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Abstract 

Small cell neuroendocrine cervical carcinoma is a highly aggressive tumor characterized by early metastasis, a high 
recurrence rate, and poor prognosis. This study represents the first instance of single-cell sequencing conducted 
on small cell neuroendocrine carcinoma of the cervix worldwide. Analysis of gene expression regulatory net-
works revealed that the transcription factor TFF3 drived up-regulation of ELF3. Furthermore, our findings indicated 
that the neuroendocrine marker genes and gene regulatory networks associated with small cell neuroendocrine 
cervical carcinoma differed from those observed in lung, small intestine, and liver neuroendocrine carcinoma 
within the GEO database, suggesting tissue-specific origins for these malignancies. Overall, this study addresses a sig-
nificant research in understanding small cell neuroendocrine cervical carcinoma in vivo and provides valuable insights 
for guiding radiotherapy, chemotherapy, and targeted therapy.
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Introduction
Neuroendocrine carcinoma (NECs) [1] are a rare type of 
tumor originating from mutated peptidergic neurons and 
neuroendocrine cells. They exhibit neuroendocrine dif-
ferentiation and express neuroendocrine markers, most 
commonly found in the lungs, gastrointestinal tract, 
and pancreas [2]. The incidence of cervical neuroendo-
crine carcinoma (NECC) is even lower, accounting for 
about 1–1.5% of cervical cancers [3, 4]. Vascular inva-
sion, lymph node or visceral metastasis are found at an 
early stage in NECC. Therefore, NECC shows extremely 

high invasiveness and poor prognosis. The 5-year sur-
vival rate for early stage is about 36%, Only 4% of stage 
III SCNECC patients survive beyond five years [4], and 
the recurrence rate exceeds 90% in NECC [3]. Therefore, 
a deep understanding of the biological behavior of this 
malignant tumor is crucial for clinical treatment.

A study [5] evaluated the clinicopathological character-
istics and prognostic factors of patients with high-grade 
neuroendocrine carcinoma of the cervix (NECC) treated 
surgically. It was found that patients with mixed histo-
logical types of high-grade NECC had better prognoses. 

Graphical abstract
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Ovarian preservation, age > 45  years, tumor size > 4  cm, 
parity > 3, and perineural invasion were identified as pre-
dictors of poor prognosis [5]. A study employing multi-
omics sequencing and analysis of the tumor immune 
microenvironment identified three subtypes of small cell 
neuroendocrine carcinoma of the cervix. The SCCC-I 
subtype, characterized by an inflammatory phenotype 
and high expression of MHC-II and IFN-α/β-related 
genes, was associated with better prognosis and potential 
responsiveness to immune checkpoint inhibitor therapy, 
suggesting that patients with this subtype may benefit 
from immunotherapy [6]. Another study [7] analyzed 
somatic copy number variations (CNVs) in SCNECC 
using whole-exome sequencing (WES), identifying two 
copy number gains (3q27.1 and 19q13.12) and five copy 
number losses (1p36.21, 5q31.3, 6p22.2, 9q21.11, and 
11p15.5). However, the accuracy of WES in detecting 
CNVs may be inferior to that of whole-genome sequenc-
ing. To date, there was few publications about explor-
ing the small cell cervical neuroendocrine carcinoma 
(SCNECC) at the single-cell level. Due to the scarcity of 
samples, most NEC-related research is based on virus-
induced in  vitro models, but there are huge differences 
between in  vitro models and in  vivo tumors because of 
tumor origin process, tumor microenvironment and so 
on. Almost neither single-cell RNA (scRNA) sequencing 
data nor bulk RNA sequencing data of SCNECC is avail-
able in the public database. In an effort to fill this gap, we 
utilized single-cell sequencing techniques to compare the 
tumor and adjacent tissue of SCNECC. By dissecting the 
tumor microenvironment, we identified genes abnor-
mally expressed during the carcinogenic process and pin-
pointed the associated key transcription factors.

Our research addressed the gap in the understanding 
of the in  vivo tumor microenvironment of SCNECC, 
and provided valuable insights for the discovery of new 
potential therapeutic targets for not only cervical carci-
noma, but also other neuroendocrine carcinomas.

We hope that this study can pave new avenues for 
future research on small cell cervical neuroendocrine 
carcinoma and provide more possibilities for future clini-
cal treatment.

Materials and methods
Patients and collection of samples
This study has been approved by the Ethics Commit-
tee of the Obstetrics and Gynecology Hospital affiliated 
with Fudan University. The patient provided written 
informed consent and was preoperatively diagnosed with 
SCNECC. During the surgery, tumor lesions and adjacent 
tissues with a diameter of 1  cm surrounding the cancer 
were collected for single-cell sequencing.

Sample processing and cell sorting
Fresh tissue samples were immediately placed in a sample 
preservation bag with an ice bag for thermal insulation 
and quickly sent to “Jizhiyixue” company for single-cell 
sequencing. Single-cell suspensions were prepared using 
enzymatic digestion, and single-cell sequencing was 
strictly performed according to the instructions of the 
10 × Genomics platform.

Preprocessing of scRNA‑seq data
Unless specifically mentioned, this article utilizes R 
4.1.2 [8] for single-cell data processing, using the default 
parameters of the functions in the regular process. A 
two-tailed P value < 0.05 is considered statistically signifi-
cant. Adobe Illustrator 2020 is used for the final layout 
and combination of pictures. Cytoscape (v3.10.1) is used 
to draw netplots [9].

Data quality control, normalization and standardization
This study uses the DoubletFinder (2.0.3) [10] R package 
to predict and filter double cells for each sample.

The distribution of unique molecular identifiers 
(UMIs), genes, and mitochondria for each project and 
each sample is statistically analyzed to calculate the spe-
cific filtering threshold for each sample. The number of 
cells before and after filtering for each sample can be 
found in (Table  S1). The single-cell sequencing data 
downloaded from the GEO database is filtered based on 
the number of genes and the proportion of mitochon-
dria, with the parameter settings: minGene = 500, max-
Gene = 4000, mitochondrial gene count pctMT = 10.

In order to centralize the dataset with a high degree 
of dispersion, data normalization is performed: the 
gene expression of each cell is divided by the total num-
ber of UMIs (Unique Molecular Identifiers) of the cell, 
then divided by the scaling factor 10,000, and finally 
log-transformed.

Considering the impact of different samples on expres-
sion, in order to eliminate the influence of the average 
level of expression and deviation, the single-cell data is 
standardized: the Z-score is calculated, and the data after 
normalization is converted to data with a mean of 0 and a 
standard deviation of 1.

Batch effect correction and clustering
Batch effect correction is performed using the Har-
mony method. The FindNeighbors function is set with 
dims = 1:20, pc.num = 1:20. Dimensionality reduction 
and clustering are performed using PCA and UMAP 
methods, respectively. Clustering is performed using the 
FindClusters function, with resolution = 0.1 to obtain 
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suitable cell clusterings for subsequent cell type identifi-
cation. The R dittoSeq [11] package is used to visualize 
the proportion of cell composition in each sample.

Marker gene identification
The Wilcoxon algorithm is used to analyze the marker 
genes of each subgroup, and the group one vs rest method 
is used to score the marker genes. The FindAllMarkers 
function is used to select genes that are expressed in at 
least 25% of the cells in each cell subgroup after cluster-
ing and have a logfc > 0.25 as the Marker genes for that 
subgroup.

Cell type identification
First, each cell group is pre-annotated according to the 
universal standard cell type marker (Table  S2), and the 
results are grouped into AllTypes. Then, when the reso-
lution in FindClusters is 0.1, SCNECC single-cell data is 
clustered into 11 major celltypes. SingleR (1.8.1) [12] is 
first used for preliminary cell type identification. Then, 
the EasyCellType [13] package is loaded (R 4.3.0), and 
three databases (cellmarker, panglao, clustermole) are 
used to further identify cell subtypes using two methods 
(GSEA, Fisher’s exact test). Then, the marker genes of cell 
types in high-impact literature [3, 14–17] are verified. For 
undetermined cell types, The top10 Marker genes [18] 
of each population were searched in CellMarker 2.0 [19] 
database and consulted with human experts.

The final determination of cell types is made by inte-
grating SingleR, EasyCellType (Figure S2B-D), marker 
genes in high-impact literature, CellMarker 2.0 database, 
and the opinions of human experts.

Differentiation of tumor cells in epithelial cells by infercnv
The epithelial cells in the paracancerous samples were set 
as the reference cell population, and infercnv (1.10.1) [20] 
was employed to analyze the gene copy number of the 
epithelial cell population in the sample of cervical neu-
roendocrine carcinoma.

Genes with low expression are filtered with cutoff = 0.1, 
noise_filter = NA [21]. In the GEO dataset, immune cells 
(T, B cells) with very low expression of SCNE markers in 
the sample were used as the reference cell group.

Based on the results of infercnv, the distribution of 
highly malignant cell groups is preliminarily judged, and 
then the expr.data in the calculation results of infercnv 
is re-clustered using the kmeans method (kmeans = 3), 
and a heatmap is drawn using the ComplexHeatmap [22] 
package. Cells with obvious malignancy are screened out 
based on the CNV signal [21]. The CNV level of each 
cell is quantified, and the following reference thresholds 
for judging the correlation of benign and malignant are 
given based on the CNV results: highly malignant cells: 

CNV mean > 0.004; non-malignant cells: overall CNV 
mean < 0.002.

Trajectory analysis by monocle 2 analysis and gene 
enrichment
Cell trajectory analysis is performed using Monocle2 
(2.22.0) [23]. The gene expression matrix is extracted 
from the results obtained from infercnv, and the CNV 
score and cluster subgroup labels (kmeans_class) are 
added to the meta.data dataframe of the seurat object. 
The Monocle2 process is then run, with the fullMod-
elFormulaStr of the differentialGeneTest function set 
to ~ sm.ns(CNV_score) (Figure S6). The starting state 
is determined based on the biological process. All dif-
ferential genes are shown in Table  S3. Genes with a q 
value < 0.001 and expressed in > 50 cells are used for cell 
sorting. Genes with q value < 0.0001 and expressed in 
more than 100 cells are selected, sorted by q value from 
small to large, and the top 20 genes are selected for the 
graph. Branch point 1 is selected for the gene heatmap 
related to branch height. The gene cluster is shown in 
Table  S4. The heatmap plotting data is extracted and 
GO enrichment analysis [24] is performed on the genes 
in each cluster subgroup, and the results are plotted as a 
Polar bar Plot using EnrichVisBox [25].

Analysis of other cell subgroups
In addition to the epithelial cell subgroup, there are also 
stromal cells, monocyte cell subgroups, and T cell sub-
groups. Further dimensionality reduction clustering is 
performed using PCA, with the pc.dim parameter uni-
formly set to 30. Clustree [26] is used to determine the 
best resolution for each group, and the top 10 Markers 
of each cell group are extracted for further identification.

Stromal cells typically include fibroblasts, smooth mus-
cle cells, and endothelial cells. In this study, fibroblast 
groups 1 and 2, smooth muscle cell groups 1 and 2, and 
endothelial cells are combined into stromal cells for fur-
ther analysis. The best resolution for re-dimensionality 
reduction clustering of T cell group subsets is 0.3, and the 
marker genes in the study [27, 28] are used to distinguish 
each subgroup. The best resolution for the Monocyte cell 
group was 0.3, and it was found that group 4 is a dou-
blet and was removed. The marker genes in the paper [15, 
29] are used to distinguish various CAFs. Finally, gene 
sets are downloaded and screened from msigdb to per-
form enrichment analysis [30–32] on each subgroup and 
scored using AddModuleScore.

Single‑cell regulatory network analysis by SCENIC
SCENIC (1.3.1) [33] is used for gene regulatory network 
analysis and visualization. The reference databases are 
hg38__refseq-r80__500bp_up_and_100bp_down_tss.
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mc9nr.feather and hg38__refseq-r80__10kb_up_and_
down_tss.mc9nr.feather. The gene selection criteria are: 
the minimum count (minCountsPerGene) of each gene 
in all cells is at least 5% of the total number of cells, and 
each gene is detected in at least 5% of cells (minSam-
ples = 5%). The GENIE3 method is used to construct a co-
expression network. Each gene retains the top 5 weight 
values of TF to obtain a simplified TF-Target association 
table, and then genes are assigned to TF to construct co-
expression modules. RcisTarget is used to identify motifs 
directly bound by transcription factors based on DNA-
motif analysis, and indirect targets lacking motif sup-
port are pruned. After pruning, each TF and its potential 
direct acting target genes form a regulon. Run steps 1 
to 4 of runSCENIC with default parameters, compare 
CNV score re-clustered groups 2 and 3, and also com-
pare epithelial cell groups 1–3 from the perspective of 
cell subgroups, calculate and visualize CSI (Cell Specific-
ity Index). The relationships between important TFs and 
regulatory networks were screened with high confidence. 
Regulons with significant expression in each group are 
further analyzed.

Comparison analysis of cell–cell communication analysis 
by CellChat
This study uses all human databases (Secreted Signaling, 
ECM-Receptor, Cell–Cell Contact) in CellChat (1.6.1) 
[34]. The seurat object is divided into two objects based 
on orig.ident and CellChat is used to calculate communi-
cation probabilities and communication networks based 
on ligand-receptor pairs, and filter out communications 
between cell groups with < 10 cells. The aggregated cell 
communication network and network centrality scores 
are calculated and the object is integrated for further 
analysis.

Survival data validates gene expression and prognosis
Data from the small cell lung cancer study [35] published 
in Nature in 2015 is downloaded from cBioPortal [36–38]. 
With a q value < 1*10–10 and num_cells_expressed > 100 
as the standard, differential genes analyzed by Monocle 
from CNV-H kmean groups 2 and 3 are selected.

The differential gene expression obtained from 
Monocle is selected in the mRNA expression matrix 

(data_mrna_seq_fpkm.txt) and merged with survival 
data (data_clinical_patient.txt), and a survival object is 
created with the Overall Survival (Months) and Overall 
Survival Status. The surv_cutpoint function in the sur-
vminer [39] package is used to select the best cutoff for 
survival analysis, and the population is divided into high 
and low expression groups for each gene. The survival 
curve is plotted using the survival [40] package, and the 
log-rank test is used to calculate the p-value for progno-
sis differences.

Download of GEO dataset
Data from lung neuroendocrine carcinoma 
(GSM5870250, GSM5870256, GSM5870258), 
small intestine neuroendocrine carcinoma primary 
lesion (GSM4159164) and its liver metastatic lesion 
(GSM4159165) [41] downloaded from GEO. Among 
them, GSM5870250 and GSM5870258 are histologi-
cally atypical carcinoids, and GSM5870256 is histologi-
cally typical carcinoid, all of which are well differentiated. 
The data downloaded from GEO is analyzed with Seu-
rat_4.3.0 [42], with min.cells set to 3 and min.features set 
to 200 to filter out low-quality cells. The analysis is car-
ried out according to the previous process.

Data availability statement
The data and scripts supporting the findings of this study 
will be provided during review. All data in the study are 
available from the corresponding author upon reasonable 
request.

Results
ScRNA‑seq data revealed the cellular composition 
of SCNECC
To fully characterize the cell composition of the tissues 
of SCNECC, we collected SCNECC samples from one 
patient for single-cell RNA sequence (Fig. 1A, B). A total 
of 25,264 cells and 23,124 genes passed quality control. 
The cells were pre-annotated by standard cell type mark-
ers and grouped into AllTypes (Figure S1).

All cells were clustered into 11 classes at a resolution 
of 0.1 by UMAP dimensionality reduction (Fig.  1D).We 
utilized marker genes specific to different cell subsets, 
as described in the classical literature, for the purpose of 

(See figure on next page.)
Fig. 1 Single-cell data annotation and small cell neuroendocrine tumor cell identification. A A schematic diagram showing the single-cell 
sequencing process. B UMAP dimensionality reduction plot of single-cell sequencing data from normal and tumor samples, where each point 
represents a single cell. C, D Bar plots showing the proportion and difference of different cell types in normal and tumor samples. E At UMAP 
resolution of 0.1, the samples were clustered into 11 cell subgroups. F The correspondence between the 11 cell subgroups obtained from UMAP 
dimensionality reduction clustering and the classic cell marker genes. G Comparison of the expression of classic neuroendocrine markers, growth 
inhibitory receptors, neuroendocrine-related transcription factors, and cell proliferation markers in each cell subgroup by sample
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Fig. 1 (See legend on previous page.)
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identifying and distinguishing various cell types in our 
study. (Fig. 1F).

We identified 11 cell types based on canonical cell 
markers (Fig.  1B), including Fibroblasts1 (5754), T cells 
(4037), endothelial cells (3145), monocytes (2652), Fibro-
blasts2 (2408), smooth muscle cells1 (2322), smooth 
muscle cells2 (1749), epithelial cells1 (1690), epithe-
lial cells2 (960), epithelial cells3 (344) and B cells (203) 
(Table S5).

Identification of neuroendocrine tumor cells
First, the marker genes of neuroendocrine were used to 
locate neuroendocrine tumor cells in the 5 major cell 
groups pre-annotated by AllTypes, and we found that the 
epithelial cell group had significant expression of neu-
roendocrine cell marker genes SYP, ASCL2, POU2F3, 
FOXA2 (Figure S1G). The Epithelial_cells1 cell group 
of tumor samples has higher expression of neuroendo-
crine marker genes SYP, SSTR1, SSTR2, ENO2, ASCL2, 
FOXA2, and proliferation markers (such as MKI67) than 
normal samples (Figure S1H).

Then, the related genes of neuroendocrine carcinoma 
were used to further locate neuroendocrine tumor cells 
in the 11 cell groups, and we found that in the epithelial 
cell group, classic neuroendocrine markers (SYP, CHGA, 
CHGB, CALCA, CALCB, ENO2, NCAM1), somatostatin 
receptors (SSTR1-3), neuroendocrine-related transcrip-
tion factors (ASCL1-2, POU2F3, YAP1, FOXA2, TFF3), 
and cell proliferation markers (AURKA, BIRC5, CCNB1, 
CCNE1, CDC20, CDC6, CENPF, CEP55, EXO1, MKI67, 
KIF2C, MELK, MYBL2, NDC80, ORC6, PTTG1, RRM2, 
TYMS, UBE2C) all have significant expression compared 
with other groups (Fig. 1G). The epithelial cell group of 
tumor samples had higher expression of neuroendo-
crine marker genes SYP, SSTR1, SSTR2, ENO2, ASCL2, 
FOXA2, and proliferation markers (such as MKI67) than 
normal samples.

Copy number variation in cervical neuroendocrine 
epithelial cell populations
Preliminary results of InferCNV
Because the marker genes of neuroendocrine carcinoma 
were highly expressed in the Epithelial_cells 1 (Fig. 2A), 

it inferred that there might be highly malignant neuroen-
docrine tumor cells in the epithelial cell groups. There-
fore, with the help of inferCNV, the Epithelial_cells1, 2, 3 
cell groups of normal samples were used as the reference 
cell group, and the Epithelial_cells1, 2, 3 cell groups of 
tumor samples were used as the observation cell group to 
further analyze the copy number variation, identify and 
locate highly malignant cell groups. The results showed 
that when compared with normal epithelial cell groups, 
Epithelial_cells1 in tumor samples had obvious CNV 
changes (Fig.  2B). As can be seen in the figure, Epithe-
lial_cells1 of tumor samples showed large segment copy 
number increases and decreases in multiple chromo-
somal regions, while the copy number changes of Epithe-
lial_cells2, 3 were lighter.

Epithelial cells re‑cluster by CNV scores
Because the CNV heterogeneity of Epithelial_cells1 cells 
in tumor samples was obvious, all epithelial cell CNV 
score could be re-clustered into 3 classes (Fig. 2C). After 
re-clustering, the CNV changes were most significant 
in the second cell subgroup identified by k-means clus-
tering, while the first subgroup showed no significant 
changes, and the third subgroup exhibited changes that 
were intermediate between the other two.

Since the more obvious the tumor cell chromo-
some copy number variation, the greater the difference 
between them and normal cells, the higher the malig-
nancy of the them [43], we speculated that the second 
class of cells had the highest malignancy. According to 
the source of epithelial cells, the second class mainly cor-
responded to the Epithelial_cells1 in tumor.

CNV quantification
In order to compare the degree of CNV changes, the 
cells after re-clustering were further quantitatively ana-
lyzed for CNV score (Fig.  2D), and we found that the 
CNV score was highest in the second class, lowest in the 
first class, and the third class was in the middle transi-
tion state. The UMAP dimensionality reduction plot 
showed the distribution of CNV score in epithelial cell 
and kmeans_class (2, 3 cell classes) after re-clustering by 
sample (Fig. 2E, F). The CNV score of epithelial cells in 

Fig. 2 CNV analysis and re-clustering of epithelial cells. A Expression proportion and intensity of classic neuroendocrine marker genes (SYP, CHGA) 
and transcription factors (ASCL1, ASCL2, POU2F3) in each cell subgroup. B Using the Epithelial_cells1, 2, 3 of normal samples as the reference 
cell group (upper heat map), and the Epithelial_cells1, 2, 3 cell groups of tumor samples (lower heat map) as the observation cell group for CNV 
analysis and the results of inferCNV. The horizontal axis represents the 22 chromosomes arranged in order, and the different colors on the vertical 
axis correspond to different cell subgroups. C According to the results of inferCNV, the heat map of all epithelial cells in normal and tumor samples 
after re-clustering (kmeans_class = 3). The horizontal axis represents the genes on chromosomes 1–22. D Share the same legend as C, it shows 
the CNV quantification of the 3 cell subgroups after re-clustering. E UMAP reduction plot showing the distribution of different CNV score cells 
by sample. F UMAP reduction plot showing the distribution of class 2 and class 3 cell after CNV re-clustering by sample

(See figure on next page.)
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normal samples was lower, while the score in tumor sam-
ples was higher, and the kmeans_class 2 cells with the 
highest CNV score all appeared in tumor samples.

Pseudotime analysis of malignant cells
Pseudotime analysis
To infer the origin and development process of 

A Bclincal TF

S
Y

P

C
H

G
A

A
S

C
L1

A
S

C
L2

P
O

U
2F

3

Fibroblasts1_normal
Fibroblasts1_tumor

T_cells_normal
T_cells_tumor

Endothelial_cells_normal
Endothelial_cells_tumor

Monocyte_normal
Monocyte_tumor

Fibroblasts2_normal
Fibroblasts2_tumor

Smooth_muscle_cells1_normal
Smooth_muscle_cells1_tumor

Smooth_muscle_cells2_normal
Smooth_muscle_cells2_tumor

Epithelial_cells1_normal
Epithelial_cells1_tumor

Epithelial_cells2_normal
Epithelial_cells2_tumor

Epithelial_cells3_normal
Epithelial_cells3_tumor

B_cell_normal
B_cell_tumor

Percent 
Expressed

0
5
10
15

normal_Epi 1 normal_Epi 2 normal_Epi 3

tumor_Epi 1 tumor_Epi 2 tumor_Epi 3

C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122km

ea
ns

_c
la
ss

cl
as
s

kmeans
class

1
2
3

class
tumor_Epi 1
tumor_Epi 2
tumor_Epi 3
normal_Epi 1
normal_Epi 2
normal_Epi 3

M
od

ifi
ed

 e
xp

re
ss

io
n

0.85

1

1.15

0.000

0.005

0.010

0.015

1 2 3
kmeans_class

C
N

V
_s

co
re

D

E Fbingzao zhengchang

0 4 8 0 4 8
−12.5

−10.0

−7.5

−5.0

−2.5

U
M
A
P
_2

0.004

0.008

0.012

0.016

CNV_score
bingzao zhengchang

0 4 8 0 4 8
−12.5

−10.0

−7.5

−5.0

−2.5

UMAP_1

U
M
A
P
_2

2
3

kmeans_class

Fig. 2 (See legend on previous page.)



Page 9 of 21Wang et al. Journal of Translational Medicine           (2025) 23:19  

neuroendocrine tumor cells, we performed the pseudo-
time analysis of the second class (CNV high cell group) 
and the third class (CNV medium transition cell group) 
after re-clustering (Fig.  3A, B). In the pseudotime anal-
ysis, normal cells gradually transformed into tumor 
cells (Fig.  3C), the CNV score value of cells gradually 
increased (Fig. 3D), and the cell groups gradually became 
malignant. Most of the cells in the right side of Figure E 
were the third class of cells after re-clustering (green), 
and most of the cells on the left side were highly malig-
nant second class cells (red), indicating that the CNV 
score changes from low to high during pseudotime. Fig-
ure F showed the classification of cell subgroups, and 
there were more Epithelial_cells 2, 3 groups on the right 
side, and gradually differentiate into the Epithelial_cells1 
group (SCNE classic marker positive). In summary, it was 
speculated that the occurrence of tumors might evolve 
from normal Epithelial_cells1,2 to normal sample’s Epi-
thelial_cells3, gradually transform into lesion Epithe-
lial_cells 2,3 group, and finally become neuroendocrine 
carcinoma (Epithelial_cells1).

Analysis of gene transformation during cell malignancy 
and GO enrichment
Previously, we discovered and demonstrated the pro-
cess of cervical neuroendocrine carcinoma transform-
ing from normal tissue to malignant tumor. Next, we 
further explored the transformation in genes during the 
process of cell malignancy. Heat map (Fig.  3G) showed 
the changes in gene expression among cells with distinct 
fatesat branch point 1 during the process of cell malig-
nancy, and these genes were clustered into 3 classes. In 
the pseudotime trajectory, from the middle to both sides, 
the genes of C1 decreased in state1 and slightly increased 
in state2 cells, while the genes of C2 slightly decreased 
in state2 but significantly increased in state1 cells. The 
expression pattern of C3 group genes was not obvi-
ous. In order to explore the biological function of these 

changing gene sets in small cell cervical neuroendocrine 
carcinoma, the genes in C1 and C2 classes were extracted 
and enriched by GO. The C2 gene set enrichment pri-
marily focued on pathways such as cell–cell junction, 
wound healing, and actin binding. These pathways were 
mainly related to cell–cell connections. The C1 gene set 
enrichment primarily emphasied on pathways such as 
ribosomal subunit, structural constituent of ribosome, 
and cytoplasmic translation. These pathways were mainly 
related to ribosome synthesis within the cell (Tables 
S6–8).

Gene expression changes and prognosis
In the process of malignant transformation of tumor cells, 
ELF3 was a significantly up-regulated gene in the epithe-
lial cell population of small cell cervical neuroendocrine 
carcinoma during (state 1) malignant transformation, 
and showed a downward trend in the transitional cell 
population (state 2) (Fig.  3J–N).While other genes such 
as CALD1, COL1A1, COL1A2, COL3A1, DCN, TAGLN, 
TIMP1, VIM, LGALS1, MT2A showed an opposite trend 
(Figure S3). In smallcell lung neuroendocrine carcinoma, 
there was no significant difference in the prognosis 
between ELF3 high expression group and low expres-
sion group (p = 0.16). There were significant differences 
between the high and low expression groups of CALD1 
(p = 0.0039), COL1A1(p = 0.0001), COL1A2(p = 0.0018), 
MKI67(p = 0.0041), COL3A1(p = 0.002), IGFBP7 
(p = 0.00079), COL1A1 (p = 0.00079) and so on. (Fig. 3O–
S, Figure S3).

Gene expression and regulatory networks in malignant 
cells
Gene expression and regulatory networks
Pseudotime analysis exhibited differences in gene expres-
sion during the malignant transformation of small cell 
cervical neuroendocrine carcinoma cells. Therefore, 
further exploration of the gene regulatory expression 

(See figure on next page.)
Fig. 3 Pseudotime analysis and GO enrichment of re-clustered epithelial cells 2 and 3. A–F Pseudo-temporal plot of the Epithelial Cells 2 and 3 cell 
group after re-clustering, where each point represents a single cell. A The color gradient from dark to light indicates the progression of pseudotime. 
B Branch node 1 divides the cell group into 3 states. C The origin of samples. D The distribution of CNV scores. E The classification of each cell 
after CNV re-clustering. F The group of epithelial cells to which each cell belongs. G Heatmap showing the differential gene expression patterns 
of cells with different cell destinies at branch point 1. Rows represent genes, and columns represent cells. In the heatmap, the redder (bluer) 
the color, the higher (lower) the gene expression level. H Stacked polar bar chart showing the results of GO enrichment of cluster1 genes in G. The 
color gradient of the central column represents the p-value of the GO term; the height of the column represents the number of differential genes 
enriched to the GO term. I Stacked polar bar chart showing the results of GO enrichment of cluster2 genes in G. J, K, L, M, N Showing the changes 
in the expression levels of important differential genes (ELF3, CALD1, COL1A1, COL1A2, MKI67) as pseudotime progresses. Shared legend 
and horizontal axis: Each point represents the expression level of the gene in a cell. The horizontal axis represents pseudotime, and the vertical axis 
represents gene expression level. O, P, Q, R, S Survival curve plots of small cell lung cancer patients grouped by high and low gene expression, 
corresponding to J, K, L, M, N. The dashed lines on the horizontal and vertical axes represent the median survival time and median survival rate, 
respectively
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network was necessary (Table  S9, Fig.  4A, B). By ana-
lyzing the gene expression regulatory network from the 
perspective of epithelial cell subgroup and CNV re-clus-
tering, we found that TFF3 was more specific in Epithe-
lial cells1/re-clustered 2 cell group (which represented 
high copy number variation, CNV-H), and CEBPB was 
very specific in Epithelial cells3/re-clustered 3 cells 
(which represented middle copy number variation, CHV-
M) (Fig.  4C–L, N–P). TFF3 mainly regulated EPCAM, 
ELF3 (Table  S10), while CEBPB mainly regulated FTL, 
LITAF (Table S11).

Transcription factors and prognosis
To further investigate the impact of the expression levels 
of significant transcription factor genes on patient prog-
nosis, patients with small cell lung cancer were catego-
rized into high/low expression groups based on mRNA 
expression levels. It was observed that the prognosis 
of patients with TFF3 high expression group was sig-
nificantly better than those of the low expression group 
(p = 0.004) (Fig. 4M). No significant difference was noted 
for CEBPB (p = 0.081) (Fig. 4Q).

Verification of GEO neuroendocrine carcinoma
In the comparison of single-cell sequencing data from 
pulmonary neuroendocrine tumors, primary small intes-
tine lesions, and liver metastases of neuroendocrine 
tumors on GEO, the results revealed tissue heterogene-
ity in cellular composition and proportions across the 
samples (Fig.  5A, B). CHGA and CHGB were found to 
be more sensitive in cancer cells of pulmonary, small 
intestine, and liver neuroendocrine tumors, while the 
expression ratio of SYP was slightly lower. ENO2 expres-
sionin pulmonary, small intestine, and liver neuroendo-
crine tumors was partial and not universal (Fig. 5C). The 
gene expression regulatory networks of neuroendocrine 
tumors from different samples exhibited heterogene-
ity, and transcription factors showed sample specificity. 
ETV1 was more specific in GSM5870258, while JUND_
extended (2126  g) was more specific in GSM4159165. 

The network diagram displayed transcription factors 
were common in both pulmonary and cervical neuroen-
docrine tumors (Fig.  5J). The key transcription factors 
that were common to these two neuroendocrine carci-
nomas primarily include CEBPB, POLR2A, SNAI1, YY1, 
PBX1, ELK3, SOX4, ELF1, ATF3, XBP1, NR2F6.

Features of other cell groups in SCNECC
T cell subgroups
In SCNECC, T cells were divided into four subgroups, 
including conventional CD4 T cells (CD4_T), CD8 T cells 
(CD8_T), T regulatory cells (CD4_Treg), and γδT (Tgd) 
(Fig. 6). CD4_T was featured by CD3D and CD4, CD8 T 
cells was featured by CD8A and CD8B, CD4_Treg was 
featured by TIGHT, and Tgd was featured by KLRD1. The 
γδT subgroup played a major role in cytotoxic tumor cell 
killing, yet it was the least abundant. The CD8 subgroup, 
typically associated with cytotoxic functions, exhibited 
the poorest stemness and highest exhaustion scores.

Monocytes subgroups
Monocytes were divided into three subgroups: mac-
rophages, MDSCs, and DCs. Macrophages was featured 
by C1QA, C1QB, C1QC, APOE. MDSCs was featured 
by FCN1, and DCs was featured by CLEC9A (conven-
tional dendritic cells1) and CD1C (conventional dendritic 
cells2). Macrophages were more prevalent in tumor sam-
ples and had been found to possess a high potential for 
phagocytosis, while MDSCs exhibited high angiogen-
esis and MDSC scores, suggesting their primary role in 
promoting angiogenesis and assisting tumor metastasis 
within the tumor. DCs possessed a relatively high anti-
gen-presenting function but a low phagocytic function 
(Fig. 7).

Stromal cells
Previous studies indicated that cancer-associated fibro-
blasts (CAFs) exhibited significant heterogeneity within 
the tumor microenvironment and played a pivotal role. 
This study identified several CAF subgroups in SCNECC, 

Fig. 4 Analysis of gene expression regulatory network of tumor neuroendocrine cell subsets. A Heat map of comparing gene expression regulatory 
networks in different cell populations after CNV re-clustering, showing regulon activity in different cell subsets. B Heat map of comparing 
the regulatory network of gene expression in epithelial cell. C Epithelial cell Regulon Specificity Score (RSS) plot showes the cell type-specific 
regulon in each epithelial cell groups. The size of the dot represents the RSS score, and the yellower color of the dot, the higher specificity of this 
regulon in this cell type. D RSS plot of cell groups after CNV re-clustering shows the specific regulon of each cell type after CNV re-clustering. The 
legend is as same as Fig. 4C. E, F, G, H, I The top 3 regulon in each cell group of epithelial cells and CNV re-clustered cells. J Distribution of regulon 
TFF3_173g in UMAP dimensionality reduction results; K The upper ridge plot and the lower violin plot show the distribution of TFF3_173g 
in different epithelial cell subsets. L Ridge plot and violin plot below show the distribution difference of TFF3_173g among cell groups after CNV 
re-clustering. M K-M survival curve of TFF3 high expression group and low expression group in small cell lung cancer patients. The N, O, P 
and Q plots are similar to J, K, L and M, respectively, showing the distribution of regulon CEBPB_117g in UMAP dimension reduction results, 
the distribution difference among different cell subsets and the K-M survival curve of small cell lung cancer

(See figure on next page.)
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including inflammatory CAFs (i_matrix_CAF), RAMP1 
positive soomth musscle cells (RAMP1 + _SMC), anti-
gen-presenting CAFs (apCAF), IGKC positive CAF 
(IGKC + _CAF), inflammatory matrix CAFs with a highly 
activated metabolic state (i_matrix_me_CAF), iCAF or 
SMC (iCAF_SMC), vascular CAFs (vCAF), GNG11 posi-
tive apCAF (GNG11 + _apCAF) (Figure S4). In tumor 

samples, the proportions of apCAF, SMC, and vCAF 
were notably reduced, while iCAF, matrix CAF, and 
meCAF subgroups were more prevalent.

Cell–cell communication among subgroups of SCNECC
After analyzing individual cell subgroups, we sought to 
further explore the interactions among SCNECC cells. 
Given the critical role of T cells in tumor immunity, T 
cell subgroups were renamed based on previous identifi-
cation results. Cell communication analysis revealed that 
while the overall intensity of communication in SCNECC 
tumor samples remained unchanged compared to normal 
cell samples, the total number of interactions increased. 
Normal and tumor cells shared 65 signaling pathways, of 
which 24 were unique to tumors and some were associ-
ated with the nervous system and tumorigenesis. Normal 
tissues exhibited high levels of THBS and CCL signals 
and a high proportion of IL-I signals. In tumors, MHC-II 
signal flow was strong, and SPP1 was most specific. Cell-
autonomous signaling in small cell cervical neuroendo-
crine tumor cells (Epithelial_cells1) differed from normal 
cells, including DESMOSOME, MPZ, CDH, and EPHA 
signals (Fig. 8).

Fig. 5 Neuroendocrine markers and gene expression regulatory 
network analysis of lung, small intestine, and liver neuroendocrine 
carcinoma in GEO data. A Bar graphs: the bar graphs display 
the composition of major cell types in different GEO single-cell 
sequencing datasets. GSM5870250, GSM5870256, GSM5870258 
represent lung adenocarcinoma; GSM4159164 indicates small 
intestine neuroendocrine carcinoma (primary lesion); GSM4159165 
denotes liver neuroendocrine carcinoma (metastatic lesion). B Cell 
type proportions: the bar graphs show the proportions of different 
cell types across various GEO single-cell sequencing datasets 
(neurons: small cell lung cancer cells, Neurons1/2: small intestine/
liver neuroendocrine tumor cells). C Dot plots: the dot plots of GEO 
data illustrate the expression levels of classic neuroendocrine 
markers, somatostatin receptors, and transcription factors 
across different cell subgroups; D RSS plots: the RSS plots reveal 
regulons specific to neuroendocrine tumor cells (Neurons) in lung 
neuroendocrine carcinoma. The size of the dots represents the RSS 
score, and the more yellow the color, the higher the specificity 
of the regulon in that cell type. E The RSS plots reveal regulons 
specific to neuroendocrine tumor cells (Neurons1/2) in small 
intestine and liver neuroendocrine carcinoma. Legends are as same 
as decribed in D. F Distribution of CEBPD_13g: the distribution 
of CEBPD_13g within the UMAP dimensionality reduction results 
is depicted (left) while the ridge plot (top right) and violin plot 
(bottom) both illustrate the distribution differences of CEBPD_13g 
across various samples. G, H, I TFs’ Distribution: G, H, and I display 
the distribution differences of NFIB_39g, ETV1_20g, and FOS_60g 
across different samples, with legends corresponding to F. J Network 
diagram: the network diagram reveals the intersection of gene 
expression regulatory networks between small cell neuroendocrine 
cervical carcinoma and small cell neuroendocrine lung carcinoma. 
Blue represents transcription factors common to both; green denotes 
transcription factors or target genes shared by both

◂
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Discussion
This single-cell study discovered that ELF3 gene upregu-
lated in SCNECC tumor cells during the malignant trans-
formation process. And TFF3 regulated the transcription 
of the ELF3 gene.

Studies of ELF3 in SCNECC
The ELF3 gene, encoding a 371-amino acid protein, 
is an epithelial cell-specific ETS transcription factor 

involved in development and disease [44]. ELF3 is an 
epithelial cell-specific transcription factor [44]. Genes 
regulated by ELF3 are closely associated with malig-
nant phenotypes, such as tumor initiation, progres-
sion, invasion, and metastasis. ELF3 functions dually 
as a tumor suppressor and an oncogene. ELF3 acts as 
an oncogene in lung, liver, and breast cancers, and as 
a tumor suppressor in ovarian and oral cancers. [45]. 
Currently, there are no studies on ELF3 in small cell 
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neuroendocrine carcinoma of the cervix (SCNECC). 
Studies have linked ELF3 to super-enhancers in neu-
roendocrine carcinomas [46]. Certain super-enhanc-
ers in malignant tumors may be aberrantly activated, 
leading to the overexpression of oncogenes that pro-
mote tumor cell proliferation, survival, and invasion. 
The ELF3 gene is highly expressed in cervical cancer 
tissues but not in normal tissues [47]. ELF3 can pro-
mote the proliferation and invasion of cervical cancer 
cells, resulting in poor prognosis [44]. Increased ELF3 
expression during cervical neuroendocrine carcinoma 
malignancy suggests its potential as a biomarker for 
early detection and prognosis. Further exploration is 
needed to elucidate the specific mechanisms of ELF3 
aberrant expression in cervical neuroendocrine car-
cinoma. Inhibition of ELF3 or its downstream effec-
tors could lead to new targeted therapies. Personalized 
treatment based on ELF3 expression levels could poten-
tially enhance therapeutic efficacy and reduce unneces-
sary side effects.

In addition to super-enhancers, mutations in the 
ELF3 gene itself may also be a significant cause of neu-
roendocrine carcinoma. ELF3 gene frameshift muta-
tions occur in 13% of cervical cancers [48]. Compared 
to wild-type tumors, cervical adenocarcinomas with 
ELF3 mutations express higher levels of ELF3 mRNA 
[44]. Currently, there are no studies on ELF3 muta-
tions in small cell neuroendocrine carcinoma of the 
cervix (SCNECC). In this SCNECC single-cell study, 
inferCNV was used to predict changes in DNA copy 
number, revealing large segmental amplifications and 
deletions on chromosome 1 in SCNECC. Specific loci 
require further investigation using specialized muta-
tion detection.

The ELF3 gene is closely associated with high-risk 
HPV infection in cervical cancer [48]. Neuroendocrine 
cervical cancers are often linked to HPV. A multicenter 
study [7] involving 64 SCNECC patients, integrating 
whole-exome and RNA sequencing analyses, found that 
HPV DNA was detected in 65.6% (42/64) of the tumors. 
ELF3 upregulation in HIDDEN cells suggests its role as 
an HPV-induced transcriptional driver [49]. In our sam-
ples, in situ hybridization results of postoperative patho-
logical samples indicated high-risk HPV (+). The patient 
tested positive for HPV-18 within one month before sur-
gery. Single-cell analysis revealed upregulation of ELF3, 
mediated by TFF3, during SCNECC transformation, sug-
gesting its potential as an early diagnostic marker. These 
findings suggest that the expression of the transcription 
factor ELF3 is potentially closely related to high-risk HPV 
(types 16 and 18) infection, warranting further explora-
tion. Reviews link SCNECC more closely to HPV-18 than 
HPV-16 [50].

However, there have been no reports on whether the 
ELF3 and TFF3 genes undergo mutations or amplifica-
tions in SCNECC. Further exploration of the ELF3-HPV 
relationship in SCNECC is warranted.

A retrospective study analyzed the liquid-based cytol-
ogy characteristics of small cell neuroendocrine car-
cinoma of the cervix [51]. The results showed that 
although the initial cytological screening had a positive 
rate of 63.6% (7/11), none were accurately diagnosed as 
small cell carcinoma of the cervix. The potential of using 
ELF3 as an auxiliary diagnostic marker to improve the 
initial screening accuracy for small cell neuroendocrine 
carcinoma of the cervix (SCNECC) warrants further 
exploration.

Studies of TFF3 in SCNECC
TFF3 is predominantly expressed in the columnar epithe-
lium of the cervical endometrium, not in the squamous 
epithelium [52]. Upregulation of TFF3 in neuroendocrine 
cells of cervical cancer suggests a possible origin from 
columnar epithelium. The columnar epithelium’s close 
association with neuroendocrine carcinoma suggests 
potential for abnormal differentiation into tumors.

TFF3 is implicated in CTC migration and hematog-
enous dissemination, with higher expression in CTCs 
and lung metastases [53]. Our study indicates TFF3’s role 
in early hematogenous metastasis of SCNECC, possibly 
through intercellular connection remodeling.

TFF3 serves as a marker for epithelial-like CTCs, and 
its upregulation of ELF3 may enhance CTC detection 
[53]. Our gene expression regulatory network analysis 
revealed that TFF3 upregulates ELF3 expression with 
high confidence and correlation. TFF3 is anticipated to be 
a marker for epithelial tumor hematogenous metastasis.

Markers of small cell neuroendocrine carcinoma
Identification of small cell neuroendocrine carcinoma 
cells requires combined analysis of various neuroendo-
crine markers and tumor proliferation factors.

Chromogranin A (CgA) and Synaptophysin (Syn) are 
two significant neuroendocrine carcinoma immuno-
histochemical markers clinically [1, 54]. The encoding 
genes for CgA and Syn are CHGA and SYP, respectively. 
In SCNECC, the expression ratio of SYP was low, while 
that of CHGA was even lower, indicating that these com-
monly used classical neuroendocrine markers are not 
sensitive enough. They may not be entirely suitable for 
identifying rare neuroendocrine carcinomas occurring at 
non-canonical sites, potentially due to the unique tumor 
microenvironment at various locations. Therefore, there 
is a need to discover markers that possess higher sensitiv-
ity [55].
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Studies have shown that the encoding genes for soma-
tostatin receptors were often highly expressed in neu-
roendocrine tumor cells [56]. In SCNECC, SSTR1 and 
SSTR2 were significantly overexpressed in neuroendo-
crine tumor cell clusters, serving as markers for neu-
roendocrine tumor identification. This suggested that 
targeted drugs approved for the treatment of neuroen-
docrine tumors [56] (such as octreotide and lanreotide) 
could also be used to treat patients with SCNECC.

ASCL1, NEUROD1, POU2F3, and YAP1 were impor-
tant transcription factors in neuroendocrine carci-
noma, which were used to divide four major subgroups 
in lung neuroendocrine carcinoma [1]. In the small cell 
neuroendocrine prostate cancer model, ASCL1 and 
ASCL2 marked different transdifferentiation trajecto-
ries of tumor cells [14]. In our SCNECC smaple, ASCL2 
had a higher expression ratio than ASCL1, suggesting 
that ASCL2 may be more suitable for the identification 
of SCNECC. A study indicates that the expression of 
NEUROD1 is an independent prognostic factor for poor 
outcomes in SCNECC [57]. However, in our sample, 
NEUROD1 expression was not detected.

FOXA2 was a sensitive and specific marker for small 
cell prostate neuroendocrine carcinoma [14], and it also 
had high sensitivity and specificity in SCNECC. In our 
data, the expression ratio of FOXA2 was high and it was 
only enriched in tumor epithelial tissue. Therefore, it 
could clearly distinguish tumor epithelium from normal 
epithelial cells. Consequently, FOXA2 had great poten-
tial and could be attempted for the identification of other 
rare and complex neuroendocrine carcinomas.

CALCA and CALCB co-encode the neuropeptide 
CGRP (Calcitonin Gene-Related Peptide) [58], a marker 
for mature (Neuroendocrine) NE in the lungs. The 
expression levels of CALCA and CALCB in SCNECC 
were very low, which was possibly due to significant func-
tional differences between neuroendocrine cells in the 
cervix and lungs, indicating that the CALCA and CALCB 
genes were limited by tissue origin for neuroendocrine 
tumor identification.

Origin and malignant transformation of neuroendocrine 
tumor cells
This study suggested that small cell neuroendocrine 
cervical carcinaoma cells may originate from epithelial 
cells. In SCNECC, proliferation markers in epithelial cell 
groups were significantly upregulated, while there was 
no significant expression in stromal cells and immune 
cells. Pseudotime analysis showed that cell types under-
went a gradual transition from normal cells to tumor 
cells by pseudotime trajectory, rather than an abrupt 
cutoff, indicating that the malignant transformation of 
tumor cells was a gradual process. SCNECC single-cell 

data suggested high heterogeneity and complex origins of 
neuroendocrine carcinoma tumors.

Overall signaling pathway differences in neuroendocrine 
carcinoma
The THBS signaling pathway played a protective role in 
normal tissues, consistent with literatures [59, 60]. How-
ever, in small cell cervical neuroendocrine carcinoma 
tissues, THBS-related signals were significantly weak-
ened, contributing to tumor occurrence, progression, 
and metastasis. In tumors, MHC-II class signals were 
abnormally active when compared to normal samples, 
suggesting the presence of active exogenous antigen pres-
entation activities in the tumor microenvironment. It 
indicated that infection by exogenous pathogens might 
be the cause of SCNECC. We conducted an analysis of 
the relevant signaling pathways, the details of which are 
not presented here.

Potential of immunotherapy in neuroendocrine carcinoma
Immune subgroup analysis revealed CD8 T cell exhaus-
tion and low γδT cell counts in tumors; thus, reversing 
CD8 exhaustion and enhancing γδT cell recruitment 
could improve immunotherapy. Additionally, activating 
tumor-associated macrophages’ phagocytosis might aug-
ment tumor cell destruction.

Novelty of the research
The novelty of this research lied in the systematic, com-
prehensive, and in-depth advanced analysis of single-cell 
sequencing data from fresh SCNECC surgical samples. 
In this study, we thoroughly revealed the origins, devel-
opment, gene expression transcriptional regulatory net-
works, and mechanisms of early metastasis in SCNECC, 
as well as related potential diagnostic and therapeutic 
targets, paving ways towards personalized and targeted 
interventions. This study was also the first to combine 
CNV analysis and pseudotime analysis to explore the 
changes in chromosomal copy numbers during tumor 
development, laying the foundation for the inference of 
the development of malignant cells.

Limitations of the research
This study faced challenges due to the rarity of cervical 
neuroendocrine carcinoma, limiting sample availability 
and complicating identification with low marker gene 
expression. Future single-cell sequencing on more fresh 
lesions is recommended to elucidate the biology of this 
aggressive tumor, guiding clinical treatment and improv-
ing patient outcomes.



Page 19 of 21Wang et al. Journal of Translational Medicine           (2025) 23:19  

Future directions
Directions for future research include validation of key 
findings of this research in independent cohorts, con-
firmation of the functional relevance of these genes and 
pathways in neuroendocrine cancer progression, and 
response to therapy by experimental models. To address 
the limitations of single-cell RNA sequencing, we will 
employ bulk RNA sequencing, spatial transcriptomics, 
epigenomics, and proteomics to provide additional layers 
of data.

Longitudinal follow‑up of the patient
In this study, the patient underwent surgery in January 
2023, followed by multiple cycles of EP chemotherapy, 
pelvic radiotherapy, and maintenance immunotherapy 
with toripalimab, concluding in December 2023. She 
remained in good condition with normal tumor markers. 
MRI (August 2024) revealed enlarging abnormal signal 
foci in the spleen, necessitating ongoing surveillance.

Conclusions
In conclusion, our study found that the transcription fac-
tor TFF3 directly up-regulates ELF3, suggesting a new 
target for therapy.. Comparing single-cell sequencing 
data of neuroendocrine cancer among lung, small intes-
tine, and liver, we found that the transcriptional states 
of neuroendocrine cancer among different origins were 
highly heterogeneous and should be treated individually.

This study discovered for the first time that the early 
metastasis characteristics observed in small cell neuroen-
docrine cancer in clinical circumstances may be related 
to the dismantling of tight intercellular connections and 
desmosomes as indicated by GO enrichment analysis. 
However, proliferation markers, such as MKI67 reflected 
less proliferative vitality than squamous/adeno-carci-
noma (Fig. 1G). While the current study provides mean-
ingful insights, additional studies is necessary in order to 
fully validate these findings in future.
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