
anti-adhesive modified surfaces via cold plasma treatments. 
Among the several materials applied in those fields, stain-
less steel is a predominant metal used in various applica-
tion where hygiene is primordial, including food industry 
and medical sectors (Fouda and Ellithy 2009; Sun et al. 

Fig. 8  The main cold plasma 
applications.  Adapted from 
Pankaj and Keener (2017)
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2015). Moreover, titanium alloy is used for dental implants, 
medical equipment, and in food and pharmaceutical manu-
facturing areas (Agripa and Botef 2019). In addition, poly-
ethylene terephthalate (PET) is a polymer commonly used 
in biomedical and food applications (Perez-Roldan et al. 
2014). Other polymers like polyamide, polydimethylsilox-
ane (PDMS), silicone, and polypropylene can be applied 
for their physico-chemical properties in those sectors. This 
section highlights the strategies carried out by researchers to 
elaborate antiadhesive films by cold plasma treatment on the 
materials surfaces mentioned above. Figure 9 summarizes 
the main directions followed in coatings elaboration and 
Fig. 10 shows the general surface properties modifications 
after plasma treatment.

Several studies demonstrated that modifying surfaces 
with hydrophilic and non-charged polymers resulted in 
reduced cellular, protein, and bacterial attachment on dif-
ferent surface types (Finch 1994; Du et al. 1997; Sofia et al. 
1998; Zhang et al. 2001). Indeed, it has been established that 
surfaces deposited with poly(ethylene glycol) (PEG) are able 
to reduce bacterial adhesion and biofilm formation. In effect, 
an investigation of coated PET and polyamide with PEG of 
different molecular weights using a  SiCl4 cold plasma treat-
ment via the creation of C–Si–Clx functionalities permits 
the covalent linkage of PEG macromolecules through a con-
densation reaction mechanism. Indeed, these coating showed 
significant inhibition of attachment and biofilm formation by 
Listeria monocytogenes and Salmonella enterica sv. Typh-
imurium compared to unmodified PET and polyamide (Dong 
et al. 2011). In addition, a research analyzed the coating 
of PEG-like compounds, 1,4,7,10-tetraoxacyclododecane 

ether and tri(ethylene glycol) dimethyl ether, onto stainless 
steel by a cold-plasma enhanced technique. The coatings 
were more hydrophilic and less rough than the uncoated 
stainless steel. Biological testing on a mixed culture of 
Staphylococcus epidermidis, Salmonella Typhimurium, and 
Pseudomonas fluorescens revealed a reduction in the bacte-
rial adhesion and biofilm formation (Denes et al. 2001). In 
another study, the PEG-like compound, di(ethylene glycol) 
vinyl ether was deposited onto stainless steel surface via 
radiofrequency–plasma processes. These deposited films 

Fig. 9  Main directions followed 
in coatings elaboration

Fig. 10  General surface properties modifications after plasma treat-
ment
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showed a stable chemistry and a more hydrophilic character 
and a decrease in roughness values in comparison with bare 
stainless steel. These new characteristics leaded to an effec-
tive anti-adhesive behavior of the coatings towards Listeria 
monocytogenes strains (Wang et al. 2003). Plasma treat-
ments can be used as preliminary preparation for surface 
grafting. A research investigated the antifouling character-
istics of grafted plasma-modified PET surfaces. In fact, two 
different gases, oxygen and helium, were employed to create 
superhydrophilic surfaces with various surface chemistries. 
Oxygen reactive gas used in plasma treatment increases the 
oxygen groups and enhances the hydrophilic character on the 
surface (Krstulović et al. 2006). Researchers demonstrated 
an antibiofilm activity of 3D printed polylactic acid petri 
dishes treated surfaces. Atmospheric pressure plasma was 
employed for the polymerization and deposition of acrylic 
acid. Plasma polymerization caused an increment of oxygen 
polar groups (C—O and O-C = O) producing a hydrophilic 
character of the coatings. This hydrophilic character played 
an essential role in Pseudomonas aeruginosa and Staphylo-
coccus aureus biofilm reduction (Muro-Fraguas et al. 2020).

In a study, stainless steel surfaces were treated with (3- 
amino propyl) triethoxysilane (APTES), tetraethyl ortho-
silicate (TEOS) and acrylic acid (AA) via non-equilibrium 
atmospheric plasma. An anti-biofilm efficient activity was 
detected against Listeria monocytogenes and Escherichia 
coli strains. Listeria monocytogenes registered the best 
results, with surfaces coated with a base of APTES and 
functionalized by TEOS or AA, reduced biofilm formation 
by 45% and 74%, respectively, in comparison with uncoated 
SS. Surface characterization showed that the coating with 
the highest anti-biofilm activity had higher hydrophilicity 
and lower surface roughness. This results showed that the 
development of a hydration layer prevented the bacterial 
adherence, an effect that seems to be increased by low tem-
perature conditions and when the wettability of the strains 
is enhanced (Fernández-Gómez et al. 2020). Indeed, the 
environmental conditions, physicochemical characteristics 
of the surface, and bacterial cell envelope affects the adhe-
sion behavior.

Moreover, surface cross-linking was carried out; thanks 
to helium inert gas resulting in the increase in surface wetta-
bility, an important factor influencing the bacterial adhesion 
(Gheorghiu et al. 1997; Papakonstantinou et al. 2007). Sur-
faces were then grafted with PEG, Pluronic F108, Pluronic 
F68, mixed solutions of Pluronic and surfactant like sodium 
taurodeoxycholate nonaethylene glycol, monodecyl ether, 
and hexadecyltrimethyl ammonium bromide. Those coated 
surfaces showed effective antifouling properties (Perez-
Roldan et al. 2014). Moreover, in another study using radiof-
requency plasma polymerization, stainless steel surface was 
deposited with ethylenediamine (EDA), a hydrophilic mono-
mer, in different glow discharge parameters (radiofrequency 

discharge power of 20–80 W with exposure time of 10 min). 
The modification of plasma conditions showed different 
efficiencies of the anti-adhesive character of the coatings 
tested towards Enterobacter sakazakii. The optimal condi-
tion showing 99.74% of attachment reduction was plasma 
modification by EDA at 45 W and for 10 min (Şen et al. 
2012). Another coating on stainless steel by plasma tech-
nique was elaborated aiming to obtain antiadhesive proper-
ties. Effectively a silver nanoparticle component film was 
coated onto stainless steel to weaken the adhesion power of 
the model yeast Saccharomyces cerevisiae. The coating was 
done under cold-plasma parameters, mixing silver sputtering 
and RF glow discharge. The anti-adhesive properties of the 
coating were attested with shear-flow-induced detachment 
trial (Guillemot et al. 2008). Plasma material treatment is 
a strategy to improve coating quality and affect biological 
response at the surfaces of biomedical devices specifically 
polymeric materials. A research shows the time-dependent 
effects of a non-thermal plasma on the surface of polypro-
pylene polymeric implants. Findings suggest that plasma 
exposure enhanced resistance to Escherichia coli adhesion. 
Bacterial adhesion decreased after 1 min of plasma treat-
ment (p > 0.048) whereas after 10 min and 20 min of plasma 
treatment, the bacterial attachment rate, in comparison with 
the 1-min rate, was reduced by half (p < 0.001). These results 
imply that the time exposure of a surface to plasma treat-
ments affects its chemical properties and behavior towards 
microorganisms (Gd et al. 2020). Furthermore, Lin et al. 
(2020) elaborated effective antiadhesive coatings towards 
Escherichia coli. In fact, PDMS polymeric surfaces were 
modified via an atmospheric plasma-induced polymerization 
with polyvinyl alcohol (PVA) and then immobilized by a 
zwitterionic polymer (2-methacryloyloxyethyl phosphoryl-
choline, MPC). Those surfaces were developed for wound 
dressing application in biomedical fields. The super-hydro-
phobic character of those modified surfaces inhibited bac-
terial adhesion. Titanium (Ti) alloys, often used in medical 
fields, do not repel bacterial attachment. In an investigation, 
the production of radicals was carried out via non-thermal 
atmospheric pressure plasma jet on Ti surfaces aiming to 
modify its chemical properties. Bacterial adhesion of Strep-
tococcus sanguinis to Ti was significantly inhibited after 
plasma treatment (p < 0.05) compared to unmodified sur-
faces. In this work, the anti-adhesive effect was generated by 
carbon cleaning that was dependent on the gas type used on 
the titanium surfaces (nitrogen > ammonia and air, p < 0.05) 
(Lee et al. 2017). In a recent study, an acrylate-containing 
coating was elaborated on titanium surfaces through atmos-
pheric pressure plasma treatment of 2-hydroxyethyl meth-
acrylate, a liquid precursor. The obtained hydrophilic coat-
ings decreased Staphylococcus aureus and Escherichia coli 
adhesion. These surfaces were produced for dental implant 
antiadhesive effectiveness (Buxadera-Palomero et al. 2021).
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Moreover, in another recent study, superhydrophobic 
surfaces with antibacterial properties were developed. Sur-
faces were elaborated using trichloro(1H,1H,2H,2H-per-
fluorooctyl)silane (TPFOS) and titanium dioxide nanopar-
ticles (TiO2-NPs) as chemical modifiers. The virgin PVDF 
membrane was pre-treated using PEG-co-PMAA, followed 
by plasma treatment, to increase the __COOH and __OH 
groups on the outer layer and enable coordinate bond forma-
tion on the membrane surface to  TiO2. TPFOS was selected 
to impart a superhydrophobic character to the titanium sur-
face. Results showed that the PVDF/PP-PT/Ti/Si (polyvi-
nylidene difluoride/coated PEG-co-PMAA-plasma treated/
titanium nanoparticles/perfluorooctyl silane) developed 
membrane registered a larger contact angle of ~ 152° and 
a better cleanability than that of the pristine PVDF mem-
brane. Plasma treatment caused the increase in membrane 
porosity via the polymer ablation mechanism. Treated sur-
faces showed excellent antibacterial properties when tested 
against Staphylococcus aureus and Escherichia coli (Sinha 
Ray et al. 2021).

Plasma polymers elaborated using monomeric silicone-
based chemicals provide excellent chemical and thermal 
resistance and remarkable optical, electrical, and biomedical 
properties (Inagaki et al. 1985; Schwarz et al. 1998; Bashir 
and Bashir 2015). The plasma polymerized organosilicon 
films can be employed as protective coatings in microelec-
tronics (KRYSZEWSKI et  al. 1979). Organosilicon are 
also selected for the protection of metals from corrosion 
(Fracassi et al. 2003). The most employed organo-silicon 
monomers include TetraMethylDiSilOxane (TMDSO) 
(Deng et  al. 2015), TetraMethylSilane (TMS) (Fonseca 
et al. 1993), VinylTriMethylSilane (VTMS) (Bonnar et al. 
1999), HexaMethylDiSilOxane (HMDSO) (Morent et al. 
2009), and HexaMethylDiSilaZane (HMDSZ) (Huang et al. 
2015) containing Si, H, C, O, or N atoms (Gaur and Ver-
gason 2000). Organo-silicon monomers are used in indus-
tries because they are non-toxic components and they do 
not generate harmful species during processing. Thus, they 
can be applied without any special safety considerations 
(European Commission, Directorate General for Health & 
Consumers 2014).

Among the many monomers which have been employed 
in plasma polymerization, the organosilicons were recog-
nized to form coatings of special properties. Indeed, orga-
nosilanes have at least one carbon-silicon bond, which is 
very stable and nonpolar. In the procedure of plasma polym-
erization of organosilicon, the film polymerized on the sub-
strate surface starts to grow when the long-lasting reactive 
particles, flowing from the microwave discharge, had enough 
energy to break the chemical bonds and create free radicals 
implied in the film formation (Callebert et al. 1994; Karam 
et al. 2013). The deposition zone, where CRNP appears as a 
yellow afterglow, is a non-ionized zone mostly formed with 

reactive species like nitrogen atoms in the ground electronic 
state N(4S), free radicals, and electronically excited  N2 tri-
plet states and vibrationally excited  N2 in the ground elec-
tronic state (Jama et al. 1997; Quédé et al. 2002; Esbayou 
et al. 2018).

Organosilanes are one of the most versatile molecules 
that are widely used in coatings and surface modifications 
cold plasma technologies. Generally, organosilane-coated 
surfaces exhibit an increase in low surface energy and its 
hydrophobic characters. These types of films ensue the inhi-
bition of bacterial growth without releasing toxic products 
of low molecular mass into the environment (Kregiel and 
Niedzielska 2014). Furthermore, an investigation showed 
that following plasma-assisted surface silanization, the anti-
adhesive properties of coated surfaces increased due to the 
decrease in roughness properties (Savela et al. 2012; Kregiel 
et al. 2013). In another research, organosilicone-based films 
were developed on 316L stainless steel, by atmospheric 
pressure plasma spraying (APPS) of HMDSO. This plasma 
coating showed an antifouling character and antiadhesive 
properties towards Staphylococcus aureus (Zouaghi et al. 
2018). Moreover, Kregiel and Niedzielska (2014) developed 
polyethylene surfaces, activated by plasma processing and 
modified with active organosilanes. Those coatings exhib-
ited anti-adhesive properties towards Aeromonas hydrophila.

Some studies have examined the antimicrobial activity of 
organosilanes with active biocidal groups chemically linked 
to their chains. Indeed, Fortuniak et al. (2011) tested the 
biocidal activities of polysiloxanes linked with antibacterial 
quaternary ammonium salt (QAS) groups. These polysilox-
anes were linear polydimethylsiloxanes with 20% siloxane 
units substituted at silicon by 3(dimethyl-n-octylammonio) 
propyl chloride or 3(dimethyl-n-hexadecylammonio) propyl 
chloride and terminated by silanol functions at both chain 
ends. Those polymers were cross-linked and added to a sili-
cone substrate. The biocidal test resulted in thousand-fold 
reduction of Staphylococcus aureus after 15 min of contact 
with the substrate containing 20 wt % of this polymer. This 
study permitted to conclude that polysiloxane-based sur-
faces can be used as pretreated substrates to link antibacte-
rial groups and develop antimicrobial surfaces. Moreover, 
another research aimed to study how the modification of 
silicone elastomer and polyvinyl chloride surfaces, com-
monly used in the water industry, can reduce the attachment 
of Aeromonas hydrophila, a pathogenic bacterium that has 
the ability to attach to pipe materials. Silicone elastomer and 
polyvinyl chloride surfaces were activated via cold plasma 
with reactive organosilanes by coupling silanes with the 
native material. Those coated surfaces exhibited higher anti-
adhesive and anti-microbial characteristics in comparison to 
the bare surfaces (Kregiel 2013).
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Conclusion

Cold plasma is an innovative technology experiencing an 
increased popularity since it shows applications at several 
sectors. In food and medical sectors, pathogenic bacteria 
adhere on surfaces and form resistant biofilm which are 
responsible of many infectious diseases. This review pre-
sents general aspects of cold plasma surface modifications. 
It also highlights plasma-coated surfaces designed to inhibit 
and prevent bacterial attachment on surfaces. However, cold 
plasma technology requires additional investigations in eco-
toxicity, ageing characteristics, coating effectiveness with 
time, and the interaction mechanisms between the bacteria 
and plasma coated surface.
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