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Abstract

The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with
and without collagen obtained by emulsification of a calcium phosphate cement paste has
been evaluated in an in vivo model, and compared with an injectable calcium phosphate
cement with the same composition. The materials were implanted into a 5 mm defect in the
femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histo-
logical analysis revealed that the cements presented cellular activity only in the margins of
the material, whereas each one of the individual microspheres was covered with osteogenic
cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold
increase compared to the cement, which was associated to the higher accessibility for the
cells provided by the macroporous network between the microspheres, and the larger sur-
face area available for osteoconduction. No significant differences were found in terms of
bone formation associated with the presence of collagen in the materials, although a more
extensive erosion of the collagen-containing microspheres was observed.

Introduction

Increase of life expectancy as well as degenerative bone diseases make it essential for the devel-
opment of promising biomaterials to restore or substitute damaged bone tissue. The gold stan-
dard for bone grafting is currently the fresh autologous cancellous bone graft since it possesses
simultaneously osteoconductive, osteoinductive and osteogenic properties. Allografts and
xenografts also provide osteoconductive and some potential osteoinductive properties.
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Nevertheless, the low availability and donor site morbidity in autografts and the possible trans-
mission of disease and limited biological response in the allografts, limit their application [1-
3]. For this reason, current efforts are centered in obtaining synthetic bone grafts that may
enhance bone regeneration [4]. Among the different synthetic bone grafts, calcium phosphate
biomaterials are the most widely available in the market. Moreover, injectable systems are
being increasingly used in minimally invasive surgical procedures that reduce the time of sur-
gery and the possible complications associated with them. Specifically, calcium phosphate
cements combine their injectability with the ability to harden in vivo, producing after the set-
ting reaction a nanostructured biomimetic hydroxyapatite, much more similar to the mineral
phase of bone than the sintered hydroxyapatite products [5].

An additional advantage of this family of materials is their versatility, which allows combin-
ing them with numerous processing techniques [6]. We have recently shown that biomimetic
calcium deficient hydroxyapatite microspheres can be obtained by emulsification of a calcium
phosphate cement paste [7,8]. In this process, the stabilization of the microspheres is achieved
through the setting reaction of the cement, which produces a calcium-deficient hydroxyapatite
[9]. The microspheres obtained by emulsion of CPCs present several advantages compared to
conventional ceramic calcium phosphate granules. First, they consist of a nanostructured cal-
cium deficient hydroxyapatite, which is much closer to biological apatite than sintered calcium
phosphate granules, with chemical and crystallographic similarities, and a high specific surface
area [5,6]. In second place, the emulsion process allows combining the calcium phosphate
phase with biopolymers and/or drugs, which can be incorporated not only on the surface, but
also throughout the bulk of the microspheres [7,8]. This makes them good candidates not only
for tissue regeneration and tissue engineering, but also as drug delivery vehicles with a homoge-
nous release [10,11]. Specifically, we showed in a previous study that the addition of solubilized
collagen in the cement paste not only was compatible with the emulsification process used to
obtain microspheres, but it enhanced it, due to the anphiphilic properties of collagen [7].

The incorporation of collagen, either in the liquid or solid phase of calcium phosphate
cements has been previously explored as a route to increase the biomimicry with bone extracel-
lular matrix [12], and to enhance the handling properties [13], the mechanical properties [14-
16] and the osteoblastic cell response [14,15]. Although the addition of biodegradable polymers
in calcium phosphate cements has been claimed to be a good strategy to increase the in vivo
resorption [12], the fact is that the effect of collagen on the in vivo performance of these biomi-
metic apatites obtained by a self-setting reaction remains to be investigated.

Therefore, the aim of this study was to assess the role of the spatial distribution of the mate-
rial and the presence of collagen on the osteogenic capacity of a biomimetic calcium deficient
hydroxyapatite. Thus, two specific objectives were targeted: i) to compare the bone regenera-
tion potential of biomimetic hydroxyapatite microspheres obtained by emulsification of a cal-
cium phosphate cement paste containing collagen or not, with that of an injectable apatitic
calcium phosphate cement with the same composition; and ii) to assess the effect of collagen
addition on the osteogenic potential of the biomimetic calcium deficient hydroxyapatite.

Materials and Methods
2.1. Powder phase preparation

The powder phase of the cement was composed of o-tricalcium phosphate (o-TCP), obtained
from the mixture of calcium hydrogen phosphate (CaHPO,, Sigma-Aldrich C7263)) and cal-
cium carbonate (CaCO3, Sigma-Aldrich C4830) in a 2:1 molar ratio, sintered at 1400°C for 15
hours (Hobersal CNR-58) followed by quenching. The o-TCP was milled in a planetary ball
mill (Pulverisette 6, Fritsch GmbB) to a median particle size of 2.44 £ 0.05 pm). 2 wt% of
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precipitated hydroxyapatite (PHA, Alco ref. 1.02143) was added as a seed. For the in vivo stud-
ies the CPC powder was sterilized with vy irradiation at 25 kGrays.

2.2. Production of calcium phosphate cements

Bovine type I collagen was obtained from bovine pericardium as described elsewhere [17].
Collagen pellets, sterilized by ethylene oxide, were dissolved in a 50 mM acetic acid aqueous
solution at a concentration of 10 mg/ml. The acetic acid solution was previously sterilized

by filtering through a 0.22 pm sterile filter (Millipore). The collagen solution and the powder
were mixed at a liquid to powder ratio of 0.45 ml/g to obtain the collagen-containing cements
(coded as coll-CPC) [15]. For the pristine calcium phosphate cements (coded as CPC), a

50 mM acetic acid solution was used as the liquid phase and mixed with the powder at the
same liquid to powder ratio. For the in vivo study, the samples were prepared in situ prior to
implantation.

2.3. Production of biomimetic hydroxyapatite microspheres

The MS were prepared by an emulsion technique. Ceramic suspensions were obtained by mix-
ing the ceramic powder at a liquid to powder ratio of 0.8 mL/g, either with a 10 mg/ml collagen
solution or with a 10x PBS solution, to obtain the collagen-containing MS (coded as MS-coll)
or the pristine microspheres (coded as MS) respectively [7]. Three milliliters of the ceramic
slurry were introduced into a beaker, which contained 300 mL of olive oil. An emulsion was
formed by mixing both components with a mechanical stirrer (Heidolph BDC 2002), at 900
rpm, for a period of time equal to the setting time of the CPC paste. Afterwards, the micro-
spheres were extracted by adding a 0.9% sodium chloride and 0.01% surfactant (Triton X-100)
aqueous solution, and immersed in water for 7 days, in order to allow for the complete trans-
formation of a-TCP into a calcium deficient hydroxyapatite. The microspheres were sieved
between 100 and 400 um. For the in vivo studies, the samples were sterilized with y irradiation
at 8 kGrays.

2.4. Material characterization

X-ray diffraction (XRD) was used to analyze the phases present in the cements and the micro-
spheres after 7 days setting in water at 37°C. The cements and the microspheres were crushed
and a powder diffraction pattern was obtained (Philips MRD, Cu K,40 uA, 45 kV, scan step
size 0.017°, step time 50 s). The peaks were indexed using cards JCPDS-29-359 for a-TCP and
JCPDS-9-432 for apatite (Joint Committee on Powder Diffraction Standards, 1988). Scanning
electron microscopy (SEM, JEOL JSM-840) was used to characterize the morphology and
microstructure of the materials. Samples were coated with a thin layer of gold to increase the
conductivity. Mercury intrusion porosimetry (MIP, Autopore IV Micromeritics) was per-
formed to examine the porosity content and to determine the pore size distribution within the
different samples.

2.5. In vivo study

The study was previously approved by the Ethics Comittee for Human and Animal Experimen-
tation (CEEHA- Ref 2016) at the Autonomous University of Barcelona.

Bilateral femoral implantations were performed in thirty adult female New Zealand rabbits
with a weight range of 4.8-5.5 kg and an age range of 8-12 months. Four different materials
were implanted in the defects: calcium phosphate cement (CPC), calcium phosphate cement
with collagen in the liquid phase (coll-CPC), calcium deficient hydroxyapatite microspheres

PLOS ONE | DOI:10.1371/journal.pone.0131188 July 1,2015 3/15



@’PLOS ‘ ONE

Osteogenic Potential of Composite Microspheres

(MS) and collagen-containing calcium deficient hydroxyapatite microspheres (coll-MS). As a
control, a cavity defect with the same geometry was used where no material was implanted.
The implantation times were 4 and 12 weeks, using 6 rabbits for each group. Two additional
rabbits were used to assess the response of the four materials studied at an early implantation
time of 12 days.

For surgical procedure, the animals were preanesthetized using buprenorphine (0.03mg/kg
s.c.), midazolam (0.50 mg/kg s.c.) and medetomidine (0.05 mg/kg s.c). Anesthesia was induced
with propofol (2,5 mg/kg i.v) and maintained with inhaled isoflorane (2%) in an oxygen car-
rier. The femoral regions of the rabbits were clipped and subsequently scrubbed with chlorhex-
idine gluconate solution 4% for an aseptic preparation of the surgical field. Both lateral aspects
of the femoral condyles were exposed by a lateral parapatellar incision. A critical size defect of
5 mm diameter and 5mm depth was created in the condyle using drill bits of increasing size
under copious irrigation with physiological saline. The CPC pastes were prepared in situ and
implanted into the defect site. 100 mg of MS and coll-MS were combined with 1 mL of rabbit
blood to make a blood clot, which was then implanted into the defect. After filling the defects,
the joint capsule, the subcutaneous tissue and the skin were sutured in layers. The animals
were euthanized at the scheduled survival times with an overdose of sodium pentobarbitone
(200mg/kg/i.v.) according to the legislation of the American Veterinary Medical Association
(AVMA). A pre-euthanasia sedation of midazolam (0.50 mg/kg s.c.) and medetomidine (0.05
mg/kg s.c) was used for animal welfare reasons.

2.6. Radiological analysis

Immediately after surgery, as well as after 4 and 12 weeks, femoral medio-lateral and cranio-
caudal radiographs were taken to confirm the correct location of the implants.

2.7. Histological preparation of the samples

2.7.1. Undecalcified samples. Tissue explants were fixed in 10% formaldehyde solution
for one week. The samples were rinsed, trimmed of excess soft tissue and dehydrated in an
increasing series of ethanol solutions (70-00%), and infiltrated with 4 different graded mixtures
of ethanol and infiltrating resin (Technovit, 7200). The samples were then polymerized, sec-
tioned and polished with 600, 800, 1200 and 2400 silicon carbide papers, prior to sputtering of
the surface with carbon to allow for proper electrical conductivity for scanning electron
microscopy analysis.

2.7.2. Decalcified samples. Tissue explants from the 12 days implantation group were
fixed in 10% formaldehyde solution for one week, and subsequently placed in a 5% nitric acid
decalcifying solution for another week. Samples were then embedded in paraffin and semi-thin
histological sections (15 um) of the decalcified samples were obtained using a microtome (Jung
Biocut 2035, Leica) and thereafter stained with hematoxilin and eosin.

2.8. Histology and histomorphometry

2.8.1. Undecalcified samples: scanning electron microscopy. The images of the whole
defect were taken using the backscattered electrons using a Stereoscan S360 (Leica/Cambridge
Instruments). Image analysis was performed for the different images with an interactive soft-
ware (Leica LAS v4.0, Leica). The region of interest (ROI) was defined as the outer limit where
the material was in contact with the trabecular bone. The material (microspheres or calcium
phosphate cements), empty spaces and different types of bone were distinguished by their mor-
phology and the different contrast levels. The areas of new bone formation were measured, and
normalized by the area of the defect.
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2.8.2. Decalcified samples. Stained histological sections were scanned using a light micro-
scope (Leica DM2500, Leica). Five different regions were scanned and cell count was per-
formed in four different fields.

2.9. Statistical Analysis

Statistical analysis was carried out with significance of 5% or less. One-factor analysis of vari-
ance (ANOVA) with Fisher’s post-hoc test was conducted. The data are expressed as mean
value * standard error.

Results
3.1. Material characterization

Fig 1 shows the SEM morphology for the different materials studied. Similar microstructures
were observed for CPC (Fig 1A and 1C) and coll-CPC (Fig 1B and 1D), with the typical entan-
gled hydroxyapatite crystals (Fig 1C and 1D). In contrast, the addition of collagen introduced
significant differences in the morphology of the microspheres obtained from the corresponding
ceramic slurries. Whereas the size range of the different microspheres was similar, since in
both cases a sieving between 100 and 400 um was applied, the coll-MS (Fig 1F) exhibited higher
sphericity as well as a more homogenous size distribution than the MS (Fig 1E). At higher mag-
nifications, the hydroxyapatite platelets were clearly visible on the surface of the MS (Fig 1G),
similar to those observed in the CPC, although bigger in size. In contrast, in the surface of the
coll-MS the presence of collagen was visible between the inorganic crystals (Fig 1H).

As shown by the XRD diffractions patterns (Fig 2A), the presence of collagen did not hinder
the transformation of o-TPC into a calcium deficient hydroxyapatite, although the MS pre-
sented small remnants of unreacted a-TPC in the structure. The Ca/P molar ratio of the result-
ing hydroxyapatite was 1.5, as the original a-TPC [9]. Furthermore, the diffraction peaks in the
CPC and coll-CPC samples were slightly narrower than those of the MS and coll-MS samples.
The pore size distribution in the different materials is displayed in Fig 2B. CPC and coll-CPC
presented nanometric pores with a broad pore size distribution, ranging between 0.006 and
0.6 um. In contrast, the microspheres presented a bimodal pore size distribution, with a narrow
peak centered at 1 pm, corresponding to the pores in the microspheres, and a peak centered at
100 um and 180 pm for the coll-MS and the MS respectively, which was related to the spaces
between microspheres.

3.2. Clinical handling and radiographical assessment

No tendency to particle dispersion was observed intraoperatively by the surgeon during the
handling of the microspheres-embebed clot when filling the defect. No clinical evidence of
inflammatory response or adverse tissue reaction was found around implants and no toxic
signs were observed for the experimental period. One month after implantation, the radiogra-
phical assessment showed complete consolidation of the samples in the defect site, with no
detectable migration of the material, although the displacement of single microspheres could
not be excluded. The radiological images after 3 months are shown in Fig 3. The materials
started reducing their radiopacity, especially in the case of the MS (Fig 3C and 3D), with a loss
of definition in the defect border as well as a reduction in the initial granular aspect.

3.3. Histology: decalcified samples

After 12 days implantation, a small number of inflammatory cells were found in most of the
histological sections, indicating the good biocompatibility of the different materials (Fig 4).
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Fig 1. Scanning electron micrographs of the 4 implanted materials. CPC (A-D) and MS (E-H), in the
absence (A,C,E,G) or presence (B,D,F,H) of collagen. (C,D,G,H) Microstructural morphology of the calcium
deficient hydroxyapatite produced after hydrolysis of the starting a-TCP powder. The pristine CPC (C) and
the coll-CPC (D) presented identical morphology, having typical hydroxyapatite crystals. The MS presented
similar crystal morphology with bigger crystal domains (G). In the case of coll-MS collagen was exposed in
the surface of the microspheres (H).

doi:10.1371/journal.pone.0131188.9001
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Fig 2. (A) X-Ray diffraction pattern of the different samples showing the complete transformation of
the initial reagents into hydroxyapatite after 7 days immersion in water. The MS presented small
remnants of unreacted a-TCP. (B) Pore size distribution of the studied samples obtained by mercury intrusion

porosimetry.
doi:10.1371/journal.pone.0131188.9002

Fig 3. Radiographical assessment of the different samples implanted in the rat femur after 3 month
implantation. (A) CPC, (B) coll-CPC, (C) MS and (D) coll-MS. The CPC samples (A,B) clearly showed
evidence of material remaining in the site of implantation, whereas the microspheres (C,D) were less visible

at the site of implantation.

doi:10.1371/journal.pone.0131188.9003
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Fig 4. Histological analysis after 12 days post implantation, decalcified H&E stained sections of (A)
CPC, (B) coll-CPC, (C) MS and (D) coll-MS. Sparse signs of inflammatory cells are visible, as red dots in the
mesenchymal tissue invading the biomaterial, especially for the (B) coll-CPC, (C) MS and (D) coll-MS. The
good biocompatibility is evidenced by the osteogenic cells aligning both at the interphase between the
cement or the microspheres and the bone tissue (white arrows) and forming new bone lamellae. The lamellae
in Fig 4A, suggest the formation of cutting cones (blue arrows). Blood vessels (red arrows) are visible around
the microspheres (C and D).

doi:10.1371/journal.pone.0131188.9004

Osteogenic cells were seen aligned at the interphase between the cement and bone tissue with
new lamellar bone in the CPC and coll-CPC (Fig 4A and 4B). Similarly, osteogenic cells were
observed surrounding each of the individual microspheres, and blood vessels were found in the
rich mesenchymal tissue between the microspheres (Fig 4C and 4D). The higher surface avail-
able allowed for the penetration of a higher number of mesenchymal cells inside the defect,
facilitating the alignment of osteogenic cells around the biomaterial as well as the formation of
new blood vessels.

3.4. Backscattering scanning electron microscopy

SEM images after one and three months implantation are shown in Figs 5 and 6 respectively.
New bone was observed growing on the periphery of the cements, in direct contact with its sur-
face (Figs 5A and 5B and 6A and 6B), but the small-sized porosity hindered the penetration of
new tissue within the material. A completely different result was observed for the microspheres
(Figs 5C and 5D and 6C and 6D). The larger surface available and the open macroporosity gen-
erated between the individual microspheres enhanced cell penetration and bone ingrowth
within the defect. The microspheres guided the formation of the new trabecular structure,
becoming integrated in the new bone trabeculae. Calcified chondroid tissue was the principal
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Fig 5. Backscattered electron micrographs of undecalcified section of the cements (A,B) and the
microspheres (C,D) after 1 month implantation, in the absence (A,C) and presence (B,D) of collagen.
Trabeculae constituted mostly by calcified chondroid tissue are visible in the periphery of the cements (A, B),
whereas denser trabeculae with new bone covering the initial chondroid tissue were able to grow both on the
surface of the microspheres and in the pores between them (C, D).

doi:10.1371/journal.pone.0131188.9005

component of the initial trabeculae surrounding all the biomaterials (Fig 5), but the coll-MS
were covered by denser trabeculae, with a clear lamellar deposition (Fig 5D). At 3 months (Fig
6), the trabeculae around the biomaterial were consistently formed by lamellar bone, with only
sparse remnants of the initial chondroid tissue (Fig 6B and 6C). Interestingly, some resorption
was observed, more pronounced in the case of the MS and coll-MS (Fig 6C and 6D) with
numerous Howship’s lacunae eroding both the biomaterial and the surrounding osseous
tissues.

3.5. Histomorphometric analysis

Fig 7 shows the amount of newly formed bone. After 1 month, the cements presented low val-
ues of new bone ingrowth (~1.7% and ~1.0% for CPC and coll-CPC respectively), compared to
the microspheres (~9.3% and ~7.5% for MS and coll-MS respectively). After 3 months, the val-
ues were maintained low for the cements (~2% and ~2.3% for CPC and coll-CPC respectively),
and were considerably increased for the microspheres (~16.3% and ~16.7% for the MS and
coll-MS respectively), presenting nearly a two-fold increase respect to 1 month. The differences
were shown to be significant between the cements and the microspheres, although there was
no significant difference between the presence or absence of collagen for the different tested
materials.
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Fig 6. Backscattered electron micrographs of undecaicified sections of the cements (A, B) and the
microspheres (C, D) after 3 months implantation, in the absence (A, C) and presence (B, D) of
collagen. An increasing amount of lamellar new bone ingrowth (white arrow in A) upon a lesser amount of
chondroid tissue (white arrowhead in A) were observed, showing the normal growth of the trabecular bone,
following the same patterns mentioned in Fig 5. Noteworthy, the Howship’s lacunae (yellow arrows in A, B, C
and D), indicative of the resorption of the material are more numerous around the collagen microspheres and
the new bone formed around them (D).

doi:10.1371/journal.pone.0131188.9006
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Fig 7. Histomorphometric quantification of the amount of new bone ingrowth. Significantly higher new
bone ingrowth was found for the microspheres as compared to the cements. Furthermore, the amount of new
bone formation was significantly increased from 1 to 3 months in the microspheres groups, and the same
trend was found for the cements, although the increase was no statistically significant. * indicates significant
differences between the groups connected with the line (p<0.05).

doi:10.1371/journal.pone.0131188.g007
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Discussion

Apatitic calcium phosphate cements are widely used for bone regeneration. However, despite
their excellent biocompatibility and osteoconductivity, their osteogenic potential is limited by
the slow degradation, caused in part by the small size of their intrinsic porosity. Different strat-
egies have been explored to overcome this limitation, such as the introduction of macroporos-
ity in CPCs by different routes, like foaming the cement paste with the help of surfactant
molecules or proteins [18-20], or adding soluble particles [21]. In this work we propose an
alternative strategy, based on the fabrication of biomimetic calcium deficient hydroxyapatite
microspheres, which have the same composition and microstructure of calcium phosphate
cements because they are obtained by emulsification of calcium phosphate cement slurry. The
strategy behind using the microspheres is the same as for the ceramics granules currently in the
market, i.e., providing an interconnected pore network between the calcium phosphate parti-
cles, for the bone to invade. However, the composition and microstructure of these biomimetic
microspheres are much closer to the biological apatite than that of sintered calcium phosphate
granules, having also a much higher specific surface area. In fact, in a previous study it was
shown that this type of low-temperature calcium phosphates, namely calcium deficient
hydroxyapatite, can support bone ingrowth to a greater extent than ceramic calcium phos-
phates [22]. Moreover, the processing technique used in this study, both for the cements and
the microspheres, was compatible with the combination with biopolymers, in our case collagen,
which allowed obtaining collagen-calcium deficient hydroxyapatite composite materials [12].
The presence of collagen in the different materials did not hinder the hydrolysis of a-TCP to
calcium deficient hydroxyapatite, and had a clear effect in facilitating the emulsifying process,
due to the amphiphilic character of collagen and its subsequent surface active properties [7], as
proved by the higher sphericity of the coll-MS (Fig 1E and 1F).

When comparing the two families of materials, namely cements and microspheres, it is
important to keep in mind that the liquid to powder ratio used for each of them was different.
The higher liquid to powder ratio in the case of the microspheres explains the larger pores
observed by MIP (Fig 2B), shifting from ~0.006-0.6 pm for the cements to ~1 pm for the
microspheres, which is consistent with previous studies [23]. On the other hand, the peak
observed near 100 um is related to the pore spaces between microspheres. This value represents
the lower limit of the macropore size in the implanted blood-microspheres composite, since
blood was not present in the MIP measurements. The bigger crystals observed in the micro-
spheres compared to the cements, as shown in Fig 1 and indicated by the sharper diffraction
peaks (Fig 2A), can also be related with the use of a higher liquid to powder ratio, which
decreases the supersaturation of the liquid phase, promoting crystal growth instead of crystal
nucleation.

The assessment of the implanted samples by histology after 12 days did not show any signif-
icant inflammatory response. Despite the use of bovine collagen, no immunogenic response
was found. Interestingly, previous studies performed on spherical and sharp edged granules
showed increase levels of inflammatory response in the sharp edged granules, therefore show-
ing the advantage of using spherical particles as opposed to irregular granules [24].

Histological images indicated that both, cements and microspheres, were involved in the
physiological processes of bone remodeling, as revealed by the presence of cutting cones in
close contact with the material (Fig 4A) and the growth of the trabeculae formed around the
materials (Figs 4 and 5). The presence of chondroid tissue, also described by Bailleul et al [25]
as “chondroid bone”, in the initial trabeculae surrounding the biomaterial (Fig 5), as identified
by back scattered SEM [26], cannot necessarily be interpreted as endochondral ossification. In
fact, it has been demonstrated that chondroid tissue is an essential part of the human skull
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membranous ossification [27,28] and other repair processes [29,30], even if it can be present
also in endochondral ossification. Moreover Bailleul et al. [25] described very thoroughly the
evolution, morphological characteristics, and participation of chondroid tissue in endomem-
branous ossification in different species, as they have been described in the literature. All mate-
rials were shown to be extremely osteoconductive, as their surface was observed to be
completely covered by new bone, as observed in previous studies with similar materials [22].
However, the intrinsic pore size of the cements was shown to be too small for cell penetration,
and therefore bone was able to grow only in the periphery of the implanted material, being the
amount of newly formed bone small, which is in agreement with previous studies [18,20]. A
dramatic increase in bone formation (10-fold) was observed when the material was used in the
form of microspheres instead of a continuous paste (Fig 7). The enhanced behavior of the
microspheres in comparison to the cements can be attributed to the highly interconnected
porous network created between particles, which allowed for the presence of the blood clot
throughout the whole defect. It is well known that the cells and specific growth factors present
in the fibrinous blood clot [31,32] play an essential role in bone regeneration. As previously
mentioned, the gaps between the MS were found to be at least 100 um, which has been shown
to be an excellent interconnectivity value to allow bone tissue formation within calcium phos-
phate ceramics [33].

The values obtained for new bone deposited in the defect in presence of the microspheres
are in the range of those reported in previous studies with calcium phosphate granules using
the rabbit femoral condyle model [22, 34-37]. It is important to keep in mind, however, that it
is not possible to establish direct comparisons, due to different experimental protocols (defect
size, quantification method, etc.), or different characteristics of the materials used (granule
size, use of carriers, etc.). It is well known, for instance, that granule size has an impact in bone
formation [34,38], and that the results obtained when quantifying bone formation by microCT
tend to be higher than those obtained by back scattering SEM [35,39]. Aguado et al. [36]
reported around 14% new bone formation for beta-TCP granules after 1 month, measured by
microCT. Moreover, they showed that the use of a hydrogel as a carrier, in this case hyaluronic
acid, in addition to facilitating the handling of the granules, increased bone apposition, due to
the fact that more granules were maintained in the surgical site. Castellani et al. [37] found that
the amount of new bone when using biphasic calcium phosphate (BCP) granules in a fibrin gel
was 12% after 2 months [37], whereas Le Nihouanen et al. [35] reported around 20% after 3
months. The amount of new bone reported by Bourgeois et al. [22] after only 3 weeks for BCP
and calcium deficient hydroxyapatite granules combined with hydroxypropylmethylcellulose
was larger, (around 18% for BCP granules and 24% for calcium deficient hydroxyapatite). This
can be explained by the much smaller granule size (40-80 micrometers) [34,38].

No clear effect on bone formation was seen when collagen was incorporated in the materi-
als. Although it was reported in previous in vitro studies that the incorporation of collagen in
calcium phosphate cements and microspheres not only enhanced osteoblastic cell adhesion
and proliferation [7,14,15], but also fostered the expression of proteins involved in osteogenesis
and mineralization [7,15], no statistically significant differences in the amount of newly formed
bone were found between the collagen-containing materials and their pristine counterparts.
However, even though no quantification was performed, a higher erosion was observed in the
coll-MS as compared to the MS (Fig 6D), which could be indicative of a faster degradation. The
morphology and shape of the eroded surfaces found both in the bone and the MS resembled
those of Howship’s Lacunae as was previously reported and was shown to be related with the
osteoclastic activity of cells in the bone matrix [40]. This effect was not obvious in the cements,
which can be related to the smaller porosity, together with the fact that the amount of collagen
in the injectable cements was smaller than in the microspheres, due to the higher liquid to
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powder ratio used in the later (4.5 mg coll/g CPC for the injectable pastes and 8 mg coll/g CPC
for the microspheres, which represents 0.45 and 0.8 wt% or collagen, respectively).

The smaller effect of collagen addition in the materials observed in this study can seem con-
tradictory with other studies that have reported a significant enhancement of degradation
when hydroxyapatite was combined with collagen [41-43]. However, it is important to keep in
mind that in this study, both in the cements and the microspheres collagen was a minority
phase. This was conditioned by the fact that collagen was incorporated in the liquid phase of
the self-setting cement, and therefore the possibility to obtain a collagen solution with adequate
viscosity limited the total amount that could be added. When collagen/hydroxyapatite compos-
ites are obtained by other routes, much higher amounts of collagen can be incorporated in the
material, and therefore the effects are much more visible.

Conclusions

The use of biomimetic microspheres obtained by emulsification of a calcium phosphate cement
proved to be a good strategy that significantly increased the amount of bone ingrowth, com-
pared to completely filling the defect with a calcium phosphate cement paste. The incorpo-
ration of collagen into the calcium phosphate cement did not have a significant effect on new
bone formation.
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