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Abstract: Targeted therapy in combination with immune checkpoint inhibitors has been recently
implemented in advanced or metastatic renal cancer treatment. However, many treated patients
either do not respond or develop resistance to therapy, making alternative immune checkpoint-
based immunotherapies of potential clinical benefit for specific groups of patients. In this study, we
analyzed the global expression of B7 immune checkpoint family members (PD-L1, PD-L2, B7-H2,
B7-H3, B7-H4, B7-H5, B7-H6, and B7-H7) in human renal cancer cells (Caki-1, A-498, and 786-O cell
lines) upon treatment with clinically relevant targeted drugs, including tyrosine kinase inhibitors
(Axitinib, Cabozantinib, and Lenvatinib) and mTOR inhibitors (Everolimus and Temsirolimus). Gene
expression analysis by quantitative PCR revealed differential expression patterns of the B7 family
members in renal cancer cell lines upon targeted drug treatments. B7-H4 gene expression was
upregulated after treatment with various targeted drugs in Caki-1 and 786-O renal cancer cells.
Knocking down the expression of B7-H4 by RNA interference (RNAi) using small interfering RNA
(siRNA) decreased renal cancer cell viability and increased drug sensitivity. Our results suggest
that B7-H4 expression is induced upon targeted therapy in renal cancer cells and highlight B7-H4 as
an actionable immune checkpoint protein in combination with targeted therapy in advanced renal
cancer cases resistant to current treatments.

Keywords: B7-H4; immune checkpoint protein; renal cancer cells; targeted therapies; tyrosine kinase
inhibitors; mTOR inhibitors

1. Introduction

Renal cell carcinoma refers to the heterogeneous group of cancers derived from renal
tubular epithelial cells and constitutes one of the ten most common cancers worldwide.
Clear cell renal cell carcinoma (ccRCC) is one of the major subtypes of renal cancer and
represents most kidney-cancer-derived deaths [1]. Besides ccRCC, other types of renal
carcinoma have also been histologically classified, such as papillary and chromophobe renal
cell carcinomas. Localized renal cell carcinomas are usually treated with nephron-sparing
surgery, also known as partial nephrectomy, where the malignant tissue in the kidney is
removed [2]. Some localized renal cell carcinoma cases can also be treated with radical
nephrectomy with complete removal of the kidney. However, around 30% of the patients
with localized ccRCC treated with nephrectomy finally develop metastases, which are
associated with high mortality [2]. Radiotherapy and chemotherapy are not frequently
used to treat this type of cancer since they have been considered mostly ineffective for
patients with renal cell carcinoma. Besides surgery, the current therapeutic landscape of
renal cell carcinoma mainly consists of targeted therapy and immunotherapy [3]. Current
major immunotherapies in cancer, including renal cancer, are based on the blocking by
specific monoclonal antibodies of the binding of the B7 immune checkpoint proteins
CD80/B7-1 and CD86/B7-2, and PD-L1/B7-H1 and PD-L2/B7-DC, with their co-receptors
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CTLA-4 and PD-1, respectively. This results in the blockage of the inhibitory effect of the
immune checkpoints on T cells, enabling them to restore the antitumor activity [4,5].

The introduction of tyrosine kinase inhibitors (TKI) and mTOR targeted therapies in
combination with immunotherapies has been a major step forward in the treatment of
renal cell carcinoma [1,3]. Nevertheless, administered alone, they hardly induce a complete
response, and they have not been able to induce permanent disease remission [6]. Tumors
developing resistance are believed to carry out an “angiogenic switch” by changes in the
gene expression so that more molecules involved in tumor progression are expressed [7].
Nevertheless, precise mechanisms of resistance to immunotherapies and targeted therapies
in renal cancer remain unclear. To better understand the biology of tumorigenesis and
metastasis in the clinical context, elucidating the mechanisms of resistance to targeted
therapies is of great importance.

Proteins belonging to the B7 family of immunoregulatory proteins are highly expressed
in a variety of cancers, correlating with cancer progression and poor prognosis [8,9]. Several
B7 family members are overexpressed in renal cell carcinoma in correlation with tumor
immune evasion, increased disease progression, and decreased survival [9]. Previous
studies have shown that the expression of B7 family members, such as PD-L1, B7-H3, B7-H4,
and B7-H6, is associated with poor outcomes in patients with renal cell carcinoma [10,11].
Since aberrant expression of B7 proteins has been reported to correlate with the progression
of renal cell carcinoma, these proteins could be used as markers for predicting tumor
development and resistance to therapy.

B7-H4 protein expression is limited in normal tissues, but aberrant B7-H4 expression
is found in different solid tumor types, including breast [12], serious ovarian [13], col-
orectal [14] and pancreatic [15], lung [16], prostate [17], and renal cancer [18], as well as
hematological malignancies including myeloma [19]. In renal cell carcinoma, high B7-H4
expression is present in both tumor cell and tumor vasculature endothelial cells, which
positively correlates with tumor progression, whereas low expression was observed in
normal renal endothelial cells [18,20]. Moreover, B7-H4-positive tumors seem to be more
aggressive and associated with increased risk for disease progression and decreased patient
survival. Enhanced tumor aggressiveness is a consequence of the activity of B7-H4 as a
negative mediator of T cells. In addition, B7-H4 can induce the unresponsiveness of tumor
cells to apoptosis [21]. Evidence suggests that B7-H4 might participate in renal cell carci-
noma tumorigenesis by enabling tumor neovascularization at sites relatively distant from
the tumor cells [18]. Serum soluble B7-H4 was found to be associated with poor outcomes
and overall survival of renal cancer patients, and it has been proposed for predicting the
prognosis of patients with non-metastatic clear cell renal cell carcinoma [22]. In normal
tumor-adjacent kidney specimens, B7-H4 was found either absent or with a focal and spo-
radic membranous immunostaining in distal convoluted renal tubules [18]. B7-H4 has been
identified in renal cells as a membrane protein but also as a cytoplasmic-nuclear shuttling
protein [20]. The coding sequence of the protein contains a signal peptide and a nuclear
localization sequence (NLS), and upon inhibition of nuclear export by Leptomycin B, B7-H4
accumulated in the nucleus [20]. Thus, B7-H4 protein can shuttle between membrane,
cytoplasm, and nucleus [20]. In addition, it has also been postulated B7-H4 anchorage
to the membrane by glycophosphatidylinositol linkage [23]. Nuclear and membrane lo-
calizations of the protein have been associated with disease progression, and membrane
localization was found to be inversely correlated with the presence of tumor-infiltrating
lymphocytes [20].

The hypothesis of this work is that alternative members of the B7 family of immune
checkpoint proteins could be actionable targets in combination with currently approved
targeted therapy in renal cancer cells. In this study, we analyzed the global gene expression
profile of B7 family members, including PD-L1, PD-L2, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6,
and B7-H7 in renal cancer cells upon treatment with different targeted therapies, and we
tested by functional in vitro experiments the effect of B7 expression on the sensitivity to
targeted therapies in renal cancer cells.
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2. Materials and Methods
2.1. Media and Cell Growth

Caki-1 cells were maintained in McCoy’s 5A (Lonza, Basel, Switzerland) medium,
786-O cells were maintained in RPMI 1640 (Lonza) medium, A-498 cells were cultured
in EMEM (Minimum Essential Medium Eagle, Lonza) medium, and HEK293 cells were
cultured in DMEM (Dulbecco’s Modified Eagle’s Medium, Lonza) medium. All media
were supplemented with 10% FBS (Fetal Bovine Serum, Sigma-Aldrich, St. Louis, MO,
USA), 1% L-Glutamine (Sigma-Aldrich), and 1% penicillin/streptomycin (Sigma-Aldrich).
Cells were incubated at 37 ◦C and 5% CO2.

2.2. Targeted Therapy Treatment, Cell Viability, and Proliferation Assays

To measure cell viability, 1500 HEK293 cells, 3000 Caki-1 cells, 1500 786-O, or A-498
cells were plated per well in 96-well culture plates. A day after plating the cells, dif-
ferent concentrations of the drugs (Axitinib, Cabozantinib, Lenvatinib, Everolimus, or
Temsirolimus) or vehicle (DMSO, Sigma-Aldrich) were added. HEK293 cells were treated
with 1 µM Axitinib, Cabozantinib, and Lenvatinib. Renal cancer cells were treated with
20 µM Axitinib, 8 µM Cabozantinib, and 20 µM Lenvatinib. All cells were treated with
0.1 µM Everolimus and 0.1 µM Temsirolimus. All inhibitors were from Selleckchem (Hous-
ton, TX, USA). Cells were incubated for 72 h, and cell proliferation was determined by crystal
violet assay. Then, 50 µL of 0.5% crystal violet (Sigma-Aldrich) was added to each well for
20 min after cells had been washed with PBS (Phosphate Buffered Saline, Lonza) and fixed
in 70% Ethanol (Merck Millipore, Burlington, MS, USA) for 10 min at −20 °C. Absorbance
was measured at 560 nm using iMark™ Microplate Absorbance Reader (Bio-Rad, Hercules,
CA, USA). Cell viability is presented relative to the corresponding negative control of each
cell type.

Cell proliferation was measured with the CellTiter 96®AQueous One Solution Cell
Proliferation Assay Kit (MTS Assay, Promega, Madison, WI, USA) in 96-well plates. All
the cells were plated at the same densities and drug concentrations as in the crystal violet
assay. Cell viability was measured after 72 h of treatment; 20 µL of the CellTiter reagent
was added to each well for 90 min, and absorbance was measured at 490 nm using Mark™
Microplate Absorbance Reader (Bio-Rad). Cell proliferation is presented as the percentage
with respect to the corresponding negative control.

2.3. RNA Isolation, Reverse Transcription, and Quantitative PCR

Real-time quantitative PCR (RT-qPCR) was performed to analyze B7 gene expres-
sion. Caki-1, 786-O cells, and A-498 were treated with 10 µM Axitinib, 5 µM Cabozan-
tinib, 10 µM Lenvatinib, 0.1 µM Everolimus, 0.1 µM Temsirolimus, or DMSO (control)
for 24 h. Total mRNA was extracted with the Illustra™ RNAspin Mini RNA Isolation
Kit following the manufacturer’s protocol (GE Healthcare Life Sciences, Marlborough,
MS, USA). Subsequently, 1 µg of total RNA was used for cDNA synthesis following the
Thermo Scientific RevertAid Reverse Transcriptase protocol (ThermoFisher, Waltham, MS,
USA). RT-qPCR reactions were carried out as previously described [24], using Agilent
AriaMx Real-Time PCR System (Agilent Technologies, Santa Clara, CA, USA). Primers
used were: QuantiTect Primers (Qiagen, Germantown, MD, USA) for PD-L1 (QT00082775,
official gene name CD274), PD-L2 (QT00089761, official gene name PDCD1LG2), B7-H2
(QT00004669, official gene name ICOSLG), B7-H3 (QT00013608, official gene name CD276),
B7-H4 (QT01025584, official gene name VTCN1), B7-H5 (QT01024597, official gene name
VSIR), B7-H6 (QT00075971, official gene name NCR3LG1), and B7-H7 (QT00197092, official
gene name HHLA2). Finally, relative fold change was calculated using the 2−∆∆Ct equation
using HPRT as housekeeping gene. Gene expression changes are represented as relative
fold changes in logarithmic scale with base 2 (Log2).
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2.4. Plasmids, Site-Directed Mutagenesis, DNA Extraction, Quantification, and Sequencing

B7-H4 cDNA open reading frame clone NM_024626.3, cloned in pcDNA3.1+/C-DYK,
was purchased from Genescript (Piscataway, NJ, USA). Site-directed mutagenesis was
performed to remove the C terminal Flag tag from the B7-H4 sequence. The process was
carried out by one-step inverse PCR, as described in reference [25], using oligos 5′- CCT
TAC CTG ATG CTA AAA TGA TAA ACC CGC TGA TCA -3′ (forward), and 5′-TGA
TCA GCG GGT TTA TCA TTT TAG CAT CAG GTA AGG-3′ (reverse). Plasmid DNA
was extracted from E. coli following the NucleoSpin® Plasmid EasyPure kit procedure
(Nacherey-Nagel, Düren, Germany). Sequences were verified at the Genetic and Genomic
Core facility from Biocruces Bizkaia Health Research Institute.

2.5. Transient Transfections

GenJet™ protocol was used for B7-H4 overexpression in the HEK293 cell line
(Signagen, Frederick, MD, USA). HEK293 cells were plated in a 6-well plate for Western
blot analysis or in an 8-well chamber slide for immunofluorescence assay. Lipofectamine®

RNAiMAX Reagent protocol (ThermoFisher) was used for B7-H4 interference (RNAi) by
short interfering RNAs (siRNAs) in Caki-1 and 786-O cell lines. Cells were plated in 6-well
plates for Western blot analysis or in 96-well plates for posterior viability assay; 24 h af-
ter plating the cells, the silencing was performed following the RNAiMAX transfection
procedure using 20 nM siRNAs. siRNAs for the human B7-H4 gene used were from Flexi-
Tube GeneSolution (GS79679 for VTCN1/B7-H4, Product number: 1027416; SI04365039
(siB7-H4 #1) and SI04346433 (siB7-H4 #2), FlexiTube siRNA Qiagen), and si non-specific
(siNS) RNAs and si GAPDH (AM4605; ThermoFisher).

2.6. Cell Lysis and Western Blot

Cells were lysed in M-PER lysis buffer (ThermoFisher) and processed for Western
blot as described in [26]. Primary antibodies used were rabbit anti-B7-H4 (1:500, D1M81,
Cell Signaling, Danvers, MA, USA), mouse anti-Flag (1:500, MAB3118, Sigma-Aldrich),
mouse anti-GAPDH (1:500, 6C5, Santa Cruz Technology, Dallas, TX, USA), and mouse
anti-α-Tubulin (1:200, B-7, Santa Cruz Technology). Secondary antibodies were IRDye
680RD and 800CW Goat anti-Mouse and Goat anti-Rabbit (LI-COR, Lincoln, NE, USA).
Odyssey CLx (Li-Cor®) Image Studio v4.0.21 software was used to visualize fluorescence
signals on the membranes.

2.7. Immunofluorescence Assay

First, 3 × 104 HEK293 cells/well were plated in 8-well chamber slides for immunoflu-
orescence (Ibidi, Gräfelfing, Germany). Transient transfection was performed as described
above, and cells were washed and fixed in Methanol (Sigma-Aldrich) for 5 min at −20 ◦C
and blocked in blocking solution (Phosphate Buffered Saline (PBS, Sigma-Aldrich) con-
taining 3% Bovine Serum Albumin (BSA, Sigma-Aldrich). Rabbit anti-B7-H4 primary
antibody (1/200 in blocking solution) was incubated overnight at 4 °C in a wet chamber.
Subsequently, cells were washed three times with PBS-BSA for 10 min prior to incubation
with anti-rabbit FITC secondary antibody (1/100) for 1 h in a wet chamber and darkness at
room temperature. Cells were washed and mounted in a Mounting Medium with DAPI
(Abcam, Cambridge, UK) and visualized in a confocal microscope (ZEISS LSM880 Airyscan,
Jena, Germany). For quantitation of B7-H4 subcellular distribution, at least 50 positive cells
were scored. Cells were rated as membrane staining (M) or membrane/cytoplasm (M/C).
Nuclei were identified by DAPI staining.

2.8. Statistical Analysis

Error bars in results represent ± standard deviation (S.D.). Data were analyzed by
GraphPad Prism t Test Calculator, where significance was calculated using a two-tailed
student t-test. Subcellular localization was analyzed by the Chi-square test. p values smaller



Cells 2022, 11, 1448 5 of 13

than 0.05 were considered significant and are indicated with an asterisk (*). All experiments
were performed at least twice, and the results shown are from one representative experiment.

3. Results
3.1. Treatment with Tyrosine Kinase Inhibitors (TKI) or with mTOR Inhibitors Decreases Renal
Cancer Cell Viability

To study the effect of currently used TKI and mTOR inhibitors in renal cancer treatment,
HEK293, Caki-1, 786-O, and A-498 cell lines were treated with three TKI (Axitinib, Cabozan-
tinib, and Lenvatinib) or with two mTOR inhibitors (Everolimus and Temsirolimus). In the
four cell lines used, treatment with both tyrosine kinase and mTOR inhibitors resulted in a
significant decrease in cell viability (Figure 1). The dose and time of the inhibitor’s treat-
ments were chosen based on time-course experiments of both cell viability and proliferation
(Supplementary Figure S1) and dose–response experiments (Supplementary Figure S2).
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Figure 1. Proliferation of HEK293, Caki-1, 786-O, and A-498 cells upon treatment with tyrosine kinase
inhibitors or with mTOR inhibitors. Crystal violet (CV) staining (A–H) and MTS assays (A’–H’)
were used to measure viability of cells upon treatment with tyrosine kinase and mTOR inhibitors
after 72 h. Concentrations used were 1 µM Axitinib, 1 µM Cabozantinib, and 1 µM Lenvatinib in
HEK293 cells (A,A’); and 20 µM Axitinib, 8 µM Cabozantinib, and 20 µM Lenvatinib in Caki-1 (C,C’),
786-O (E,E’), and A-498 (G,G’) cells. Everolimus and Temsirolimus were used at 0.1 µM in all cells
(B,B’,D,D’,F,F’,H,H’). Note that HEK293 cells were more sensitive to the TKI treatments than the
other renal cancer cells. Data are shown as relative proliferation ± S.D. Statistically significant results
(p < 0.05) are marked with *. All data were normalized relative to untreated cells and are shown in
arbitrary units (A.U.).
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3.2. B7-H4 Expression Is Increased upon Treatment with Tyrosine Kinase Inhibitors or with mTOR Inhibitors

To analyze the global gene expression profile of the B7 family, RT-qPCR was performed
in Caki-1, 786-O, and A-498 cell lines after 24 h treatment with TKI (10 µM Axitinib,
5 µM Cabozantinib, 10 µM Lenvatinib) or with mTOR (0.1 µM Everolimus and 0.1 µM
Temsirolimus) inhibitors. For gene expression analysis, we chose a shorter time and
lower concentrations of the TKI inhibitors to avoid secondary effects of cell death upon
longer incubations (Supplementary Figures S1 and S2). Interestingly, the B7-H4 gene was
upregulated in Caki-1 and 786-O cells 24 h after treatment with several of the different
drugs employed (Figure 2A,B). On the other hand, B7-H4 expression was not consistently
increased in A-498 cells (Figure 2C). In some cases (such as B7-H5 in Caki-1 cells and
B7-H6 in 786-O cells), we saw opposing effects of TKI and mTOR inhibitors. In other cases
(for instance, B7-H6 in A498 cells), changes in gene expression were only observed upon
treatment with some inhibitors.
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Figure 2. B7 family gene expression upon treatment with tyrosine kinase inhibitors or with mTOR
inhibitors. B7 family gene expression in Caki-1 (A), 786-O (B), and A-498 (C) cells upon treatment
with tyrosine kinase and mTOR inhibitors was measured by real-time quantitative PCR (RT-qPCR).
Relative fold changes of PD-L1, PD-L2, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6, and B7-H7 mRNA
expression are represented in a logarithmic scale (Log2). Cells were treated for 24 h with tyrosine
kinase inhibitors (10 µM Axitinib, 5 µM Cabozantinib, and 10 µM Lenvatinib) and mTOR inhibitors
(0.1 µM Everolimus and 0.1 µM Temsirolimus).
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3.3. Membrane Localization of B7-H4 in Renal Cells

B7-H4 has been proposed to be anchored to the plasma membrane through glycosyl
phosphatidylinositol (GPI) linkage [23]. To test the expression and subcellular localization
of B7-H4 ectopic overexpression in renal cancer cells, ectopic overexpression of B7-H4 with
and without Flag epitope was carried out in HEK293 cells, transfected with pcDNA3.1
vector containing B7-H4 or B7-H4-Flag. Overexpression was visualized by Western blot
(WB) analysis using anti-Flag and anti-B7-H4 antibodies (Figure 3A). We did not detect
B7-H4-Flag by WB with an anti-Flag antibody (Figure 3A). However, using an anti-B7-H4
antibody, we detected B7-H4 in both B7-H4-Flag- and B7-H4-transfected cells, indicating
that the Flag epitope might be cleaved from B7-H4 during biogenesis.
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Figure 3. Ectopic overexpression of B7-H4 in HEK293 cells. (A) HEK293 cells were transfected
with pCDNA3.1 empty vector (Ø) or containing B7-H4 or B7-H4-Flag and processed for Western
blot using anti-B7-H4, anti-Flag, and anti-GAPDH antibodies. PDK2-Flag was used as a control for
Flag antibody. Molecular weight markers are indicated on the left. (B,C) Subcellular localization
of B7-H4 and B7-H4-Flag in HEK293 cells. HEK293 cells were transfected to overexpress B7-H4 (B)
or B7-H4-Flag tag (C) and processed for immunofluorescence using anti-B7-H4 antibodies. Nuclei
are shown in blue (DAPI staining), and B7-H4 proteins are shown in green (FITC). White arrows
highlight membrane immunostaining patterns. Images were taken at 63X. (D) Subcellular localization
of B7-H4-Flag and B7-H4. Data are shown as the percentage of cells displaying membrane (M) or
membrane/cytoplasmic (M/C) localization.

Next, subcellular localization of B7-H4 with and without Flag epitope was tested in
HEK293 cells. Immunofluorescence analysis using an anti-B7-H4 antibody showed no
difference in the subcellular localization of B7-H4 regardless of the Flag epitope (p = 0.3029).
In both cases, B7-H4 showed mainly membrane distribution (Figure 3B–D). The lack
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of detection of the Flag epitope and B7-H4 membrane expression goes in line with the
proposed B7-H4 GPI anchoring to the membrane [23].

3.4. B7-H4 Silencing and Tyrosine Kinase and mTOR Inhibitors Affect Viability of Renal Cancer Cells

The role of B7-H4 on drug sensitivity of renal cancer cells was studied by measuring
cell proliferation of B7-H4-silenced (siB7-H4) and non-specific-silenced (siNS) control cells
upon treatment with targeted therapy. Two different B7-H4 siRNAs were transiently
transfected in Caki-1 and 786-O cells, and GAPDH was also silenced as a control. To test
the efficacy of the different siRNAs, silencing was monitored by RT-qPCR (Figure 4). In
our experimental setting, we were not able to detect endogenous B7-H4 protein expression
by Western blot, and B7-H4 silencing was confirmed by RT-qPCR. As shown, siGAPDH
was efficient for GAPDH silencing, and siB7-H4 #1 and siB7-H4 #2 were efficient for the
silencing of B7-H4 (Figure 4) and were chosen for functional silencing experiments in Caki-1
and 786-O cells.
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Figure 4. B7-H4 silencing analysis by RT-qPCR in renal cancer cells. Relative fold change in mRNA
expression of GAPDH and B7-H4 by RT-qPCR of 786-O (A) and Caki-1 (B) cells. siRNA used are
indicated in the bottom: GAPDH (siGAPDH transfected cells, positive control), B7-H4 #1 and B7-H4
#2 (siB7-H4 #1 and #2 transfected cells).

Caki-1 and 786-O cells were transfected for B7-H4 silencing with siB7-H4 #1 and
siB7-H4 #2 or with siNS as control. Afterward, they were treated with TKI or with mTOR
inhibitors, and cell proliferation was measured by MTS assay 72 h after treatment. Silencing
of B7-H4 significantly inhibited cell proliferation in both Caki-1 and 786-O cells. Moreover,
an additive effect on cell growth inhibition was seen when siB7-H4 transfected cells were
treated with the tested drugs (Figure 5). This suggests a role for B7-H4 in renal cancer cell
growth and that B7-H4 is an actionable target in combination with targeted therapies.
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Figure 5. Proliferation analysis of Caki-1 and 786-O renal cancer cells after B7-H4 silencing and
treatment with tyrosine kinase and mTOR inhibitors. MTS assay was used to measure proliferation
of siB7-H4 Caki-1 (A–C) and 786-O (D–F) cells after 72 h of treatment with vehicle (DMSO), 20 µM
Axitinib (A,D), 8 µM Cabozantinib (B,E), or 0.1 µM Temsirolimus (C,F). Data are shown as relative
proliferation ± S.D. Statistically significant results (p < 0.05) are marked with *. All data were
normalized relative to untreated siNS cells and are shown in arbitrary units (A.U.).

4. Discussion

Several B7 family members, including B7-H4, are overexpressed in renal cell carcinoma,
in correlation with increased disease progression and decreased patient survival [27].
Radiotherapy and chemotherapy have been considered ineffective for renal cell carcinoma
treatment, but the introduction of TKI and mTOR targeted therapies and immunotherapies
in combinations has increased the response rate of patients [3]. However, many renal cell
carcinoma patients are either non-responsive to the treatment from the beginning or acquire
resistance during the treatment. The global aim of this work was to test the involvement of
B7 family members in sensitivity to currently approved targeted therapy in renal cancer cells.

An increase in B7-H4 gene expression was consistently observed in Caki-1 and 786-O
cell lines upon treatment with TKI and mTOR inhibitors, but not in A-498 cells (Figure 2).
This could indicate that B7-H4 plays a role in the drug response of renal cancer cells.
The different B7 expression profile in A-498 cells could be related to the recent findings
suggesting that these cells might be of papillary origin [28]. The possibility that A-498
cells display unique gene expression regulatory elements when compared to Caki-1 or
786-O cells deserves further studies. We additionally observed small changes in gene
expression in other B7 genes, as well as some opposing effects upon treatment with TKI or
mTOR inhibitors.
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Changes in B7-H7 expression were also detected upon treatment with TKI and mTOR
inhibitors. B7-H7 expression was downregulated in Caki-1 cells and increased in 786-O
cells (Figure 2). Increased B7-H7 expression has been observed in ccRCC, associated with
poor outcome and tumor progression, and has been suggested as a biomarker for renal
cell carcinoma [22]. Downregulation of B7-H7 after treatment with targeted therapy could
indicate that B7-H7 might be involved in cell proliferation. Further studies are required
to assess this hypothesis. We also observed opposing effects in some B7 gene expression
patterns upon different drug treatments, which could be due to differences in the specificity
of the inhibitors. Axitinib is a highly selective inhibitor of VEGFR that competitively binds
to the ATP-binding site of the kinase. Lenvatinib also binds to the ATP-binding site of
kinases, but unlike Axitinib, Lenvatinib is a multitargeted TKI, and its antitumor and
antiangiogenic activities are carried out via inhibition of VEGFR, fibroblast growth factor
receptor (FGFR), ret proto-oncogene kinase receptor (RET), and platelet-derived growth
factor receptor (PDGFR). Cabozantinib is a strong inhibitor of VEGFR but also targets MET
tyrosine kinase. These differences in the specificity of the TKI could explain the opposing
effects seen in the qPCR analysis.

Upregulation of B7-H4 has been reported in hypoxia-associated pathological situations
in multiple myeloma cells, and overexpression of HIF-1α was associated with increased
transcription of B7-H4 [19]. It is possible that HIF-1α mediates B7-H4 induced expression
in renal cancer cell lines upon treatment with targeted therapies. In renal cell carcinoma,
B7-H4 expression has been detected in tumor cells and in tumor vasculature endothelial
cells, and patients with B7-H4-expressing renal cell carcinoma tumors were more likely to
die from the disease compared to patients with B7-H4-negative tumors [18].

At the subcellular level, B7-H4 protein has been reported to be expressed on the plasma
membrane, in the cytosol, and in the nucleus of renal cancer cells, as it has been identified
as a membrane/cytoplasmic-nuclear shuttling protein with a nuclear localization sequence
(NLS) [20]. Both membrane and nuclear localization of the protein have been associated
with disease progression, and membrane localization has specifically been shown to have
an effect on cell proliferation [20]. In our immunofluorescence experiments, B7-H4 protein
displayed mostly a membrane localization, and no protein was detected in the nucleus
(Figure 3). Unlike other B7 family members, B7-H4 has only two amino acids predicted to
be located in the cytosolic portion, and it has been proposed that B7-H4 is anchored to the
membrane by glycophosphatidylinositol linkage [23]. This might affect B7-H4 accumulation
at the cell surface and limit B7-H4 detection in a cell-specific manner. Using C-terminal
tagged B7-H4-Flag, we have observed that the Flag epitope is lost upon B7-H4-Flag ectopic
expression, in line with GPI anchorage. Whether or not B7-H4 expression in the plasma
membrane in our conditions is dependent on GPI requires further experimental work.

Proliferation assay results on Caki-1 cells treated with TKI and mTOR inhibitors
showed that B7-H4 silencing had an additive effect on sensitivity to Axitinib, Cabozantinib,
and Temsirolimus (Figure 5). Consistently, B7-H4 expression was upregulated in Caki-1
cells treated with TKI and mTOR inhibitors (Figure 2). These results suggest an inde-
pendent downregulation of cell viability by TKI/mTOR inhibitors or by siRNA targeting
B7-H4 in renal cancer cells. It has been documented that B7-H4 has a tumor-promoting
role in addition to T-cell inhibition [17], and it was shown that overexpression of B7-H4
in Caki-1 cells led to less sensitivity to the chemotherapeutic agents doxorubicin or doc-
etaxel [20]. Additionally, silencing B7-H4 improved the effectiveness of chemotherapy in
breast cancer, reinforcing its role in chemoresistance [29]. Consistently, blocking B7-H4
in breast cancer is synergistic with PD-1 blockage [30], trastuzumab treatment [31], and
doxorubicin, paclitaxel, and carboplatin [29], suggesting it is widely involved in resistance
to anti-cancer therapies. In this regard, a clinical trial using an anti-B7-H4 monoclonal
antibody in combination with pembrolizumab is currently ongoing for advanced solid
tumors (ClinicalTrials.gov Identifier: NCT03514121), which will be important to assess
the safety and efficacy in patients, including the effect of these combinatory therapies on
normal tissues, including normal renal cells. Other B7 proteins, including PD-L1/B7-H1,

ClinicalTrials.gov
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B7-H3, and B7-H6, have been involved in drug sensitivity to chemotherapies and targeted
therapies in several cancer cell types [8,32–36]. This highlights the potential of B7 family
members as attractive combinatory anti-cancer targets against therapy-resistant cancers.

5. Conclusions

In conclusion, our findings support the notion that B7-H4 may play a key role in renal
cell carcinoma growth and is induced in renal cancer cells upon treatment with targeted
therapy. Targeting B7-H4 could be beneficial in combination with targeted therapy in renal
cell carcinoma treatment and ultimately improve patient survival. A dedicated analysis is
required to further characterize the role of B7-H4 in renal cancer cell drug sensitivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11091448/s1, Figure S1: Proliferation of HEK293, Caki-1, 786-O,
and A-498 cells upon time-course treatment with tyrosine kinase inhibitors or with mTOR inhibitors;
Figure S2: Proliferation of HEK293, Caki-1, 786-O, and A-498 cells upon treatment with different
doses of tyrosine kinase inhibitors or with mTOR inhibitors.
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