
ARTICLE

A machine learning model for identifying patients
at risk for wild-type transthyretin amyloid
cardiomyopathy
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Mo Hu2, Faraz S. Ahmad2, Rahul C. Deo 3 & Sanjiv J. Shah 2✉

Transthyretin amyloid cardiomyopathy, an often unrecognized cause of heart failure, is now

treatable with a transthyretin stabilizer. It is therefore important to identify at-risk patients

who can undergo targeted testing for earlier diagnosis and treatment, prior to the develop-

ment of irreversible heart failure. Here we show that a random forest machine learning model

can identify potential wild-type transthyretin amyloid cardiomyopathy using medical claims

data. We derive a machine learning model in 1071 cases and 1071 non-amyloid heart failure

controls and validate the model in three nationally representative cohorts (9412 cases, 9412

matched controls), and a large, single-center electronic health record-based cohort (261

cases, 39393 controls). We show that the machine learning model performs well in identi-

fying patients with cardiac amyloidosis in the derivation cohort and all four validation cohorts,

thereby providing a systematic framework to increase the suspicion of transthyretin cardiac

amyloidosis in patients with heart failure.
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Cardiac amyloidosis, a prototypical infiltrative cardiomyo-
pathy, is an increasingly recognized cause of heart failure
(HF), particularly HF with preserved ejection fraction

(HFpEF)1,2. Although once thought of as untreatable and asso-
ciated with very poor outcomes, both of the main forms of cardiac
amyloidosis (amyloidogenic light chain and transthyretin) are now
treatable with chemotherapy and tafamidis (a transthyretin [TTR]
stabilizer), respectively1,3. In addition, several imaging modalities
—including speckle-tracking echocardiography4, cardiac magnetic
resonance5, and bone scintigraphy6—are now available to assist
with the non-invasive diagnosis of cardiac amyloidosis, including
amyloidogenic TTR cardiomyopathy (ATTR-CM)7. Nevertheless,
despite the availability of these treatments and diagnostic techni-
ques, patients with cardiac amyloidosis continue to go undiag-
nosed or are diagnosed late in the course of the disease due to lack
of awareness and recognition of amyloidogenic light chain and
ATTR-CMs.

ATTR-CM may occur due to a variant in the TTR gene (her-
editary ATTR-CM, most commonly the V122I variant, which is
present in 3–4% of African Americans) or age-related misfolding
of TTR (wild-type ATTR-CM). Patients with ATTR-CM, who
develop symptomatic HF, have progressive decline in functional
status and quality of life, and high morbidity and mortality with
high rates of hospitalization and death8. Wild-type ATTR-CM
appears to be more common than previously appreciated. In
consecutive patients with HFpEF over the age of 60 years with a
left ventricular wall thickness of 12 mm or greater screened with
bone scintigraphy, the prevalence of wild-type ATTR-CM was
13%9. Furthermore, in consecutive patients undergoing trans-
catheter aortic valve replacement screened with bone scinti-
graphy, 16% had evidence of ATTR-CM10. ATTR-CM results
from the dissociation of the normal tetrameric form of TTR into
monomers that are prone to misfolding and aggregation, leading
to TTR amyloid fibril formation and deposition in the
myocardium8.

Given the underdiagnosis and significant morbidity of ATTR-
CM and availability of treatment with TTR stabilization,
improved screening to enhance early diagnosis of the disease is
essential, particularly for wild-type ATTR-CM for which no other
means of systematic identification, such as genetic testing, is
available. Clinical clues to the presence of ATTR-CM that have
been described in the literature include bilateral carpal tunnel
syndrome11,12, lumbar spinal stenosis11,13–15, and distal biceps
tendon rupture16. However, additional predisposing or associated
medical conditions may yet be discovered, which improve the
likelihood of prompt diagnosis. We sought to develop and vali-
date a machine learning model based on administrative medical
claims data in the electronic health record (EHR), with the goal of
creating a resource to facilitate the systematic screening and
identification of patients with wild-type ATTR-CM. We subse-
quently validated the machine learning model in four additional
cohorts. Here we show that the machine learning (ML) model
performed well in identifying ATTRwt-CM vs. non-amyloid HF
in the derivation cohort and all four validation cohorts, thereby
providing a systematic framework to increase the suspicion of
potential ATTRwt-CM in patients with HF.

Results
This study comprised three parts as follows: (1) derivation
(training) and testing of various supervised statistical learning
models for the diagnosis of wild-type ATTR-CM in a large
administrative medical claims dataset (IQVIA); (2) validation of
the best-performing ATTR-CM model in additional large
administrative medical claims and EHR datasets (IQVIA and
Optum); and (3) testing of the final machine learning model in an

EHR from a single, large healthcare system (Northwestern
Medicine Enterprise Data Warehouse [NMEDW]) to observe the
model’s performance. The details of each of the five cohorts (the
derivation cohort and the four validation cohorts) is listed in
Supplementary Table 1.

The demographic and clinical characteristics of patients
included in the five cohorts included in this study are summar-
ized in Table 1. Patients in the first four cohorts were matched on
age, sex, duration of medical history in the database, and number
of healthcare visits, and patients in all five cohorts were only
included if they were 50 years or older. The mean age of patients
across the cohorts was 73–78 years old and the majority in the
first four cohorts (>65%) were male based on the matching of
non-amyloid HF controls to wild-type ATTR-CM or cardiac
amyloidosis, the majority of whom were men, reflecting the
known male predominance of ATTR-CM. In the NMEDW HF
cohort (Cohort 5), which comprised all HF patients (not matched
to ATTR-CM or cardiac amyloidosis), there were similar pro-
portions of male and female patients. In all of the cohorts,
comorbidities were common but differed between amyloid and
non-amyloid HF patients. Patients with amyloid and HF were
more likely to have diagnoses of atrial fibrillation and chronic
kidney disease, and less likely to have hypertension, obesity,
diabetes, and coronary artery disease. The total number of
healthcare encounters and total duration of diagnostic his-
tory information in the datasets were similar across Cohorts 1–4
(IQVIA and Optum). The NMEDW cohort had the lowest value
for both of these metrics.

Model selection, performance, and validation. Of the three
statistical models tested (logistic regression, Random Forest, and
XGBoost), the Random Forest model had the highest area under
the receiver operating characteristic curve (AUROC) of 0.93 (vs.
0.91 for logistic regression and 0.90 for XGBoost), as shown in
Supplementary Table 2. Thus, the Random Forest ML model was
carried forward in all subsequent analyses. In the Cohort 1 test
set, the model performed well in correctly predicting wild-type
ATTR-CM HF vs. non-amyloid HF with an accuracy of 87% and
AUROC of 0.93 (Table 2 and Fig. 1). We found that the optimal
classification cut-point was an ATTR-CM probability threshold
of 0.475 based on maximizing precision (positive predictive value
[PPV]), recall (sensitivity), and accuracy metrics (Supplementary
Fig. 1), which was used in subsequent analyses for Cohorts 2–4.
The model was successfully validated in these three external
nationally representative cohorts (Table 2 and Fig. 1a–c),
although performance was better for predicting wild-type ATTR-
CM compared to the more general cardiac amyloidosis diagnosis.

In Cohort 5, the NMEDW HF external validation dataset (n=
261 cardiac amyloidosis HF cases, n= 39393 non-amyloid HF
controls), the ML model had an AUROC of 0.80 (Fig. 1d). The
performance characteristics of the ML model in the NMEDW HF
cohort varied based on the ML model-derived probability of the
ATTR-CM diagnosis. Table 3 shows that as the probability cutoff
for predicting ATTR-CM was increased from 0.5 to 0.75,
sensitivity decreased from 64 to 11%, specificity increased from
85 to 99%, and accuracy increased from 84 to 99%. As shown in
Table 4, the AUROC of the ML model in the NMEDW cohort
performed better than models that include clinical factors such as
age, sex, race, logBNP, and abnormal troponin levels. In addition,
adding the ML algorithm-predicted probability of ATTR-CM to a
base model that includes age, sex, race, and logBNP resulted in an
integrated discrimination index of 0.039 (95% confidence interval
[CI] 0.031–0.048), P < 0.00001 and a category-less net reclassifi-
cation index of 0.25 (95% CI 0.22–0.28), P < 0.00001, both
indicative that the addition of the ML algorithm improved
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performance of a model that used conventional clinical predictors
alone. We also tested the performance of the Random Forest
cardiac amyloidosis model in the NMEDW HF cohort and found
that it performed better than the wild-type ATTR-CM model,
with an AUROC of 0.81 (Supplementary Table 3). Within the
NMEDW HF cohort, PPV was low, reflecting the low prevalence
of cardiac amyloidosis in this cohort. However, as shown in
Table 5, the high positive likelihood ratios associated with both
the ATTR-CM and cardiac amyloidosis ML algorithms, com-
bined with an estimated pre-test probability of 4% for ATTR-CM
(based on a prior systematic screening study9,20), resulted in high
post-test probabilities of ATTR-CM, which highlight its potential
clinical utility in raising suspicion for the ATTR-CM diagnosis in
HF patients.

Clinical features associated with wild-type ATTR-CM. The
model output revealed several cardiac and non-cardiac clinical
features that were associated with wild-type ATTR-CM. Supple-
mentary Table 4 displays the prevalence and odds ratios for the
top International Classification of Disease (ICD) code-based
cardiac and non-cardiac phenotypes predictive of wild-type
ATTR-CM. The relationship between prevalence and odds
ratios for these phenotypes are displayed in Fig. 2. Besides HF and
cardiomyopathy-related phenotypes, the strongest cardiac pre-
dictors included pericardial effusion/pericarditis, atrial flutter,
cardiac conduction disorders, and abnormal serum enzymes,
whereas the strongest non-cardiac predictors included carpal
tunnel syndrome, synovitis/tenosynovitis, and ascites. Table 6
shows how combinations of diagnoses in claims data are asso-
ciated with wild-type ATTR-CM. For example, one of the top
phenotype combinations (by odds ratio) was the combination of
joint disorders+ osteoarthrosis+ pleurisy or pleural effusion+
HFpEF, which had a prevalence of 18.1% in wild-type ATTR-CM
vs. 3.6% in non-amyloid HF (odds ratio 5.8 [95% CI 4.0–8.5], p=
1.51 × 10−28). Supplementary Table 5 shows expanded test
characteristics for these phenotypic combinations. As shown in
Fig. 3, the top non-cardiac phenotypes more commonly asso-
ciated with wild-type ATTR-CM (vs. non-amyloid HF) preceded
the cardiac phenotypes and the HF diagnosis by several years.

Discussion
Using medical claims data from a large, nationally representative
database, we developed an ML prediction model for wild-type
ATTR-CM, with subsequent validation and performance in
multiple additional cohorts. Moreover, we identified antecedent

diagnoses and phenotypes associated with wild-type ATTR-CM,
some of which have been previously reported in the literature and
some not previously described, such as unique combinations of
cardiac and non-cardiac phenotypes that were predictive of
ATTR-CM. The results of our study are important, because our
predictive model, if successfully employed within the EHR of
healthcare systems, could lead to targeted testing and confirma-
tion of ATTR-CM in at-risk patients, which could lead to earlier
treatment of patients with wild-type ATTR-CM (and potentially
other forms of cardiac amyloidosis) by raising the suspicion of the
diagnosis in HF patients.

Cardiac amyloidosis is a specific cause of HF that is associated
with high morbidity and mortality, and is often misdiagnosed as
other, more common forms of HF and cardiac disease21. Disease-
modifying treatments are now available for both of the most
common types of cardiac amyloidosis (ATTR and amyloidogenic
light chain), and earlier treatment in the course of disease may be
associated with greater treatment response22. Therefore, earlier
and more systematic diagnosis of cardiac amyloidosis is
imperative. This is especially true for wild-type ATTR-CM,
because currently there is no specific test (e.g., abnormal light
chains or the presence of a genetic variant in the TTR gene),
which is indicative of the potential disease in order to pursue a
definitive diagnosis. Furthermore, identification of wild-type
ATTR-CM is important, as we now recognize that the condi-
tion is more common than previously appreciated (e.g., 13% of
patients with HFpEF over the age of 60 years with increased left
ventricular wall thickness9 and 16% of elderly patients under-
going transcatheter aortic valve replacement10).

ML models based on medical claims data for the prediction of
diseases and phenotypes have been described in the medical lit-
erature with increasing frequency. Recent examples include ML
models for opioid dependence, ankylosing spondylitis, drug-
resistant epilepsy, prodromal Alzheimer’s disease, and
dementia23–27. ML studies vary in quality and often do not
include the comprehensive validation and performance testing
reported here28,29. Our study used both an internal test set and
four external cohorts for validation.

In our study, model performance was slightly better in cohorts
generated from EHR data (Optum) than in cohorts generated
from medical claims data (IQVIA). This finding is likely
explained by the fact that EHR data are more comprehensive than
claims data. Machine learning models typically perform best
using the data they learn from, but our model performed mar-
ginally better on Optum EHR data than in the IQVIA medical
claims data (e.g., 91% vs. 87% accuracy in predicting wild-type
ATTR-CM, although 71 and 71% accuracy in predicting cardiac
amyloidosis). When applied in a single-center EHR setting
(Cohort 5, NMEDW HF cohort), the model performed well
overall with an AUROC of 0.80 and better model performance
compared with demographic factors and biomarkers alone. Fur-
thermore, when the Random Forest cardiac amyloidosis model
was applied to this cohort, it performed even better with an
AUROC of 0.85, which is not surprising, because the NMEDW
HF cohort cases included all patients with a cardiac amyloidosis
diagnostic code (not just ATTR-CM diagnoses). We excluded
blood cancers and other non-ATTR-related amyloidosis codes
from our cardiac amyloidosis cases to try to minimize the
potential of overlap of our prediction model with other forms of
cardiac amyloidosis (e.g., amyloidogenic light chain cardiac
amyloidosis). Nevertheless, some patients with these other types
of cardiac amyloidosis may have been included in the cases for
Cohorts 3, 4, and 5. However, deriving and validating ML models
for both the specific ATTR-CM diagnosis and the more general
cardiac amyloidosis umbrella diagnostic code is important,
because clinicians may use either term when diagnosing

Table 2 Validation of the machine learning model in four
cohorts derived from medical claims and electronic health
records.

Metric Validation cohort

Cohort 1:
IQVIA
holdout
(ATTR-CM)

Cohort 2:
Optum
(ATTR-
CM)

Cohort 3:
IQVIA
(cardiac
amyloid)

Cohort 4:
Optum
(cardiac
amyloid)

Sensitivity, % 87 90 56 61
Specificity, % 87 79 83 81
PPV, % 88 81 76 76
NPV, % 86 89 65 67
Accuracy, % 87 84 69 71
ROC AUC 0.93 0.95 0.76 0.78

ATTR-CM amyloidogenic transthyretin cardiomyopathy, NPV negative predictive value, PPV
positive predictive value, ROC AUC receiver operating characteristic area under the curve.
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ATTR-CM. Given the potential overlap in the cardiac and
extracardiac manifestations of the various types of cardiac amy-
loidosis, an ML model that predicts the presence of cardiac
amyloidosis would still be clinically useful, because it would
heighten clinical suspicion for the diagnosis, leading to further
definitive testing, and a final diagnosis of whether cardiac amy-
loidosis is present or not. If present, the definitive testing would
also determine the underlying type of cardiac amyloidosis.

As shown in Table 3, despite high overall accuracy, PPV was
low because of the low prevalence of cardiac amyloidosis, which
differed from the other development and validation datasets

(IQVIA and Optum), which were designed as case–control stu-
dies (with propensity score matching) and were not applied more
broadly to an entire health system. In addition, the NMEDW HF
cohort likely contains undiagnosed ATTR-CM patients, which
can partially explain the low PPVs in this cohort, as several
patients predicted as ATTR-CM are potentially undiagnosed and
thus labeled as HF. Despite the relatively low PPVs, our ML
model could still be useful clinically, because it would increase the
suspicion of ATTR-CM, which could lead clinicians to re-
evaluate routine tests performed in HF patients (e.g., electro-
cardiography, echocardiography, and cardiac biomarkers), which

Fig. 1 Receiver operating characteristic curves for the Random Forest machine learning model in the four validation cohorts. a Optum ATTR-CM
validation cohort. b IQIVA cardiac amyloidosis validation cohort. c Optum cardiac amyloidosis cohort. d Northwestern Medicine Enterprise Data
Warehouse validation cohort. AUROC, area under the receiver operating characteristic curve; ATTR-CM, amyloidogenic transthyretin cardiomyopathy;
NMEDW, Northwestern Medicine Enterprise Data Warehouse.
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offer clues to the presence of ATTR-CM. Patients with corro-
borating findings on these routine clinical tests obtained in all HF
patients (e.g., apical sparing on speckle-tracking echocardio-
graphy) could then undergo confirmatory non-invasive diag-
nostic testing (e.g., bone scintigraphy). Furthermore, even if a
high probability threshold for the diagnosis of ATTR-CM was
used (e.g., >0.75), as shown in Table 3, nearly 10% additional
patients with ATTR-CM could be ultimately diagnosed, which
would be an important clinical advance. As we have modeled
previously, the pre-test probability of ATTR-CM is likely ~4% in
HF patients20. Using this pre-test probability, Table 5 demon-
strates the clinical utility of the ATTR-CM and cardiac amyloid
ML models by showing how the high likelihood ratios result in
large increases in post-test probability, thereby alerting clinicians
to the possibility of the ATTR-CM diagnosis. Nonetheless, it is
important to note that future prospective studies, with systematic
application of gold standard tests for the diagnosis of ATTR-CM
will need to be curated for further development and validation of
our ML model.

Our findings on the cardiac and non-cardiac phenotypes pre-
dictive of wild-type ATTR-CM confirm what is known about the
disease from the literature and clinical experience. For cardiac
phenotypes, these include pericardial effusion/pericarditis, atrial
arrhythmias, cardiac conduction disorders, and abnormal serum
enzymes (likely indicative of abnormal elevations of troponin,
which are common in cardiac amyloidosis); for non-cardiac phe-
notypes, these include carpal tunnel syndrome, bone and joint
disorders, neuropathies, and soft tissue disorders. We also identified
combinations of phenotypes that were highly associated with wild-
type ATTR-CM and found that the non-cardiac diagnoses asso-
ciated with ATTR-CM, as expected, were present for several years
prior to the diagnosis of ATTR-CM, thus highlighting the oppor-
tunity for earlier diagnosis. In addition to corroborating earlier
findings, our analysis reveals a comprehensive landscape of the
manifestations ATTR disease that predate the diagnosis of ATTR-
CM by ascribing the relative significance of disease characteristics
(phenotypes) and combinations thereof.

ML represents an approach to automating increased identifi-
cation of patients with diseases such as wild-type ATTR-CM. It is
particularly useful, because it can efficiently evaluate complex
interactions across multiple input predictors (e.g., ICD codes), a
process that would be cumbersome using conventional statistical

Table 3 Prediction of cardiac amyloidosis in the
Northwestern Medicine Enterprise Data Warehouse Heart
Failure Cohort using the wild-type ATTR-CM Random Forest
prediction model.

Metric Probability cutoff for the diagnosis of ATTR-CM

>0.50 >0.55 >0.60 >0.65 >0.70 >0.75

Sensitivity, % 69.7 64.0 52.5 36.8 22.2 11.1
Specificity, % 75.6 84.5 91.0 95.5 98.0 99.3
PPV, % 1.9 2.7 3.7 5.2 6.8 9.6
NPV, % 99.7 99.7 99.7 99.6 99.5 99.4
Accuracy, % 75.5 84.4 90.8 95.2 97.5 98.7
LR+ 2.86 4.12 5.85 8.24 11.07 15.97
LR− 0.40 0.43 0.52 0.66 0.79 0.90

ATTR-CM amyloidogenic transthyretin cardiomyopathy, LR+ positive likelihood ratio, LR−
negative likelihood ratio, NPV negative predictive value, PPV positive predictive value.

Table 4 Areas under the receiver operating characteristic
curve for various prediction models in the Northwestern
Medicine Enterprise Data Warehouse Heart Failure Cohort.

Model N AUROC

ATTRwt-CM RF model 39,654 0.80
ATTRwt-CM RF model, age > 70 years 23,570 0.82
Age only 39,624 0.54
Age + sex 39,618 0.62
Age + sex + ethnicitya 39,203 0.70
Age + sex + ethnicity + logBNPb 20,419 0.73
Age + sex + ethnicity + logBNP +
abnormal troponin-Ic

15,046 0.73

ATTRwt-CM RF model + age + sex +
ethnicity

39,203 0.83

ATTRwt-CM RF model + age + sex +
ethnicity + total number of encounters

38,337 0.83

ATTRwt-CM amyloidogenic transthyretin (wild-type), AUROC area under the receiver operating
characteristic curve, RF Random Forest, BNP B-type natriuretic peptide.
aEthnicity categories: non-Hispanic White, non-Hispanic Black, Hispanic, Asian, others.
bHighest BNP value in the electronic health record, log-transformed.
cBased on the highest troponin-I in the electronic health record (abnormal defined as >0.04 ng/ml).

Table 5 Post-test probabilities for the Random Forest ATTR-CM and cardiac amyloid Random Forest models based on model
performance in the Northwestern Medicine Enterprise Data Warehouse Heart Failure Cohort.

Model Pre-test probability of
ATTR-CMa

Random Forest model output
cutoff for the diagnosis of
ATTR-CM

LR+ LR− Post-test
probability, LR+

Post-test
probability, LR−

Random Forest ATTR-
CM model

4% >0.50 2.86 0.40 10.7% 1.7%
4% >0.55 4.12 0.43 14.8% 1.8%
4% >0.60 5.85 0.52 19.7% 2.1%
4% >0.65 8.24 0.66 25.7% 2.7%
4% >0.70 11.07 0.79 31.7% 3.2%
4% >0.75 15.97 0.90 40.1% 3.6%

Random Forest cardiac
amyloid model

4% >0.50 4.38 0.43 15.5% 1.8%
4% >0.55 7.13 0.53 23.0% 2.2%
4% >0.60 12.37 0.66 34.2% 2.7%
4% >0.65 21.78 0.79 47.8% 3.2%
4% >0.70 39.37 0.89 62.3% 3.6%
4% >0.75 72.18 0.96 75.2% 3.9%

The random forest ATTR-CM model was derived using diagnosis codes specifically for wild-type ATTR-CM. The random forest cardiac amyloid model was derived using the more nonspecific umbrella
diagnosis code for cardiac amyloidosis.
ATTR-CM amyloidogenic transthyretin cardiomyopathy, LR+ positive likelihood ratio, LR− negative likelihood ratio.
aPre-test probability was estimated to be 4% based on a prior publication (Kazi et al.20) that modeled the estimated prevalence of ATTR-CM in heart failure patients.
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approaches. Nonetheless, as we have shown here, it is important
to demonstrate that ML approaches outperform conventional
statistical modeling, and that a variety of ML models are tested to
determine the best-performing model. In addition to finding
undiagnosed patients, ML models may help find patients earlier
in their diagnostic journey and can reveal a broader picture of the
signs and symptoms of the disease, allowing a deeper under-
standing of its pathogenesis and pathophysiology.

ML models, such as the one that we developed, can be used to
calculate the probability of wild-type ATTR-CM in HF patients
and elevate the index of suspicion, after which further con-
firmatory testing can be done, thereby enhancing diagnosis and
clinical recognition of wild-type ATTR-CM, which is increasingly
important given the high morbidity and mortality of wild-type

ATTR-CM and the availability of tafamidis, a disease-modifying
therapy. Importantly, such models can pull requisite data from
the EHR and can be deployed in a fully automated manner, thus
performing the initial step in disease detection on a broad scale.
Further machine learning-based automated analyses of electro-
cardiogram tracings30 and echocardiographic images31 (which
are standard clinical tests in HF patients) could also be used to
heighten diagnostic suspicion of cardiac amyloidosis and ATTR-
CM. Nevertheless, the potential for improved early diagnosis of
wild-type ATTR-CM with incorporation of these ML algorithms
must be balanced with the potential cost implications and
downstream effects of false positives.

The work reported here has clinical applicability not only for
wild-type ATTR-CM but also other diseases that are

Fig. 2 Odds ratio vs. prevalence for top clinical phenotypes predictive of wild-type ATTR cardiomyopathy. a Cardiac phenotypes associated with wild-
type ATTR cardiomyopathy. b Non-cardiac phenotypes associated with wild-type ATTR cardiomyopathy. All features associated with the diagnosis of
ATTR cardiomyopathy at a significance level of P < 10−4, which had an odds ratio (OR) < 10, were included in the graphs. The three features that had an
OR > 10 that met the p-value threshold were: hypertrophic cardiomyopathy (OR 15.8, prevalence 11%); localized adiposity (OR 26.6, prevalence 2%); and
organ transplantation (OR 23.4, prevalence 4%). Some diagnoses that were associated with ATTR cardiomyopathy (e.g., hypertrophic cardiomyopathy,
multiple myeloma) were likely initial misdiagnoses, as these diagnoses (similar to all diagnoses included here) preceded the ATTR cardiomyopathy
diagnosis. Univariate logistic regression was used to calculate odds ratios. *Localized to the connective tissue or soft tissue. AV, atrioventricular; ECG,
electrocardiogram; HFrE, heart failure with reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; SVT, supraventricular
tachycardia; VT, ventricular tachycardia.
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underdiagnosed or misdiagnosed. The analytical approach we
used has broad applicability, because ICD is the international
language of medical diagnoses and its ease of use in the EHR
setting. Possible clinical applications range from clinical decision
support via deployment at hospital EHRs as alerts for physicians
or web-based risk calculators. It can also provide a systematic
framework for understanding various constellations of signs and
symptoms, especially for rare or under-recognized diseases.

Strengths of our study include the development of a prediction
model for wild-type ATTR-CM in a large medical claims data-
base, with validation and testing in multiple additional cohorts.
We also tested the performance of our model in an independent
external cohort within a single healthcare system. In addition, we
performed comprehensive mapping of ICD codes to phenotypes,
which allowed us to investigate the associated signs and symp-
toms that may predict and predate the diagnosis of wild-type
ATTR-CM. The ability to convert the predictive signals (i.e., ICD
codes [features]) from our model output into more readily
understandable phenotypes with odds ratios for their association
with wild-type ATTR-CM is an additional strength of our ana-
lytical approach. Although many of the identified phenotypes/
features associated with wild-type ATTR-CM that we identified in
the medical claims data are already well described in the litera-
ture, a strength of our ML approach is the ability to automatically
identify patterns suggestive of ATTR-CM, which may not be
obvious to the clinician, because they are derived using data from
multiple diagnostic codes across several different disease domains
and organ systems.

Several limitations should be considered when interpreting the
results of our study. First, our study is limited by the use of ICD
codes to identify HF patients and as the gold standard for
assigning cases and controls. HF, a broadly defined clinical syn-
drome, may be inaccurately coded in the medical record. In
addition, because of the nature of the datasets used for our
analysis and the fact that diagnosis codes do not capture elec-
trocardiographic voltage or echocardiographic markers, we do
not have data on these phenotypes or additional laboratory data

(such as TTR concentrations [measured clinically as pre-
albumin]), which could have assisted in the assignment of cases
and controls. Therefore, in some of the non-amyloid HF controls,
it is possible that cardiac amyloidosis is present but simply
undiagnosed. However, given the low prevalence of wild-type
ATTR-CM, gold-standard evaluation of cases and controls would
only be feasible in highly selected cohorts and tertiary referral
hospitals, which would reduce the generalizability of any derived
predictive model. Second, our model was constructed on the basis
of an ICD code specific to wild-type ATTR-CM. This diagnostic
code is relatively new and may not be used universally; thus,
biases could have been introduced by individual, institutional, or
regional ICD coding behaviors that limit the applicability of our
model. For this reason, we also tested the ML model on cases
defined by the more general cardiac amyloidosis term and we also
developed a specific ML model for the cardiac amyloidosis term.
Furthermore, control patients with HF without the diagnosis
could still have undiagnosed wild-type ATTR-CM. Nonetheless,
we were able to validate our model in cohorts that included the
more general ICD codes of cardiac amyloidosis and any mis-
diagnosis in our non-amyloid HF controls would have reduced
our model’s performance. Any curated dataset with ATTR-CM
and controls will introduce bias into the performance of our ML
model; thus, we chose to apply our model to the setting in which
it would be used clinically (the independent EHR testing cohort
[NMEDW]). In this cohort, we did not prospectively perform
tissue biopsy or bone scintigraphy for wild-type ATTR-CM and
blood testing for amyloidogenic light chain amyloidosis, which
would have validated these diagnoses. This type of prospective
study could be done in the future as our model is applied in
clinical practice. Third, AUROC may be misleading for relatively
rare (i.e., low prevalence) diagnoses such as wild-type ATTR-CM.
However, we report a wide range of model performance indices in
addition to the AUROC and we include positive and negative
likelihood ratios (Table 5), which are useful for the clinical
interpretation of our results. Finally, our model should not be
viewed as definitive for the diagnosis of either ATTR-CM or

Fig. 3 Time course of non-cardiac and cardiac phenotypes associated with wild-type ATTR cardiomyopathy vs. non-amyloid heart failure prior to the
diagnosis of heart failure. The proportion of patients at each time point (years before heart failure diagnosis) with a first diagnosis of an associated feature
(phenotype). The cumulative proportion of patients with each particular phenotype is equal to the sum of the proportions from each of the years preceding
the heart failure diagnosis. ATTR-CM, amyloidogenic transthyretin cardiomyopathy.
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cardiac amyloidosis, but instead could be used as a starting point
for identifying at-risk individuals for further evaluation with
speckle-tracking echocardiography, cardiac magnetic resonance
imaging with contrast, bone scintigraphy, and/or blood tests for
amyloidogenic light chain amyloidosis. Subsequent evolution and
simplification of this ML algorithm might further be clinically
applicable at the individual patient level, for instance, in a HF
clinic setting, to help assess probability and likelihood of ATTR-
CM among patients presenting with undifferentiated HFpEF.

We have developed and validated a machine learning approach
based on medical claims data, which provides a systematic fra-
mework for the screening and identification of potential wild-type
ATTR-CM patients (Fig. 4). Despite the constraints of using
medical claims data to build our prediction model, we illustrated
that the machine learning model may be potentially useful in
identifying wild-type ATTR-CM patients and could work in the
background in EHR systems to automatically calculate probability
scores and flag HF patients that may benefit from further eva-
luation for ATTR-CM. We also confirmed the clinical profile of
wild-type ATTR-CM patients consistent with published literature
and provide additional insights to aid in identifying undiagnosed
patients. Application of models leveraging large datasets with ML
can serve as an example for other rare or underdiagnosed diseases.

Methods
Dataset curation. The primary dataset used for training and testing the model was
sourced from IQVIA, Inc. (Durham, NC), and was composed of medical claims for
patients with ICD diagnosis codes for HF and amyloidosis (listed in Supplementary
Table 5). The use of a date range (observation window) of 1 January 2008 to 30
April 2019 yielded a dataset of ~300 million US patients. If an ICD-9 and/or ICD-

10 code was present in the claim, it was extracted and added to a list of diagnoses
for each patient. A secondary dataset used for validating the model was sourced
from the Optum® de-identified Electronic Health Record dataset (Optum, Inc.,
Eden Prairie, MN) and comprises clinical information derived from EHRs. The
date range (observation window) of 1 January 2008 to 31 December 2018 resulted
in a dataset of ~88 million US patients. Patient diagnosis history in the form of
ICD-9 and/or ICD-10 codes was extracted from the diagnosis table within the EHR
dataset and was added to a list of diagnoses for each patient. Use of the IQVIA and
Optum datasets was approved by the Northwestern University Institutional Review
Board (IRB). Informed consent was waived under Northwestern University’s IRB
regulations, as these are de-identified datasets. The use of IQVIA and Optum
patient data (model training and initial validation portions of the study) was
performed in accordance with the Declaration of Helsinki.

Prior to training the machine learning algorithms, all ICD-9 codes were
converted to ICD-10 codes. Only the presence or absence of the ICD codes (and
not the temporal sequence of ICD codes) were included as features for training the
machine learning algorithm.

Cohort generation. Supplementary Table 5 lists all of the cohorts used for model
training, testing, and validation, and includes a complete set of rules that were used
to create these cohorts. Two sets of case/control cohorts of patients were created for
model training from the IQVIA data. Wild-type ATTR-CM cases included patients
with a diagnosis code specific to this type of amyloidosis (ICD-10 code E85.82)
along with a diagnosis code for HF; controls included patients diagnosed with HF,
who did not have a diagnosis of any type of amyloidosis or amyloid-related con-
ditions. For each patient in the wild-type ATTR-CM cohort, a patient was selected
from the non-amyloid HF cohort using a propensity score matching algorithm,
with age, gender, duration of medical history in the database, and number of
healthcare visits as matching parameters. An additional case/control cohort for
validating the model was created for patients with cardiac amyloidosis; patients
with organ-specific amyloidosis (ICD-10 code E85.4) and HF were selected and 1 :
1 propensity-matched with non-amyloid HF controls. Propensity score matching
was performed in R using the MatchIt package.

Cardiac amyloidosis is an umbrella term that includes the diagnosis of wild-type
ATTR-CM, hereditary ATTR-CM, and amyloidogenic light chain amyloidosis with

Fig. 4 Development and validation of a machine learning model of medical claims data for the systematic identification of wild-type transthyretin
amyloid cardiomyopathy. Nationally representative medical claims data were used to develop a cohort of ATTR-CM and non-amyloid HF controls. ICD
codes were extracted and used as features to train a Random Forest machine learning model, which was then internally tested in the derivation cohort. The
model was then validated in four external cohorts, one of which was a single health system that is similar to how the model would be used in the clinical
setting. The top features (ICD codes) based on variable importance in the Random Forest model were also used to generate phenotypes and phenotype
combinations associated with the ATTR-CM diagnosis, which provide clinical insight and clues into the diagnosis. In the future, additional prospective
clinical validation with blood tests, echocardiography (with speckle-tracking strain analysis), and bone scintigraphy can be used to verify the ATTR-CM
diagnosis with the ultimate goal to automate the identification of ATTR-CM, thereby leading to earlier diagnosis and intervention of these high-risk
patients. ATTR-CM, amyloidogenic transthyretin cardiomyopathy.
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cardiac involvement. Whether a patient with ATTR-CM is coded as wild-type
ATTR-CM or the more general term of cardiac amyloidosis can vary based on
clinical practice patterns and billing practices. For this reason, we evaluated model
performance in both wild-type ATTR-CM and cardiac amyloidosis validation
cohorts (see the Supplementary Materials for further details). Within the cohorts
that used the general cardiac amyloidosis term (Cohorts 3, 4, and 5), when defining
cases we excluded blood cancers (reflective of amyloidogenic light chain cases) and
other non-ATTR-CM-related amyloidosis terms, with the goal of capturing cases
that had wild-type or hereditary ATTR-CM but were coded as the more general
cardiac amyloidosis term.

Feature selection. We identified all ICD-9 and ICD-10 codes that were present in
at least 2% of wild-type ATTR-CM patients in the IQVIA medical claims data. Each
of these codes were then used as potential features for the machine learning model.
Features derived from ICD codes of any amyloidosis condition (i.e., ICD-9 277.30
or ICD-10 E85) and a specific code for “cardiomyopathy in diseases classified
elsewhere” that tends to accompany a cardiac amyloid diagnoses were removed, to
ensure no information relevant to the diagnosis of ATTR-CM or cardiac amyloi-
dosis was “leaked” to the machine learning model. Model features were created by
using a hierarchical mapping of ICD codes at the Sub Chapter (diagnosis category),
Major (diagnosis name), and Short Description (diagnosis description) levels,
obtained from the ICD Data R package and derived from the 2016 release of ICD-
10-CM. New codes added after 2016 used the 2019 release of ICD-10-CM.

Model training and testing. All machine learning analyses were performed in
Python (using the numpy, pandas, sklearn, matplotlib, and GridSearchCV
packages). We tested three supervised algorithms (logistic regression, XGBoost,
and Random Forest) on the training input dataset with a train-to-test split ratio of
80 : 20 using the aforementioned dataset (Cohort 1), with each patient labeled as
wild-type ATTR-CM ICD-10 code (E85.82) present or absent (non-amyloid HF
control). Within the training set, fivefold cross-validation was used to select
hyperparameters. A grid search algorithm was implemented to determine the best
parameters for each of the three algorithms. Grid search uses heuristic methods to
estimate the optimal set of hyperparameters for machine learning algorithms17.
The types and ranges of hyperparameters used for grid search were as follows:
number of trees: 200, 300, 400, 500; maximum depth of tree: 5, 10, 15, 20, none;
minimum samples per leaf: 2, 3, 4, 5; minimum samples split: 2, 3, 5, 7; bootstrap:
true, false; and cross-validation (K fold): 3-fold.

Testing was done in the 20% holdout sample and the following parameters were
calculated based on the number of true positives, true negatives, false positives, and
false negatives: sensitivity, specificity, positive and negative predictive values, and
accuracy. The Random Forest model, which had the best diagnostic performance
(as evaluated by the AUROC curve), was carried forward for further validation, as
described below. In separate analyses, we repeated the aforementioned process to
derive a model of the more general diagnosis of cardiac amyloidosis as opposed to
wild-type ATTR-CM (see the Supplementary Materials for further details).

Model validation. The model derived from the IQVIA wild-type ATTR-CM
population (Cohort 1) was validated in three other cohorts (Cohorts 2, 3, and 4,
described in Supplementary Table 5) to evaluate its generalizability to a broader
group of populations. We again computed sensitivity, specificity, positive and
negative predictive values, and accuracy.

To further examine clinical generalizability of the ML model, we performed
additional external testing of the derived and validated wild-type ATTR-CM
Random Forest machine learning model in the NMEDW EHR cohort18. Use of the
NMEDW dataset was approved by the Northwestern University IRB. Waiver of
informed consent was granted under Northwestern University’s IRB regulations, as
this was a chart review analysis. The use of NMEDW patient data (model
validation portion of the study) was performed in accordance with the Declaration
of Helsinki. The NMEDW dataset was queried for all patients with any ICD-9 or
ICD-10 HF diagnosis code using a date range of 1 June 2009 to 31 May 2019. Only
patients aged ≥50 years were included. Cases were patients with an organ-limited
amyloidosis code (E85.4) plus a HF diagnosis code but not blood cancer, light
chain amyloidosis, end-stage renal disease, cerebral amyloid angiopathy, or
intracranial hemorrhage diagnoses. Non-amyloid HF controls were patients with a
HF code but none of the amyloidosis codes. These were the same definitions used
in Cohorts 3 and 4, with the exception that there was no matching of cases and
controls (all non-amyloid HF patients were included in the analysis to mimic
clinical application of the ML algorithm). Supplementary Fig. 1 displays a flowchart
detailing the inclusion/exclusion criteria for cases and controls. The Random Forest
model was then applied to the NMEDW cohort and the probability of wild-type
ATTR-CM was calculated for each patient. For all patients in the NMEDW HF
cohort, we constructed 2 × 2 tables to determine true positives, true negatives, false
positives, and false negatives, to calculate sensitivity, specificity, positive and
negative predictive values, and accuracy. We also generated ROC curves for the
performance of the Random Forest model in the NMEDW HF cohort (age ≥50
years) and we computed AUROC for these curves and compared them to
additional models (age, age+ sex, age+ sex+ race, age+ sex+ race+ logBNP,
age+ sex+ race+ logBNP+ abnormal troponin-I (>0.04 ng/ml), age+ sex+ race

+ Random Forest model, and age+ sex+ race+ Random Forest model+ total
number of encounters).

Mapping ICD codes to phenotypes. Once we identified features (ICD codes) that
were predictive of the wild-type ATTR-CM diagnosis, we sought to better understand
the clinical meaning of these features. Therefore, we used a phenotype grouping
system by combining one or more related ICD codes into distinct diseases or traits
(based on PheWAS Phecode v.1.2)19. ICD codes mapped to multiple phenotypes were
de-duplicated via selection of the single most clinically relevant phenotype.

Associations of phenotypes with wild-type ATTR cardiomyopathy. Of the
features (ICD codes) included in the Random Forest model, those that were found
to have some level of variable importance for the diagnosis of wild-type ATTR-CM
(>97%) were mapped to phenotypes based on PheWAS mapping described above.
Next, we tested the associations of each of these phenotypes with the wild-type
ATTR-CM diagnosis in Cohort 1. We used logistic regression analyses to compare
individual phenotypes between wild-type ATTR-CM cases and non-amyloid HF
controls, and odds ratios (with 95% confidence intervals) were calculated. Cor-
rection for multiple tests was performed using the Bonferroni method. A two-sided
p-value < 0.05 after Bonferroni correction was considered statistically significant.

Next we examined combinations of phenotypes that are associated with wild-
type ATTR-CM. The Random Forest model derives its predictive power from
specific interactions (trees) of features associated with wild-type ATTR-CM. We
sought to elucidate these trees by identifying combinations of phenotypes with high
predictive value. This was done by selecting ten phenotypes with the highest odds
ratios and deriving all combinations of up to five phenotypes. We used the Python
Scikit-learn set cover algorithm to identify the top phenotypes or phenotype
combinations with odds ratios > 5 for further interrogation for their ability to
identify the maximum number of ATTR-CM patients within the IQVIA wild-type
ATTR-CM cohort (Cohort 1).

Finally, we mapped the time course for the most common phenotypes in
relation to the first documented diagnosis of wild-type ATTR-CM, to help
delineate the temporal aspect of features in relation to the documented diagnosis of
ATTR-CM.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The IQVIA training and validation datasets have been made available for download (see
Source Data). The Optum and Northwestern Medicine Enterprise Data Warehouse
datasets used for this study could not be made available publicly due to data use
agreements and the possibility for identification of individual patients, respectively, but
will be made available to qualified investigators upon request with evidence of
institutional review board approval. Source data are provided with this paper.

Code availability
The code used for training and validation of the models (including instructions for use of
the code and notations for the software needed to run the code) have been made available
for download (see Source Data).
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