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Abstract

Background: Children exposed to maternal smoking during pregnancy exhibit increased risk for many adverse
health effects. Maternal smoking influences methylation in newborns at specific CpG sites (CpGs). Here, we extend
evaluation of individual CpGs to gene-level and pathway-level analyses among 1062 participants in the Norwegian
Mother and Child Cohort Study (MoBa) using the Illlumina 450 K platform to measure methylation in newborn DNA
and maternal smoking in pregnancy, assessed using the biomarker, plasma cotinine. We used novel implementations
of bioinformatics tools to collapse epigenome-wide methylation data into gene- and pathway-level effects to test
whether exposure to maternal smoking in utero differentially methylated CpGs in genes enriched in biologic pathways.
Unlike most pathway analysis applications, our approach allows replication in an independent cohort.

Results: Data on 485,577 CpGs, mapping to a total of 20,199 genes, were used to create gene scores that were tested
for association with maternal plasma cotinine levels using Sequence Kernel Association Test (SKAT), and 15 genes were
found to be associated (g < 0.25). Six of these 15 genes (GFIT, MYO1G, CYPIAT, RUNXT, LCTL, and AHRR) contained
individual CpGs that were differentially methylated with regards to cotinine levels (p < 1.06 x 107/). Nine of the 15
genes (FCRLA, MIR641, SLC25A24, TRAKT, Clorf180, ITLN2, GLIST, LRFNT, and MIR451) were associated with cotinine at the
gene-level (g < 0.25) but had no genome-wide significant individual CpGs (p > 1.06 x 107"). Pathway analyses using
gene scores resulted in 51 significantly associated pathways, which we tested for replication in an independent cohort
(g <0.05). Of those 32 replicated in an independent cohort, which clustered into six groups. The largest cluster
consisted of pathways related to cancer, cell cycle, ERa receptor signaling, and angiogenesis. The second cluster,
organized into five smaller pathway groups, related to immune system function, such as T-cell regulation and other
white blood cell related pathways.

Conclusions: Here we use novel implementations of bioinformatics tools to determine biological pathways impacted
through epigenetic changes in utero by maternal smoking in 1062 participants in the MoBa, and successfully replicate
these findings in an independent cohort. The results provide new insight into biological mechanisms that may
contribute to adverse health effects from exposure to tobacco smoke in utero.
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Background

Although many adverse effects of maternal smoking on
offspring have been well identified, little is known about
the underlying biological mechanisms. [1, 2] One pro-
posed mechanism for how in utero exposure to tobacco
smoke may impact health is through epigenetic effects
including DNA methylation. Previously, Joubert et al.
collected genome-wide methylation data from 1062
MoBa mother-offspring pairs and demonstrated that
maternal smoking, assessed objectively by cotinine
levels, is significantly associated with 1) differential DNA
methylation in genes involved in metabolism of tobacco
smoke compounds, and 2) novel genes involved in di-
verse developmental processes not previously linked to
tobacco response [3]. These findings have since been
widely replicated [3-6].

It has been recognized that genome wide association
studies, using single nucleotide polymorphisms, that rely
on single locus variation explain little of the overall her-
itability of complex traits [7, 8]. While there are many
potential sources of this “missing heritability”, single
locus analysis typically ignores a large number of loci
with moderate effects, due to stringent significance
thresholds. Gene-based association analysis takes a gene
as basic unit for association analysis. As this method can
combine genetic information given by all the markers in
a gene, it can obtain more informative results and in-
crease the capability of finding novel genes and gene
sets. This method has been used as a novel complement
method for SNP-based GWAS in identifying disease sus-
ceptibility genes [9, 10], and we extend such an approach
to methylation data here.

Page 2 of 12

Additionally, To investigate the biological processes
(i.e. pathways) impacted by maternal smoking during
pregnancy and associated altered fetal methylation, we
performed gene set/pathway analysis to further dissect
the biological impact of maternal smoking. We applied a
novel approach that combines analysis tools for collaps-
ing epigenome-wide methylation data into gene- and
pathway-based effects (Fig. 1). Pathway analysis com-
bines significant genes into sets of genes, or pathways,
that are thought to have coordinated effects on a bio-
logical endpoint.

A number of pathway analysis methods have been de-
veloped, and have been widely applied in human genet-
ics and genomics. The majority of pathway analysis
methods were originally developed for microarray, gene
expression data, and the most popular methods perform
enrichment analysis for gene sets defined by external
knowledge bases [11]. In the current study, we modified
the bioinformatics approaches that have been developed
in other contexts to be valid for epigenome-wide data
analysis.

Importantly, we performed a two stage study, perform-
ing both discovery and replication of the gene-based and
pathway-based associations. While replication is standard
in genetic association studies for individual variants it is
rarely performed for pathway analyses. Whether due to
the limited availability of proper validation cohorts in
many studies, or challenges in adapting pathway ap-
proaches to allow for a discovery and replication ap-
proach, this lack of replication is an important limitation
of many pathway analysis studies. The previously de-
scribed MoBa cohort, referred to as MoBal was used as
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the discovery cohort. We subsequently measured DNA
methylation in an additional 685 MoBa newborns; this
dataset is referred to as MoBa2 and is used as the replica-
tion cohort.

Results
In univariate analysis of individual CpGs in the discovery
cohort MoBal, we found methylation at 27 CpGs in
newborns to be significantly associated with maternal
plasma cotinine levels analyzed as a continuous variable
(Bonferroni correction for 473,864 tests, p < 1.06 x 1077).
The majority of those markers are annotated within
genes. Twenty four markers are annotated within the
GFI1, AHRR, MYO1G, CNTNAP2, FRMD4A, LCTL,
CYPIAI, and RUNXI genes (Fig. 2). The three signifi-
cant markers (cg00253658, cgl18703066, cg04598670)
that did not map to known genes are located on chrl6
at 54210496, chr2 at 105363536, and chr7 at 68697651.
We then grouped individual CpGs by gene to form a
gene-level p value, or gene score, using the Sequence
Kernel Association Test (SKAT) software implemented
in R [12, 13]. A total of 20,199 genes were tested and 15
were associated with maternal plasma cotinine levels
with an FDR-adjusted ¢ <0.25 (Table 1). Six of these 15
genes (GFI1, MYOIG, CYPIAI, RUNXI, LCTL, and
AHRR) contained genome-wide significant individual CpGs
(p<1.06 x 1077). Nine of the 15 genes (FCRLA, MIR641,
SLC25A24, TRAKI, Clorfi80, ITLN2, GLISI, LRFNI, and
MIR451) were associated with cotinine (g < 0.25) but did
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not have any genome-wide significant individual CpGs
(Table 1). This demonstrates the utility of this method to
detect important effects at a gene-level that would have
otherwise gone undetected by interrogating only individual
CpGs.

Only two genes, CNTNAP2 and FMRD4A, had
genome-wide significant individual CpGs (p < 1.06 x 1077),
but did not result in gene scores with g<0.25. Eighty
CpGs mapped to CNTNAP2 but only one (cg25949550),
located in the gene body, was statistically significant (g =
1.07 x 1071%) resulting in a gene score (g =0.32) that did
not reach our threshold for association (Additional file 1).
There were 127 CpGs mapped to FRMD4A on this plat-
form and only two CpGs (cgl1813497, cgl5507334), lo-
cated within 200 bp of the transcriptional start site, were
at or near genome-wide significance, for an overall gene
score with a g = 0.28 (Additional file 1).

We then collapsed the gene-level results into pathway
level statistics using a priori pathway gene sets from the
MSigDB database. MSigDB provides annoted collections
of gene sets curated from multiple biological knowledge-
bases. We selected relevant gene sets as described below
to collapse individual gene association scores into path-
way analysis results. A total of 5836 pathway gene sets
were tested for association using a the correlated Lan-
caster p-value approach. After a Bonferroni correction
(p<0.05) for the number of pathways tested, a total of
51 pathways were statistically significant in the (Fig. 1
and Table 2). Pathways spanned a range of physiological
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Table 1 Genes differentially methylated in newborns in relation
to maternal smoking during pregnancy using the Sequence
Kernel Association Test (SKAT) in the MoBa1l discovery cohort
(n=1062 subjects)

Gene® Markers/Gene SKAT p-value SKAT g-value
GFIT 71 1.05E-17 2.13E-13
MYOI1G 12 433E-17 437E-13
CYPIAT 35 1.21E-09 8.15E-06
RUNXT 53 3.46E-07 0.001749
LCTL 8 1.61E-05 0.065098
AHRR 149 6.29E-05 0.184672
FCRLA 9 8.14E-05 0.184672
MIR641 4 8.23E-05 0.184672
TRAK1 35 7.78E-05 0.184672
CIORF180 4 0.000104 0.209611
ITLN2 5 0.000116 0.212334
GLIST 51 0.000156 0223673
LRFNT 21 0.00016 0223673
MIR451 8 0.000166 0.223673
SLC25A24 23 0.000144 0223673

@ Covariates included: maternal education, CD8T, CD4T, natural killer cell
fraction, B cell fraction, monocyte fraction, granulocyte fraction

and pathophysiological functions including cell cycle,
cancer, white blood cell differentiation, genotoxicity, and
others (Additional file 2).

Subsequently, we attempted to replicate the pathway
analysis by calculating gene scores in the MoBa2 replica-
tion cohort data for all genes in the 51 statistically sig-
nificant pathways from the MoBal discovery cohort.
Gene and pathway level association scores were calcu-
lated identically to the procedure described for the dis-
covery cohort (Fig. 1), and a FDR correction was used to
correct for multiple testing. Of the 51 pathways identi-
fied in the MoBal cohort (p<8.6 x 107°), 32 replicated
(g <0.05) (Table 2).

Because of the relatively large number of pathways
that replicated across both cohorts, we performed clus-
tering analysis to aid in interpretability. We clustered
replicated pathways according to gene set similarity
(Fig. 3). We identified six clusters, or groups, of path-
ways that contained similar gene sets and were reflective
of their biological function. The largest cluster consisted
of pathways related to cancer (FALVELLA SMOKERS
WITH LUNG CANCER, HEDENFALK BREAST
CANCER BRACX UP), cell cycle (INTERPHASE OF
MITOTIC CELL CYCLE, INTERPHASE, G1 S TRAN-
SITION OF MITOTIC CELL CYCLE), ERa receptor sig-
naling (WILLIAMS ESR1 TARGETS DN, FRASOR
RESPONSE TO ESTRADIOL UP), and angiogenesis
(ABE VEGFA TARGETS 2HR, ELVIDGE HIF1A TAR-
GETS DN). A second cluster was organized into five
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smaller pathway groups related to immune system func-
tion, such as T-cell regulation (e.g. GSE1460 DP
THYMOCYTE VS NAIVE CD4 TCELL ADULT
BLOOD UP, GSE3982 DC VS TH1 DN, GSE3982 CENT
MEMORY CD4 TCELL VS TH1 DN) and other white
blood cell related pathways (e.g. GSE1460 DP VS CD4
THYMOCYTE UP, CASORELLI ACUTE PROMYELO-
CYTIC LEUKEMIA UP).

Discussion

There is an overwhelming body of epidemiological evi-
dence linking smoking during pregnancy to various health
outcomes in the offspring including low birth weight, re-
duced lung function, and increased respiratory infections
[1]. Additional associations have also been reported be-
tween maternal smoking during pregnancy and 1)
rheumatoid arthritis and other inflammatory polyarthro-
pathies [14—17], 2) child behavior and cognitive function-
ing, and 3) mixed results of associations with childhood
cancers. While these associations are consistent, the
underlying mechanisms leading to these outcomes have
remained elusive. The analyses presented here support the
possibility that epigenetic mechanisms may play a role,
and point towards a number of pathways that may be
involved.

Multiple pathways related to T-cell function were
altered by maternal smoking. GFI1, previously re-
ported by Joubert et al. [3], was a main driver for
many of the T-cell, eosinophil, and neutrophil related
pathway scores (e.g. GSE17974_OH_VS_12H_IN_VI-
TRO_ACT_CD4_TCELL_UP,  GSE3982_CENT_ME-
MORY_CD4_TCELL_VS_TH1_DN, GSE3982_NEU-
TROPHIL_VS_TH1_DN, GSE3982_EOSINOPHIL_
VS_TH1_DN). Additional genes that contributed to
the impact on immune response pathways include
IL22 (p=0.039, q=0.28) and IL2RA (p=0.002, q =
0.28) which were not detected in the analysis of Jou-
bert et al. [3] based on single CpGs.

IL22 is a cytokine involved in the initiation of innate
immune response against pathogens, and is especially
active in epithelial cells of the gut and lung [18]. Reduced
expression of IL2RA on the surface of immune cells has
been known to cause chronic immune suppression and
may be linked to type 1 diabetes mellitus [19, 20]. Collect-
ively, these pathways are relevant to various health effects
in newborns that have been associated with exposure to
maternal smoking during pregnancy [14, 17, 21].

Mixed results have been found regarding in utero to-
bacco exposure and increased incidence of childhood
cancers. Some studies have found increased risk of child-
hood cancers with maternal smoking during pregnancy
[16, 22], whereas, others have found null results [15, 23].
However, here we present evidence that alterations in
methylation may affect key pathways related to cancer.



Table 2 Significantly enriched pathways based on differential methylation in newborns exposed to maternal smoking during pregnancy

Pathway Name MSigDB MSigDB # Genes  # Genes  Discovery Bonferroni Replication Replication Bonferroni

Contributor®  Category Pathway Overlap  p value Adjusted  p value g value Adjusted
Code Discovery Replication
p value p value

GSE17974_0H_VS_12H_IN_VITRO_ACT_CD4_TCELL_UP Nick Haining ~ C7 200 172 1.56E-14  9.12E-11 9.31E-07 260E-05  4.28E-05
lab (DFCI)

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_2H_CD4_TCELL_UP Nick Haining ~ C7 200 171 301E-14  1.76E-10 1.13E-06 260E-05  5.19E-05
lab (DFCI)

GSE17974_0H_VS_6H_IN_VITRO_ACT_CD4_TCELL_UP Nick Haining ~ C7 200 169 155617  9.07E-14 5.33E-06 8.17E-05  0.0002
lab (DFCI)

G1_S_TRANSITION_OF_MITOTIC_CELL_CYCLE GO cs 27 27 1.16E-18  6.74E-15 0.0012 00135 0.0548

WILLIAMS_ESR1_TARGETS_DN Broad 2 6 6 1.838-08  0.000107  0.0015 00135 0.0675
Institute

TIEN_INTESTINE_PROBIOTICS_2HR_UP Broad 2 27 26 2.54E-08 0000148  0.0019 0.0144 0.0862
Institute

TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_SUSTAINED_IN_MONOCYTE_UP  Broad C2 21 21 648E-09  3.78E-05 0.0027 00158 0.1226
Institute

INTERPHASE_OF_MITOTIC_CELL_CYCLE GO cs 62 59 1.17E-16  6.85E-13 0.0027 00158 0.1264

HEDENFALK_BREAST_CANCER_BRACX_UP University of ~ C2 20 14 481E-10  2.80E-06 0.0032 0.0159 0.1464
Washington

ABE_VEGFA_TARGETS_2HR University of ~ C2 34 30 2.16E-09  1.26E-05 0.0036 0.0159 0.1675
Washington

INTERPHASE GO cs 68 65 720E-17  4.20E-13 0.0038 0.0159 0.1753

FRASOR_RESPONSE_TO_ESTRADIOL_UP Broad 2 37 37 372E-08  0.000217 0.0046 0.0175 0.2099
Institute

ENGELMANN_CANCER_PROGENITORS_UP Broad 2 48 47 4.18E-07  0.002441 0.0059 0.0209 02713
Institute

MIKKELSEN_IPS_WITH_HCP_H3K27ME3 Broad 2 102 97 4.80E-13  2.80E-09 0.0073 0.0239 03346
Institute

FALVELLA_SMOKERS_WITH_LUNG_CANCER Broad C2 80 71 590E-08  0.000344  0.0091 0.0278 04165
Institute

AMUNDSON_GENOTOXIC_SIGNATURE Broad 2 105 94 1.22E-15  7.15E-12 0.0110 0.0305 0.5045
Institute

GSE1460_DP_VS_CD4_THYMOCYTE_UP Nick Haining ~ C7 200 174 1.29E-16  7.53E-13 00113 0.0305 0.5186
lab (DFCI)

GSE3982_DC_VS_TH1_DN Nick Haining ~ C7 200 174 475E-18  277E-14 0.0124 0.0307 05702
lab (DFCI)

ELVIDGE_HIF1A_TARGETS_DN Broad 2 91 85 2.82E-08  0.000165 0.0127 0.0307 05824
Institute

CASORELLI_ACUTE_PROMYELOCYTIC_LEUKEMIA_UP Broad C2 177 150 9.14E-14  534E-10 0.0140 0.0322 0.6444
Institute
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Table 2 Significantly enriched pathways based on differential methylation in newborns exposed to maternal smoking during pregnancy (Continued)

GSE1460_DP_THYMOCYTE_VS_NAIVE_CD4_TCELL_ADULT_BLOOD_UP

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_2H_CD4_TCELL_DN

GSE22886_NAIVE_CD4_TCELL_VS_48H_ACT_TH2_DN

GSE24634_NAIVE_CD4_TCELL_VS_DAY10_IL4_CONV_TREG_DN

GSE3982_CENT_MEMORY_CD4_TCELL_VS_TH1_DN

GSE17974_0H_VS_4H_IN_VITRO_ACT_CD4_TCELL_DN

GSE3982_EOSINOPHIL_VS_TH1_DN

GSE3982_NEUTROPHIL_VS_TH1_DN

GSE24634_NAIVE_CD4_TCELL_VS_DAY7_IL4_CONV_TREG_DN

GSE15215_CD2_POS_VS_NEG_PDC_DN

GSE10856_CTRL_VS_TNFRSF6B_IN_MACROPHAGE_DN

GSE3982_MAC_VS_TH2_DN

Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFC)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFC)
Nick Haining
lab (DFCI)
Nick Haining
lab (DFCI)

Cc7

Cc7

c7

c7

7

Cc7

Cc7

c7

c7

c7

c7

c7

200

200

200

200

200

200

200

200

200

200

200

200

170

181

183

185

185

182

189

182

189

180

170

182

3.93E-19

1.27E-16

T.11E15

591E-15

144E-14

143E-14

7.96E-15

2.96E-16

1.20E-15

3.26E-17

1.47E-06

5.98E-08

2.29E-15

742E-13

6.48E-12

345E-11

8.38E-11

8.32E-11

4.65E-11

1.73E-12

7.00E-12

1.90E-13

0.008573

0.000349

0.0164

0.0172

0.0194

0.0195

0.0195

0.0205

0.0209

0.0215

0.0250

0.0253

0.0274

0.029

0.0353

0.0353

0.0353

0.0353

0.0353

0.0353

0.0353

0.0353

0.0388

0.0388

0.0407

0.0426

0.7547

0.7901

0.8933

0.8948

0.8973

0.9451

0.9599

0.9897

@ Contributor to the corresponding pathway in MSigDB. Additional information about these contributors can be found at: http://www.broadinstitute.org/gsea/msigdb/collection_details.jsp
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Joubert et al. [24] demonstrated that maternal smoking
affects newborn methylation if the mother smokes
through gestational week 18, whereas significant effects
on methylation were not observed for mothers that quit
before 18 gestational weeks. Some studies assessed
smoking during pregnancy as any smoking versus no
smoking. Thus if sustained smoking during pregnancy is
required, as suggested by the methylation analyses, asso-
ciations with cancer might be attenuated or missed
entirely.

In addition to cancer-specific pathways (i.e. HEDEN-
FALK_BREAST_CANCER_BRACX_UP, ENGELMANN_
CANCER_PROGENITORS_UP, FALVELLA_SMOKERS _
WITH_LUNG_CANCER,  CASORELLI_ACUTE_PRO
MYELOCYTIC_LEUKEMIA_UP), changes in pathways
related to cell cycle were detected, which are also relevant
to cancer (ie. GI1_S_TRANSITION_OF_MITOTIC_
CELL_CYCLE, INTERPHASE_OF_MITOTIC_CELL_
CYCLE). These pathway level effects were also mainly
driven by GFII.

However, decreased methylation of the gene Speedy
(SPDYA) (p =0.024, g = 0.28) also contributed to the im-
pact on INTERPHASE OF _MITOTIC_CELL_CYCLE.
SPDYA was not identified in the analysis of individual
CpGs by Joubert et al. [3]. It is a cell cycle regulator that
has been shown to increase cell proliferation through
activation of cyclin dependent kinase-2 (cdk2) during
the G1/S phase of cellular replication [25]. The

ABE_VEGFA_TARGETS_2HR pathway, related to vas-
cular endothelial growth factor-A gene (VEGFA), was
significantly altered (replication g = 0.03). VEGFA mediates
angiogenesis, suppresses apoptosis, and is the pharmaco-
logical target for Bevacizumab, a monoclonal antibody che-
motherapeutic drug [26-28]. VEGFA is increased during
oxidative stress and results in a compensatory increase in
angiogenesis, a hallmark of cancer [28-30].

Furthermore, impacts on pathways WILLIAMS_

ESR1_TARGETS DN and FRASOR_RESPONSE_TO_
ESTRADIOL_UP point towards effects related to estro-
gen receptor-alpha (ERa) signaling which is important in
several cancers [31-33]. Effects on these pathways were
largely mediated through CYP1A1l (p=1.21x107),
which was previously identified by Joubert et al., and
PDZK1 (p = 0.0007) which was not.

Effects on pathways related to cell cycle and angiogen-
esis may also point towards mechanisms by which birth
weight may be affected. Recently, a study by Miller et al.
[34] demonstrated a differential effect on male birth
weight from non-smoking mothers if the maternal
grandmother smoked while pregnant, suggesting a po-
tential epigenetic mechanism may be responsible. De-
creased birth weight is a well-established effect of
maternal smoking on offspring, although the mechanism
by which this occurs has not been elucidated [35].

Through the novel implementation of methods for
creating gene scores [13] and pathway scores [36], we
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have identified and replicated key biological processes
related to maternal smoking via its impact on newborn
DNA methylation. These methods permit replication,
which limits the likelihood of false-positive findings. To
our knowledge, until now no studies of pathway impacts
on methylation have been performed in tandem with a
replication dataset. Furthermore, using gene based tests,
we identified associations with genes not identified by
CpG specific analyses alone — these included FCRLA,
MIR641, SLC25A24, TRAKI, Clorfl80, ITLN2, GLISI,
LRFNI, and MIR451.

The replicated pathway analysis conducted offers po-
tential new insights into the biological impacts of mater-
nal smoking on fetal DNA methylation. The genes and
pathways detected point to effects on T-cell mediation,
cell cycle, and xenobiotic metabolism. In turn, these data
further support a potential epigenetic role for the adverse
health effects observed in children exposed to maternal
smoking during pregnancy.

Methods

Study population

Participants in this analysis include 1062 mother-
offspring pairs from a substudy of the Norwegian
Mother and Child Cohort Study (MoBa) [37-39]. In a
previous study with this cohort, individual CpG sites in
newborns were tested for differential methylation in re-
lation to maternal smoking [3]. This dataset is referred
to as MoBal and was used as the discovery cohort. We
subsequently measured DNA methylation in an add-
itional 685 newborns. This dataset is referred to as
MoBa2 and was used as the replication cohort. The
study has been approved by the Regional Committee for
Ethics in Medical Research, the Norwegian Data Inspect-
orate and the Institutional Review Board of the National
Institute of Environmental Health Sciences, USA, and
written informed consent was provided by all mothers
participating.

Covariates and cotinine measurements

Information on maternal age, parity, and maternal edu-
cation was collected from questionnaires completed by
the mother or from birth registry records. Maternal age
was included as a continuous variable. Parity was catego-
rized as 0, 1, 2, or >=3 births. Maternal educational level
was categorized as previously described Joubert et al. [3],
indicative of less than high school/secondary school,
high school/secondary school completion, some college
or university, and 4 years of college/university or more.
Maternal smoking during pregnancy (none, stopped be-
fore 18 weeks of pregnancy, smoked past 18 weeks of
pregnancy) was assessed by maternal questionnaire and
verified with maternal plasma cotinine measured by
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liquid chromatography - tandem mass spectrometry at
approximately 18 weeks gestation [40].

For MoBal, cotinine, a quantitative biomarker of
smoking, was measured in maternal plasma and was an-
alyzed as a continuous variable. No cotinine was de-
tected in 736 participants, and of the participants with
detectable cotinine levels (N =326) the mean cotinine
level was 191 (SE =11). For MoBa2, cotinine measure-
ments were not available for most mothers. Therefore, a
three-category variable based on the mother’s report of
smoking during pregnancy was created and supported
using cotinine measurements when available (N =221
MoBa2 participants had cotinine data). The three
categories represented no smoking (N=512), stopped
during pregnancy (N =103), or smoked throughout
pregnancy (N = 70).

Methylation measurements

Details of the DNA methylation measurements and
quality control for the MoBal participants were previ-
ously described [3] and the same reagents, platforms and
protocols were used for the MoBa2 participants. All bio-
logical material was obtained from the Biobank of the
MoBa study [38]. Briefly, DNA was extracted from um-
bilical cord whole blood samples [36]. Bisulfite conver-
sion was performed using the EZ-96 DNA Methylation
kit (Zymo Research Corporation, Irvine, CA) and DNA
methylation was measured at 485,577 CpGs in cord
blood using Ilumina’s Infinium HumanMethylation450
BeadChip [41, 42]. The package minfi in R was used to
calculate the methylation level at each CpG as the beta-
value (B =intensity of the methylated allele (M)/(inten-
sity of the unmethylated allele (U) + intensity of the
methylated allele (M) +100)) from the raw intensity
(idat) files [43, 44].

Probe and sample-specific quality control filtering was
performed separately in MoBal and MoBa2 datasets.
Control probes (N =65) and probes on X (N =11,230)
and Y (N=416) chromosomes were excluded in both
datasets. Remaining CpGs missing >10% of methylation
data were also removed (N=20 in MoBal, none in
MoBa2). Samples indicated by Illumina to have failed or
have an average detection p-value across all probes <
0.05 (N =49 MoBal, N=35 MoBa2) and samples with
gender mismatches (N =13 MoBal, N=8 MoBa2) were
also removed. For each dataset, we accounted for the
two different probe designs by applying the intra-array
normalization strategy Beta Mixture Quantile dilation
(BMIQ) [45].

The gPCA program was used to determine the pres-
ence of batch effects, using plate to represent batch and
ComBat was applied for batch correction using the SVA
package in R for both MoBa 1 and MoBa 2 cohorts
[44, 46-48]. A total of 473,772 markers remained
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after data processing, and 365,860 of these markers
mapped to at least one of 21,231 genes using Illumina
provided annotation based on human reference gen-
ome [NCBI build 37].

Covariate selection

All analysis was conducted in the statistical program-
ming language, R [44]. Initially, potential clinical and
demographic variables: maternal age, newborn gender,
education, asthma, folate, and parity were evaluated as
potential covariates prior to association analysis. Each
potential covariate was tested for association with mater-
nal cotinine using linear least squares regression, with
categorical variables dummy encoded in the model(s).
Two-sided p-values from each regression analysis were
recorded, and a False Discovery Rate (FDR) correction
for multiple comparisons was applied to limit false posi-
tives. Covariates with an FDR-adjusted g value < 0.1 were
included in subsequent models [49]. In addition, cell
type fractions (CD8T, CDAT, natural killer cell, B cell,
monocyte, granulocyte) for each subject were calculated
using the reference-based Houseman method in the
minfi package in R [43, 44, 50], and these fractions were
forced as covariates into subsequent models. The same
selection criteria was used for both the discovery and
replication dataset. The only resulting covariate was ma-
ternal education for MoBal (g <0.1), and maternal age,
education, folate, and parity were selected as covariates
for MoBa2 (g <0.1).

Univariate association analysis

Statistical tests for the association of each CpG marker
and maternal plasma cotinine levels (continuous) were
performed using linear least-squares regression for the
MoBal cohort. Significant covariates and cell type frac-
tions were included in the model to reduce confounding.
All CpG p values, on the -log;q scale, were plotted accord-
ing to genomic sequence in a Manhattan plot (Fig. 1).

Gene score calculation

To perform gene-level association analysis, CpG markers
were collapsed by gene using the Illumina provided anno-
tation based on human reference genome [NCBI build 37].
For each gene, the CpG data was combined into a gene-
level p value using the Sequence Kernel Association Test
(SKAT) software implemented in R [12, 13]. The SKAT
null model for MoBal was created using significantly asso-
ciated covariates: maternal education (g < 0.1), and cell type
fractions (CD8T, CD4T, natural killer cell, B cell, mono-
cyte, granulocyte). The same modeling strategy was imple-
mented for the SKAT null model for MoBa2 and included
significantly associated covariates and the cell type frac-
tions. The SKAT model was then run using an unweighted,
linear kernel with the ‘is_check genotype’ flag set to
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FALSE. In order to account for the underlying correlation
structure for the p value gene scores, the SKAT null model
was created with the cotinine values and covariate values
randomly shuffled, and then SKAT was run on the
residuals until 1000 permuted gene scores were cre-
ated. To control for multiple comparisons, we report
gene scores with a FDR ¢<0.25 as being associated
with cotinine levels.

Pathway analysis

The results from the SKAT gene-level association ana-
lysis (specifically p-values) were used for pathway-level
analysis. Genes were grouped into a priori pathways
(gene sets) using the Molecular Signatures Database v4.0
(MSigDB) [51]. MSigDB contains gene sets from a col-
lection of popular resources such as Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) [51]. A subset of pathways was selected
for analysis based on a set of four criteria: 1) the path-
way must be composed of a set of genes from Homo sa-
piens, 2) the number of genes in a pathway cannot
exceed 250 genes, 3) at least one gene in the pathway
must be present in the list of available gene scores, and
4) pathways representing positional gene sets (C1), motif
gene sets (C3), and computational derived gene sets (C4)
were excluded. This resulted in a total of 5836 pathways
for analysis. These pathways came from the either cu-
rated gene sets (C2), GO gene sets (C5), oncogenic sig-
natures gene sets (C6), or the immunologic signatures
gene sets (C7) collections in MSigDB [9]. Each pathway
consists of a set of genes that are considered biologically
relevant to a given biological function or signaling net-
work, and individual genes are often represented in mul-
tiple pathways.

The pathway-level score was calculated from the indi-
vidual gene scores that overlapped with the genes in
each pathway gene set. The pathway level score is the
combined p-value across all gene-level results from the
SKAT analysis. There are a number of approaches for
combining p-values, but most assume that the individual
p-values are not correlated. Pathway analysis actually re-
lies on the fact that genes scores within a pathway are
correlated, so a collapsing approach that explicitly takes
that into account was used. More specifically, the indi-
vidual gene scores were combined into pathway-level
scores using the correlated Lancaster method in Dai et
al. (T,) [36]. This resulted in a final p-value for each
pathway from MSigDB. It is important to note that this
combined p-value represents a self-contained pathway
analysis, where the null hypothesis is that gene sets are
not more strongly associated than expected by chance.
Because of the large number of pathways tested, we con-
trolled for multiple comparisons using a conservative
Bonferroni correction. We chose a conservative
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approach, even though the p-values from each pathway
are not independent, since genes appear in multiple
pathways. Pathways with a corrected p <.05 (n =5836;
p<86x10° were considered statistically significant
in the discovery cohort.

Replication

The statistically significant pathways (p<8.6 x 10™°)
were tested for replication using MoBa2. The CpG
values were combined for genes that occurred in signifi-
cant pathways in MoBal, using SKAT as described
above. Gene scores were then combined using the Lan-
caster approach to calculate a pathway-level score for
the replication cohort. Pathways p values were adjusted
using both an FDR and a more conservative Bonferroni
approach and were considered to be successfully repli-
cated with an FDR ¢ <0.05 (Table 2). Pathway analyses
are commonly divided into self-contained or competitive
approaches. Here we use a self-contained, global null ap-
proach to pathway analysis. An advantage of this ap-
proach is that it lends itself toward replication in smaller
cohorts because only genes in significant pathways from
the discovery cohort need to be tested for replication.
Competitive pathway analysis methods test a different
null hypothesis, and subsequently require all genes to be
tested, which can make replication with smaller cohorts
unfeasible.

Pathway hierarchical clustering

Hierarchical clustering was performed using R and the
‘APE’ package [44, 52]. All unique genes within repli-
cated pathways (g<.05) were tabulated. All gene-
pathway combinations were recorded as either a “1” if
the pathway contained the gene or a “0” if the pathway
did not contain the gene. Clustering was then performed
using Euclidean distance and Ward’s method. The
resulting dendrogram (Fig. 3) was then cut and colored
so that six groups were defined based on gene set
similarity.

Conclusions

We used a novel implementation of bioinformatics tools
to collapse individual CpG results to a gene score and per-
formed pathway analysis to test for in utero epigenetic
changes by maternal smoking in 1062 participants in the
MoBa. By collapsing individual CpG effects to gene scores,
we found significant differential methylation in 15 genes
(g<0.25), nine of which were not detected by only testing
individual CpGs. Furthermore, pathway analysis revealed
significant associations with 51 pathways, 32 of which rep-
licated in an independent cohort of 685 participants. Sig-
nificantly associated pathways, that replicated in the
independent cohort, represent diverse biological processes
including cancer, cell cycle, ERa receptor signaling,
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angiogenesis, and immune system function. This approach
may provide new insight into the biological mechanisms
that may lead to adverse health effects from exposure to
tobacco smoke in utero.
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