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Abstract

Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a
computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single
lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can
improve cardiovascular risk prediction and therapy management.

Methods and Results: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls) from
the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical
learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators
that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the
Area-Under-the-ROC-Curve (DAUC) and by risk reclassification (Net Reclassification Improvement (NRI) and Integrated
Discrimination Improvement (IDI)). Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH) improved cardiovascular
risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our
method significantly improved both CVD prediction and risk reclassification.

Conclusions: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These
indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible
side-effects. For clinical application, further validation is required.
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Introduction

The Framingham Risk score predicts cardiovascular risk based

on six variables: age, diabetes, smoking status, treated and

untreated systolic blood pressure, total cholesterol, and HDL

(High Density Lipoprotein) cholesterol [1]. Newer lipoprotein

measurement methods have attempted to improve risk prediction

by quantifying lipoprotein subclasses by size [2–7] or density [8]

range. However, the lipoprotein size information is little used in

clinical practise so far, because its relation to cardiovascular risk is

unclear. However, the lipoprotein size information contains

implicit information about lipoprotein metabolism, which causes

the size distribution. This metabolic information may be relevant

for the prediction of cardiovascular disease.

We have developed a computational model to analyze

measured lipoprotein subclass profiles in terms of the underlying

metabolic activity [9–12]. Briefly, lipoproteins transport lipids,

mainly triglycerides and cholesterol, through the bloodstream. The

model includes Apolipoprotein B (ApoB)-containing lipoprotein

particles ranging from large Very Low Density Lipoprotein

(VLDL) through the smaller Intermediate Density Lipoprotein

(IDL) and Low Density Lipoprotein (LDL) particles. Lipoprotein

particles are produced by the liver, they lose fat to different tissues

and become smaller in the lipolysis process, and they are finally

taken up by the liver again. The main proteins responsible for the

lipolysis process are Hepatic Lipase (HL) in the liver and

Lipoprotein Lipase (LPL) in other tissues. The model can calculate

ratios of lipoprotein production, lipolysis, and uptake processes

from a single lipoprotein profile measurement; we call these ratios

‘lipoprotein metabolism indicators’.

ApoB-containing lipoproteins are proatherogenic because an

accumulation of especially small dense LDL particles may lead to

plaque formation in veins and arteries. Growing plaques may over

time lead to CVD. Small dense LDL particles can form when the

liver does not clear LDL particles from the bloodstream effectively.

This is a metabolic disorder of the liver, that will also have an

effect on VLDL, the metabolic precursor of LDL, because when

overloaded the liver will also take up less VLDL, and perhaps

produce more VLDL to lose excess fat. Therefore, we hypothe-

sized that adding metabolic information in the form of lipoprotein
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metabolism indicators to conventional risk factors can improve

cardiovascular risk prediction. We evaluated this hypothesis for

subjects from the Framingham offspring cohort.

Methods

Study Sample and Risk Factors
In this study we used measured information from subjects

studied in the 4th examination of the Framingham Heart Study

Offspring cohort, as recorded in the database of Genotypes and

Phenotypes (dbGaP) [13]. Subjects were included when they had

no history of cardiovascular disease, gave written informed consent

for general research use, had complete NMR lipoprotein profiles

recorded, and had a complete record of conventional cardiovas-

cular risk factors. Cardiovascular events were carefully recorded

during the follow-up period for all subjects.

Computational Modeling
We applied the Particle Profiler computational model [9,10] to

NMR lipoprotein profiles [14]. Profiles were based on the original

NMR measurements, to which Liposcience’s LP3 algorithm was

applied. Slight modifications to the previously published Particle

Profiler [12] fitting procedure can be found in Text S1 (Methods).

We calculated ratios of all modeled processes (lipoprotein

production, total lipoprotein lipolysis, HL lipolysis, LPL lipolysis,

liver lipoprotein attachment, liver lipoprotein uptake) in each of

three sets of lipoprotein size ranges (VLDL through LDL, VLDL

only, IDL through LDL). The calculated ratios of modelled

processes are lipoprotein metabolism indicators that serve as

candidate diagnostics.

Outcomes
Subjects who experienced a general cardiovascular event, as

defined by the Framingham Heart Study [14], within 10 years

after the NMR measurements, were designated as ‘cases’, all

others as ‘controls’. The Framingham definition includes coronary

death, myocardial infarction, coronary insufficiency, angina,

ischemic stroke, hemorrhagic stroke, transient ischemic attack,

peripheral artery disease, and heart failure.

Statistical Analysis
We used a statistical learning algorithm (a nonlinear L2-norm

support vector machine [15,16]) to correlate predictor variables

with the Cardiovascular Disease (CVD) outcome. This analysis

was carried out in order to identify the most predictive ‘lipoprotein

metabolic indicator’ diagnostics, and evaluate their performance.

We grouped the predictor variables into three datasets: 1.

conventional cardiovascular risk parameters, without cholesterol

(see Table 1); 2. conventional cholesterol parameters (see Table 1)

and 3. lipoprotein metabolism indicators (see Text S1 (Methods)). A

detailed explanation of the procedure we used for constructing the

multivariate model is provided in Text S1 (Methods). In summary,

in order to obtain a model similar to the Framingham Risk Score,

we selected the six most predictive variables from dataset 1, the

two most predictive markers from dataset 2, and further markers

from dataset 3. In the first phase, using dataset 1, we included ‘age’

and ‘gender’ in the model. We then added in succession those

variables that contributed most to improving predictive perfor-

mance of the model, measured as the area under the Receiver

Operating Characteristic (ROC) curve (or C-statistic) [17]. The

area under the ROC curve is the conventional statistic used for

Table 1. Markers present in raw datasets 1 and 2, the third
dataset contains lipoprotein metabolic ratios, defined in Text
S1 (Methods).

Classical risk variables (dataset 1)

Age

Sex

Systolic blood pressure physician 1

Diastolic blood pressure physician 1

Systolic blood pressure physician 2

Diastolic blood pressure physician 2

Systolic blood pressure nurse

Diastolic blood pressure nurse

Cigarettes per day

Inhales

Smokes sigars

Smokes pipe

Spouse smokes

BMI

Blood pressure medication

Glucose

Cholesterol markers (dataset 2)

Total cholesterol

HDL cholesterol

VLDL cholesterol (NMR)

LDL cholesterol (NMR)

HDL cholesterol (NMR)

doi:10.1371/journal.pone.0092840.t001

Table 2. Baseline characteristics of the subjects.*

Characteristic
Men
(N = 946)

Women
(N = 1035)

Mean age – yr 49.269.3 49.569.0

Cholesterol – mg/dl

Total 204636 205640

HDL 44611 56615

Blood pressure – mm Hg

Systolic (nurse) 127616 122619

Diastolic (nurse) 80610 75610

Blood pressure medication – no. (%) 126 (13.3) 128 (12.4)

Body-mass index 27.663.8 25.865.1

Smoking

Smokes and inhales 201 (21.2) 219 (21.2)

Cigarettes per day 5.2612.1 4.269.6

Smokes cigars – no. (%) 46 (4.9) 2 (0.2)

Smokes pipe – no. (%) 28 (3.0) 0 (0)

Spouse smokes – no. (%) 344 (36.4) 450 (43.5)

Glucose – mg/dl 95618 91622

* Plus-minus values are means 6 SD. To convert the values for cholesterol to
millimoles per liter, multiply by 0.02568. The body-mass index is the weight in
kilograms divided by the square of the height in meters. HDL denotes
high-density lipoprotein.
doi:10.1371/journal.pone.0092840.t002

Metabolism Indicators Improve Risk Prediction

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92840



comparing the predictive performance of diagnostics. A procedure

that successively adds the best predicting variables is frequently

referred to as ‘‘forward variable selection’’ (see e.g. [18]). Having

selected the biomarkers from dataset 1, we proceeded in a similar

manner with datasets 2 and 3, consecutively adding the most

predictive variables to the model. We added markers from dataset

3 that gave a substantial improvement in ROC prediction and that

were not correlated with markers already in the model (r2,0.25);

this procedure led to inclusion of two additional markers from

dataset 3. For comparison, we also included a dataset with the

selected markers from dataset 1, plus total and HDL cholesterol.

We used a separate training and test-set for marker selection, but

evaluated the final result using the complete dataset. All

multivariate analyses were performed using Numerical Python.

The results of the multivariate analyses are various predictive

models including different diagnostic markers. The CVD risk

predictions of these models then need to be compared using

suitable statistics. We compared the area under the ROC curve of

the various models (DAUC) using the method by de Long and a

binomial exact test, calculated in MedCalc, version 11.5.1.0. Also,

we used Platt’s algorithm to transform the predictions computed

by SVM into class probabilities for computing reclassification

statistics [19,20]. Reclassification was quantified using the ‘Net

Reclassification Improvement’ (NRI) using 6% and 20% risk

cutoffs for the ‘medium’ and ‘high’ risk classes and the ‘Integrated

Discrimination Improvement’ (IDI, a risk cutoff-independent

method) as suggested by Pencina [21]. The first ROC analysis is

the classical comparison of diagnostic power. The reclassification

comparison is more sensitive and gives more clinically relevant

information, because it measures how people are redistributed

over risk categories using the new diagnostics, and evaluates

whether that change was correct.

Results

Baseline Characteristics
Of the 2142 selected subjects 145 cases and 1836 controls were

found to have a complete record of all relevant parameters and

thus were included in the analysis. Baseline characteristics of the

subjects are shown in Table 2. The mean age was 4969 years,

52% was female.

Multivariate Models
The variables included in the final multivariate models are

shown in Table 3. The first selected lipoprotein metabolism

indicators was ln
kVLDL

lpl

Jin,VLDL

 !
, which we call the ‘VLDL Extrahe-

patic lipolysis indicator’ or VLDLE. This indicator is a ratio

between the VLDL lipolysis rate related to lipoprotein lipase

(kVLDL
lpl ) and the influx of particles due to production in the liver

and lipolysis of larger particles (Jin,VLDL). The second selected

lipoprotein metabolism indicator ln

kVLDL
hl

Jprod,VLDL

z
kVLDL

a,liver

Jprod,VLDL

2

0
BBB@

1
CCCA,

which we call the ‘VLDL Hepatic turnover indicator’ or VLDLH,

Table 3. Variables included in final multivariate models.

Conventional markers
without cholesterol Conventional markers LDLc LDLc + HDLc LDLc + HDLc + VLDLE + VLDLH

Age Age Age Age Age

Sex Sex Sex Sex Sex

Cigarettes per day Cigarettes per day Cigarettes per day Cigarettes per day Cigarettes per day

Blood pressure medication Blood pressure medication Blood pressure medication Blood pressure medication Blood pressure medication

Systolic blood pressure
(nurse)

Systolic blood pressure
(nurse)

Systolic blood pressure
(nurse)

Systolic blood pressure
(nurse)

Systolic blood pressure (nurse)

Glucose Glucose Glucose Glucose Glucose

Total Cholesterol LDL cholesterol LDL cholesterol LDL cholesterol

HDL cholesterol HDL cholesterol HDL cholesterol

VLDL Extrahepatic lipolysis indicator

VLDL Hepatic turnover indicator

doi:10.1371/journal.pone.0092840.t003

Table 4. Areas under the ROC curve for the cross-validated multivariate models and their improvement versus a random predictor.

Model AUC SE
AUC improvement
from random

% incremental AUC improvement
from random

Conventional, no cholesterol 0.759 0.0204 0.259 0.0

Conventional 0.795 0.0193 0.295 12.2

LDLc 0.791 0.0192 0.291 11.0

LDLc + HDLc 0.797 0.0192 0.297 12.8

LDLc + HDLc + VLDLE + VLDLH 0.812 0.0192 0.312 17.0

doi:10.1371/journal.pone.0092840.t004
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is the average of two ratios: that between the rate constant of

hepatic VLDL lipolysis (kVLDL
hl ) and the VLDL particle production

flux (Jprod,VLDL), and that between the rate of VLDL attachment

to the liver (kVLDL
a,liver ) and the VLDL particle production flux.

Further explanation of the mathematical notation of these

indicators can be found in Text S1 (Methods).

ROC analysis of Multivariate Models
Tables 4 and 5 show the results of a Receiver-Operating-

Characteristic (ROC) analysis for general cardiovascular disease.

Table 4 displays the area under the curve, its improvement over a

predictor drawn at random, and a percentage incremental

improvement of the last statistic. Results of the statistical analyses

comparing the curves are shown in Table 5. Our method

significantly improved CVD prediction over accepted risk

markers, as measured by the Area-Under-the-ROC-Curve

(DAUC). The improvement of our model versus a model with

classical Framingham risk markers, including total cholesterol and

HDLc, was DAUC = 0.0177 with p = 0.0055. The improvement of

our model versus a model including LDLc and HDLc was

DAUC = 0.0150 with p = 0.0067. In comparison, the model

including LDLc and HDLc did not significantly improve risk

prediction over the model including total cholesterol and HDLc,

with DAUC = 0.00268, and p = 0.6003. As expected, adding total

and HDL cholesterol to other classical Framingham risk factors

did significantly improve risk prediction, with DAUC = 0.0354 and

p = 0.0003. The statistical test thus showed that adding lipoprotein

metabolism indicators to a model that includes existing cardio-

vascular risk factors significantly improved the area under the

ROC curve for this population, with respect to conventional risk

markers.

Reclassification analysis
Table 6 shows the results of the reclassification analysis. Risk

reclassification, using low, middle, and high risk classes, and also

using the category independent methods was significantly

improved when including LDLc, HDLc, and VLDL metabolism

indicators. The improvement of the model including VLDL

metabolism indicators versus the model including classical

Framingham risk markers was quantified as NRI = 0.090, with

p = 0.014; for the category independent method IDI = 0.051, with

p,0.0001. The improvement of the model including VLDL

metabolism indicators versus the model including LDLc and

HDLc was quantified as NRI = 0.0828, with p = 0.013; for the

category independent method IDI = 0.040, p = 0.0004. In com-

parison, the model including total cholesterol and HDLc versus

that including LDLc and HDLc was nonsignificant, with

NRI = 0.008 and IDI = 0.011. Adding total and HDL cholesterol

to non-cholesterol Framingham risk factors did give a significant

improvement, with NRI = 0.111 and p = 0.009; for the category

independent method IDI = 0.040, p,0.0001. Lipoprotein metab-

olism indicators therefore add reclassification power to the NMR

lipoprotein profile.

In addition, we calculated NRI reclassification statistics for

subjects classified as at ‘Intermediate risk’ when using Framing-

ham risk markers (Table 7). These subjects would be eligible for

drug treatment in primary prevention. The analysis shows how

many subjects not experiencing events would not need treatment,

and how many experiencing events would be put on more

intensive treatment when using the new diagnostics. The NRI was

0.15 (p = 0.0481) when comparing these conventional markers to

LDLc and HDLc, and 0.37 (p,0.0001) when comparing them to

the model including lipoprotein metabolism indicators. When

looking at reclassified events separately (n = 48), the two

mentioned methods improved classification by 6% and 13%

respectively, but both improvements were non-significant. Impor-

tantly, there was a 9% reclassification improvement of non-events

(n = 422) when including LDLc and HDLc, and a 25%

reclassification improvement of non-events using lipoprotein

metabolism indicators, both with p,0.0001. The study therefore

shows that 25% of subjects that conventional Framingham risk

factors would needlessly include in the ‘intermediate risk’ category,

were reclassified to ‘low risk’ using lipoprotein metabolism

indicators.

Discussion

This is the first study in which ‘lipoprotein metabolism

indicators’ have been used for cardiovascular disease risk

prediction. These diagnostics are ratios of lipoprotein production,

lipolysis, and uptake processes derived from a single lipoprotein

profile measurement using computational modelling. We demon-

strate that incorporation of two lipoprotein metabolism indicators

significantly improves CVD risk prediction as measured by the

area-under-the-ROC-curve. Reclassification is also significantly

improved over conventional risk markers. The most important

predictor, the ‘VLDL Extrahepatic lipolysis indicator’ or

VLDLE,is a ratio between the VLDL lipolysis rate related to

lipoprotein lipase (LPL) and the influx of particles due to

production in the liver and lipolysis of larger particles. As LPL

mainly acts extrahepatically, this ratio gives information about the

capacity of extrahepatic tissue to absorb triglycerides from VLDL

particles in the fasting state. The second indicator, we call the

‘VLDL Hepatic turnover indicator’ or VLDLH, is the average of

two ratios: that between hepatic VLDL lipolysis and VLDL

production, and that between VLDL attachment to the liver and

Table 5. Statistical analysis of areas under the ROC curve for the cross-validated multivariate models.

Model 1 Model 2 Difference AUC ROC curve Standard Error P value

Conventional no cholesterol Conventional 0.0354 0.00979 0.0003

Conventional no cholesterol LDLc 0.0323 0.00991 0.0011

Conventional LDLc + HDLc 0.00268 0.00512 0.6003

Conventional LDLc + HDLc + VLDLE + VLDLH 0.0177 0.00637 0.0055

LDLc LDLc + HDLc 0.00580 0.00566 0.3055

LDLc LDLc + HDLc + VLDLE + VLDLH 0.0208 0.00735 0.0047

LDLc + HDLc LDLc + HDLc + VLDLE + VLDLH 0.0150 0.00552 0.0067

doi:10.1371/journal.pone.0092840.t005
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VLDL production. This combined ratio relates to the capacity of

the liver to process VLDL particles, both through lipolysis and

particle attachment to the liver. Inspection of the risk model (see

Text S1, Results) shows that LDLc remains the most important

lipoprotein-related predictor of CVD events. HDLc is an

important risk modifier, especially when no blood pressure

medication is used. When using blood pressure medication,

VLDLE becomes important; the lower this indicator, the slower

incoming VLDL particles are lipolysed extrahepatically, the higher

the risk. VLDLH is most important for determining the border

between low and medium risk, especially for men and when not

using blood pressure medication; the lower VLDLH, the less

hepatic VLDL turnover per produced particle, the higher the risk.

These interpretations show that the new risk prediction can be

understood in relation to lipoprotein pathophysiology and genetic

variation (in LPL and other genes pertinent to VLDL processes).

Examining the reclassification of subjects that were classified as

at ‘intermediate risk’ by Framingham risk factors is of special

clinical significance. The intermediate risk group consists of those

individuals that should be treated according to international

guidelines [21]. Subjects that are reclassified move to either the

high risk (more intensive treatment) or low risk (no treatment)

groups. Our results show that a net 25% of subjects in this group

that will not get cardiovascular disease after 10 years are moved to

the low risk group. The reclassification of people with events to the

high risk group was not significant, probably due to the low

number of cases in this group (n = 48). In other words, there is a

group of people that are classified as at ’intermediate risk’ using the

Framingham risk factors, but of whom we know with hindsight

that they do not suffer from a cardiovascular event. When

performing a diagnosis using VLDLE and VLDLH, 25% of this

subject group is reclassified to the low risk category, and these

subjects would therefore not have to take the medication the

guidelines prescribe for the intermediate risk category needlessly.

Extrapolating these results to clinical practice directly is not

straightforward, most importantly because treatment decisions are

most often made based on one or two parameters (such as LDLc

and HDLc) and not based on a complete set of risk markers.

However, because our multivariate model for the classical

Framingham markers is already an improvement over the two-

variable approach used in practice, a 25% improvement using our

final risk model will most likely be an underestimate for a

comparison with a two-variable approach used in the same

population. Future studies will need to point out whether the 25%

improvement can be validated in other populations, and whether a

population with more CVD cases will also yield significant

reclassification improvement for cases in the Intermediate risk

category. Our methodology can be readily applied to any past

studies in which NMR lipoprotein profiles have been measured.

Possible subjects of further investigation includes determining risk

in younger or older persons, differences in ethnic groups, and the

benefits for secondary prevention. The Particle Profiler model can

also derive lipoprotein metabolism indicators from other methods

for measuring lipoprotein profiles [2–7]. Other future investigation

can compare the results of modelling the data from these methods.

The current study has one technical limitation that deserves

mention: the NMR spectra were recorded with an older version of

the technology that is currently available. This limitation does not

affect the method to derive lipoprotein metabolism indicators.

Because of newer NMR methodology, the accuracy of lipoprotein

metabolism indicators will increase in future studies.

In summary, in a sample of 1981 subjects from the Framingham

offspring cohort, we found 2 lipoprotein metabolism indicators

that together significantly improved general cardiovascular risk
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prediction, as quantified by the area under the ROC curve and by

reclassification statistics. These indicators may help to reduce the

number of people that unnecessarily take cholesterol-lowering

medication, reducing costs and possible side-effects. Clinical

application will require further validation of these findings.

Supporting Information

Text S1 Additional information on methods and
results.
(DOC)
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