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The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the peritoneal membrane. The
mesothelium lines the peritoneal membrane and is the first line of defense against chemical and/or bacterial insult. Peritonitis
remains a major complication of PD and is a predominant cause of technique failure, morbidity and mortality amongst PD
patients. With appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD patients
excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and thickening of the submesothelium, resulting
in peritoneal fibrosis and sclerosis. The detrimental changes in the peritoneal membrane structure and function correlate with the
number and severity of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical resolution
of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the peritoneal cavity, signifying persistent
injury to the mesothelial cells. This review will describe the structural and functional changes that occur in the peritoneal
membrane during peritonitis and how mesothelial cells contribute to these changes and respond to infection. The latter part of the
review discusses the potential of mesothelial cell transplantation and genetic manipulation in the preservation of the peritoneal
membrane.

1. Introduction

Peritoneal dialysis (PD) is an effective and affordable form
of renal replacement therapy that is presently used by
approximately 11% of the total global dialysis population
[1]. Although PD has greatly improved the quality of life in
patients with end-stage renal disease, a major disadvantage of
this treatment is that PD solutions are bioincompatible and
provoke peritoneal inflammation and mesothelial cell injury
[2–5]. Furthermore, peritonitis is a major complication
of PD and remains the single most important cause of
technique failure and subsequent transfer to hemodialysis.
It contributes to severe abdominal pain, hospitalization,
catheter removal, and increased morbidity and mortality
in PD patients. The mortality risk ascribed to PD-related
peritonitis is 18% in the United States and >16% in Hong
Kong [6, 7]. Peritonitis is characterized by turbidity in
the dialysate effluent, abdominal pain, the presence of a
white blood cell count of more than 100,000 cells/mL, of

which 50% of the white blood cells are polymorphonuclear
neutrophil cells, and a positive culture [8, 9]. Although
the etiology of the bacteria is a determinant of morbidity
and mortality in PD patients [10–12], studies have also
demonstrated that peritoneal inflammation, age, residual
renal function, malnutrition, and comorbidity can affect the
outcome of the patient [13].

The majority of peritonitis episodes are due to a single
microorganism [14, 15]. In contrast to surgical peritonitis,
about half of these infections arise from Gram-positive
bacteria [15], which originate from the patients’ own
nasopharyngeal or skin flora [16, 17]. With improvements
in connection technology and better sterile techniques,
Gram-positive peritonitis has gradually declined. Polymicro-
bial infection that involves more than one Gram-positive
bacteria would suggest touch contamination or catheter
infection, whereas polymicrobial Gram-negative bacteria
would suggest perforation of the bowel [9, 18]. Gram-
positive microorganisms that induce PD-related peritonitis
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include Staphylococcus aureus (S. aureus) and coagulase-
negative Staphylococcus (CNS), that is, S. epidermidis, while
Pseudomonas species, Escherichia coli (E. coli), Klebsiella
species, and Acinetobacter species account for the majority
of Gram-negative peritonitis [19].

Peritonitis causes severe injury to mesothelial cells,
specialized epithelial cells that line the peritoneal membrane
and play a key role in peritoneal homeostasis, peritoneal
host defense, and maintenance of the peritoneal membrane
structure [2]. Compelling evidence has demonstrated that
the constant exposure of the peritoneal membrane to bio-
incompatible PD solutions induces peritoneal inflammation,
exfoliation of mesothelial cells and structural changes to
the peritoneal membrane resulting in the progressive loss of
peritoneal functions and unfavorable outcome [3, 20–23].
These changes are exacerbated by peritonitis [24, 25]. We and
others have demonstrated that following clinical resolution
of peritonitis dialysate levels of inflammatory and fibrotic
mediators remain elevated compared to preperitonitis levels
[26–28], which would prolong peritoneal inflammation and
mesothelial cell injury. This review will provide a brief
overview of the structure and functions of mesothelial
cells and how they regulate and/or contribute to peritoneal
inflammation and structural changes to the peritoneal
membrane during PD and peritonitis. The last section of this
review will discuss the potential therapeutic interventions
that may be employed to preserve the dialytic potential of
the peritoneal membrane.

2. Peritoneal Mesothelial Cells

Although previously considered to function simply as a
lubricating, nonadhesive surface to facilitate intracoelomic
movement, there is now compelling evidence to show
that peritoneal mesothelial cells are not inactive cells but
play essential roles in peritoneal homeostasis, fluid and
solute transport across the peritoneal membrane, peritoneal
inflammation, and tissue repair [29–32]. Mesothelial cells
synthesize a myriad of growth factors, cytokines, proteases,
matrix proteins, and proteoglycans that contribute to the
function of the peritoneal membrane [33–40].

Although mesothelial cells originate from the meso-
derm, they possess many features of epithelial cells. Such
features include the acquisition of a polygonal, cobblestone
appearance, becoming polarized upon cell-cell contact and
resting upon a basement membrane [29, 30]. Epithelial
and mesothelial cells are also endowed with microvilli
and the expression of the intermediate filament protein
cytokeratin [29, 41–43]. Mesenchymal characteristics of
mesothelial cells include vimentin, desmin, and α-smooth
muscle actin expression and the acquisition of a fibroblastic
phenotype following epithelial-to-mesenchymal transdiffer-
entiation (EMT) [41, 44–46]. The ability of mesothelial cells
to undergo phenotypic changes under physiological and
pathological conditions underscores the plasticity property
of these cells. Mesothelial cells are connected by intercel-
lular junctions comprising tight junctions, gap junctions,
adherens junctions, and desmosomes that contribute to the

establishment and maintenance of a continuous mesothe-
lial monolayer [47–49]. Reduced expression of adherens
junctions during inflammatory processes is associated with
a breakdown of cell-cell communication and cell-matrix
interaction resulting in the denudation of the mesothelium,
a process that is often observed during PD and peritonitis
[50, 51]. Mesothelial cells also express E-cadherin, a cardinal
feature of epithelial monolayers [52, 53]. E-cadherin is a
calcium-dependent transmembrane glycoprotein localized
in adherens junctions in the basolateral membrane and
bestows upon mesothelial cells their apico-basolateral polar-
ity [53, 54]. A loss of E-cadherin at the intercellular junctions
is strongly associated with epithelial dedifferentiation and
EMT, with the appearance of Snail, a zinc finger transcription
factor that is critical for the initiation of EMT [55, 56].
Snail has been implicated in E-cadherin repression through
its ability to bind to components in the promoter region
of E-cadherin [57, 58]. Long-term PD and peritonitis
have been shown to induce Snail expression and EMT in
mesothelial cells, mediated in part through increased TGF-
β1 bioactivation and the interaction of advanced glycation
end products (AGEs) with its receptor RAGE [55, 59, 60].

The luminal surface of mesothelial cells contains numer-
ous microvilli and occasional cilia that serve to increase the
peritoneal surface area for transport of solutes across the
peritoneal cavity. Microvilli entrap water and serous exu-
dates, which protect the delicate surface of mesothelial cells
from frictional damage [29]. Microvilli permit mesothelial
cells to sense and respond to their microenvironment and
also entrap bacteria thereby preventing infection. A reduc-
tion in the number of microvilli on mesothelial cells would
therefore have a profound effect on peritoneal function and
their ability to fend off bacterial infection. The density of
microvilli on regenerating mesothelial cells may vary and
is dependent on the anionic charge of the glycocalyx [43].
The glycocalyx is a thin film of fluid that is found on the
surface of mesothelial cells. It is composed of lipoproteins,
phospholipids, proteoglycans, and hyaluronan and serves to
lubricate the peritoneal viscera and protect the mesothelial
surface from abrasions and adhesions. The glycocalyx also
plays an important role in cell-cell contact, tissue hydration,
regulation of inflammation, tissue remodeling, and flow of
nutrients and growth factors across the peritoneal membrane
[61]. The integrity of the glycocalyx is in part attributed
to the presence of negatively charged proteoglycans and
hyaluronan [62, 63].

Mesothelial cells provide the first line of defense against
chemical or bacterial insult to the peritoneal membrane.
It is therefore crucial that following injury and denuda-
tion restoration of the mesothelium occurs promptly and
is not hindered. Numerous mechanisms have been pro-
posed for mesothelial replenishment and these include cen-
tripedal migration of mesothelial cells, exfoliation of healthy
mesothelial cells from neighboring sites which settle on
the denuded area, free-floating reserve cells, submesothelial
and bone-marrow-derived precursor cells, and macrophage
transformation [29, 64–71]. It is noteworthy that these
mechanisms have been identified in vitro and experimental
systems and their relevance in the clinical setting remain to
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be defined. We have demonstrated that following mechanical
denudation of cultured mesothelial cells, repopulation of
the monolayer is mediated through the induction of EMT
in mesothelial cells at the leading edge of the wound and
the migration of these cells into the denuded area [72, 73].
Increased de novo synthesis and subsequent deposition of
hyaluronan and matrix proteins into the extracellular milieu
act as a substratum that allows mesothelial cells to attach and
migrate into the denuded area [72, 73]. Once the mesothelial
monolayer is reestablished and cell-cell contact restored, cells
resume their epithelial morphology. Although the process
through which mesothelial cells revert back to their epithelial
morphology has not been explored, it is likely that it is
achieved by mesenchymal-to-epithelial transdifferentiation.

During peritoneal homeostasis, a fine balance exists
between mesothelial injury and regeneration. Mesothelial
cells are most susceptible to injury and if repopulation
of the monolayer is compromised following long-term PD
or recurrent episodes of peritonitis, in the absence of its
protective mesothelial covering, the interstitium will initiate
reparative processes that may overcompensate resulting in
peritoneal fibrosis and sclerosis.

3. Changes to the Peritoneal Membrane during
PD and Peritonitis

3.1. The Normal Peritoneal Membrane. The peritoneum
is a delicate, continuous, and translucent membrane that
lines the peritoneal cavity [74, 75]. It is composed of a
monolayer of mesothelial cells resting upon a thin basement
membrane, underneath which is the submesothelium com-
prising interwoven bundles of collagen fibres, intermittent
fibroblasts, and blood vessels [74, 76]. The thickness of
the submesothelium is quite variably in different sections
along the peritoneum, and movement of molecules through
the submesothelium is governed not only by its thickness
but also by the molecular weight, charge, and shape of the
molecule [76]. An in-depth discussion on the ultrastructure
of the peritoneum is outside the scoop of this review and
readers are referred to an excellent review by Gotloib [76].

3.2. Alterations in the Peritoneal Membrane during PD
and Peritonitis. Many patients on long-term PD exhibit
reduplication of the mesothelial and endothelial basement
membranes, increased synthesis and deposition of matrix
proteins within the submesothelium, and progressive suben-
dothelial hyalinization, with narrowing or obliteration of
the vascular lumen [3, 74, 75, 77]. Vascular and interstitial
changes become more apparent with progressive use of
PD, thereby demonstrating a temporal relationship between
peritoneal fibrosis, vasculopathy, and time on PD [3].
Peritoneal fibrosis is detected in 50% and 80% of PD
patients within one and two years, respectively, on PD
[78–80]. With regards to mesothelial cells, independent
researchers have demonstrated significant changes to these
cells following their exposure to PD, which include cell
activation, cell hypertrophy, increased vacuolation, partial or
complete loss of microvilli, dissolution of cell-cell contacts,

and alterations in the number of endoplasmic reticulum and
micropinocytotic vesicles [3, 74, 75, 81]. Some degree of
mesothelial denudation is invariably observed in PD patients
and is associated with thickening of the submesothelium
and vasculopathy [3]. What happens to mesothelial cells
following their exfoliation is currently unclear. Do they
represent degenerative cells that are destined for removal
from the peritoneal cavity by phagocytosis or are they still
viable, even though in suspension, and are able to maintain a
functional role within the peritoneum? The ability to culture
mesothelial cells from dialysis effluent would indicate that
these detached cells are viable. The phenotypes of these
cells is diverse and consist of cells with a normal epithelial
morphology, large senescent cells containing multi-nuclei
and multivacuoles, and cells with a fibroblastic phenotype
[59].

Peritoneal specimens obtained from PD patients with
peritonitis show more pronounced degenerative changes in
the mesothelium and exfoliation of mesothelial cells is more
prominent. In areas where mesothelial cells are still apparent,
changes observed are similar to those mentioned above with
a loss of microvilli and cell-cell contact [81, 82]. Peritonitis
also induces the loss of the underlying basement membrane
and promotes extensive interstitial fibrosis attributed to
increased synthesis of matrix proteins and a concomitant loss
of decorin [3, 38, 77, 83]. Acute infiltration of inflammatory
cell into the submesothelium is also noted, which may
account at least in part, to the expansion of the interstitial.
These observations have been confirmed in animal models
of experimental peritonitis [76, 84–91].

Whilst animal studies have contributed significantly to
our understanding of peritoneal inflammation and injury
induced by PD and peritonitis, one must also be aware
of the limitations of these models. Numerous PD studies
are conducted in animals that are not uremic, whereas in
other studies animal models of PD-related peritonitis are
conducted in animals that are not infused with PD solution.
Given that peritoneal host defense mechanisms are impaired
in PD patients attributed to the constant exposure of PD
fluids [92], can mechanistic findings obtained in non-PD
models of peritonitis be extrapolated to the clinical scenario?
Even in animal models of PD-associated peritonitis, struc-
tural changes and the time that such changes occur do not
replicate those observed in PD patients. In this respect, daily
infusion of glucose-based PD fluid into rats for 4 weeks
following an initial exposure of LPS to mimic Gram-negative
peritonitis resulted in submesothelial thickening and an
increase in the density and number of blood vessels [93].
However, denudation of the mesothelium and vasculopathy
were not detected in this rat model of PD-related peritonitis,
a finding that is often observed in PD patients with or
without peritonitis [3, 81]. An excellent review by Mortier et
al. summarizes the advantages and disadvantages of known
experimental models of PD [94].

Vascular changes in the peritoneal membrane are com-
monly observed in PD patients. It has been suggested that
changes in blood vessel density may directly affect the
functional attributes of the peritoneal membrane. Mateijsen
et al. observed an increase in blood vessel density, capillary
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dilation, and vessel wall thickening within the submesothe-
lium of PD patients with peritoneal sclerosis when compared
to controls [95]. Pathological alterations in the vasculature of
peritoneal specimens obtained from uremic non-PD patients
as well as PD patients include hyalinization of the blood
vessels, vasculopathy, and submesothelial thickening [3, 77].
These abnormalities are more prominent in patients who
have used PD for more than 6 years and are associated with
the deterioration of peritoneal function [3, 77]. Peritoneal
vascular changes in PD patients resemble alterations in the
microvasculature of diabetic patients that include deposition
of matrix proteins within the arterial wall and media
of arterioles and reduplication of the capillary basement
membrane [76, 96].

There is emerging evidence that increased synthesis of
VEGF may at least in part contribute to neoangiogenesis
and increased vasodilation and vessel permeability in PD
patients [97, 98]. Invariably, these vascular changes are
associated with the deposition of AGEs in the vessel wall,
which accumulate with progressive use of PD [98]. Increased
peritoneal expression and dialysate levels of VEGF are associ-
ated with increased permeability of small solutes and a loss of
ultrafiltration [98–102], the increase in VEGF a result of local
synthesis by peritoneal vascular endothelial and mesothelial
cells [103–107]. Aroeira et al. noted that mesothelial cells
isolated from dialysate effluent with a fibroblastic pheno-
type, (i.e., cells that have undergone EMT) synthesized
significantly more VEGF than their epithelial counterpart
[106]. Patients whose PD effluent contained mesothelial
cells that had undergone EMT demonstrated higher serum
levels of VEGF compared to levels detected in patients with
mesothelial cells of normal morphology, which correlated
with peritoneal transport rates [106]. The observation that
these fibroblastic cells stained for cytokeratin confirms their
mesothelial origin, which colocalized with VEGF expression
in the submesothelium [106]. This study thus underscores
the importance of mesothelial cells in the synthesis of
VEGF and their contribution to vascular changes during
PD. The observation that capillary tube formation in human
umbilical vein endothelial cells (HUVEC) can be induced
by supernatant obtained from RAGE-stimulated mesothelial
cells or the coculture of RAGE-stimulated mesothelial cells
with HUVEC suggests direct communication or cross-talk
between mesothelial cells and endothelial cells in vivo and
substantiates the contributing role of the former cell type in
mediating neoangiogenesis and vascular changes [108].

Preliminary studies by Szeto et al. showed that VEGF
levels are further increased at the onset of peritonitis in PD
patients and these levels correlate with the degree of dimin-
ished ultrafiltration [109]. In an LPS-induced rat model of
Gram-negative peritonitis, Pawlaczyk et al. demonstrated
that the infusion of LPS at various concentrations together
with PD solution increased dialysis effluent concentrations
of VEGF in a dose-dependent manner [110] but its role
in mediating changes in the peritoneal vasculature was not
investigated.

The causal relationship between peritonitis and func-
tional changes of the peritoneal membrane is controversial.
Whilst some studies have demonstrated a causal relationship

between peritonitis rate and peritoneal dysfunction, others
have failed to find any correlation [24, 111–115]. These
discrepancies may be related to the limited patient number,
short period of followup, insufficient longitudinal studies,
and grouping Gram-positive and Gram-negative compli-
cating peritonitis together. Ates et al. assessed the degree
of peritoneal function remaining in 18 PD patients over
the course of 24 weeks following onset of infection. These
researchers demonstrated that one episode of peritonitis
was insufficient to induce permanent changes in peritoneal
transport properties although full recovery of ultrafiltration
was not achieved following the resolution of peritonitis
[116]. In another study, data obtained from Davies et al.
confirmed that one episode of peritonitis is not sufficient to
have any significant effect on peritoneal function, whereas
recurrent peritonitis that occurred in close proximity and
the severity of peritoneal inflammation exacerbated and
accelerated solute transport and the loss of ultrafiltration in
PD patients [24]. It is noteworthy that since the structural
and functional properties of the peritoneal membrane vary
significantly between patients, their response to peritonitis,
even towards the same pathogen, can differ considerably.

3.3. Role of Anionic Sites in the Peritoneal Membrane during
PD and Peritonitis. Accumulation of plasma proteins in the
peritoneal cavity and their subsequent loss from the patient
following the exchange of PD fluid is often observed during
peritonitis [85, 117]. It can perhaps be likened to proteinuria
whereby a loss of heparan sulfate proteoglycans, such as
perlecan or agrin, in the glomerular basement membrane
(GBM) results in the increased permeability of the GBM
to anionic macromolecules such as albumin [118, 119].
Proteoglycans are anionic macromolecules that comprise
a core protein to which one or more glycosaminoglycan
chain(s) is/are attached [120]. Glycosaminoglycan chains are
classified as heparan sulfate, chondroitin sulfate, dermatan
sulfate, keratan sulfate, and hyaluronan depending on their
disaccharide units. With the exception of hyaluronan, all
glycosaminoglycan chains are attached to a protein core
and are endowed with sulfate groups that bestow up these
macromolecules a high net negative charge that contributes
to their biological properties and interactions with cytokines,
chemokines, and growth factors [121, 122]. Perlecan and
agrin are the most characterized heparan sulfate proteo-
glycans in the GBM, which contribute to the structural
integrity of the kidney and restrict the passage of albumin
and other proteins out of the glomerular capillaries into
the urinary space [118, 119]. Through their ability to
sequester chemokines, heparan sulfate proteoglycans can
also regulate lymphocyte recruitment during tissue injury
[123]. Therefore, changes in the expression of proteoglycans
in any given tissue will have a profound effect on both their
structural and functional property.

Gotloib et al. provided evidence that anionic sites exist in
the normal peritoneum and are found within the mesothe-
lial glycocalyx, subendothelium, and along the basement
membrane [124–126]. In an experimental model of septic
peritonitis whereby rats were administered live E. coli by
intraperitoneal injection, a significant reduction in anionic
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sites at these locations was observed, which was accompa-
nied by increased transperitoneal passage of proteins [85].
Although the nature of these anionic sites was not further
investigated by these researchers, it is possible that perlecan
may contribute at least in part to the anionic staining. We
have demonstrated that perlecan expression is predominately
observed within the mesothelium and underlying basement
membrane in peritoneal specimens obtained from new PD
patients [38]. Mesothelial expression of perlecan decreased
with increasing duration on PD with a concomitant increase
in the submesothelium [38]. The functional role of perlecan
in the mesothelium remains to be fully elucidated, but it is
possible that perlecan plays a critical role in preserving the
structural and functional integrity of the peritoneum and
maintenance of the selective charge barrier of the peritoneal
membrane. Emerging evidence suggests that heparan sulfate
proteoglycans may possess angiogenic properties [122, 127].
Through their N-terminal, heparan sulfate proteoglycans
may stimulate angiogenesis through their ability to bind
growth factors such as VEGF, bFGF, and PDGF and pre-
senting them in a biologically active form to their cognate
receptors [127]. With regards to the observed increase in
perlecan expression in the submesothelium in PD patients,
it is plausible to suggest that it may play a role in peritoneal
angiogenesis although further studies are warranted to
confirm this. Whether the expression of perlecan in the
submesothelium is further increased following peritonitis
remains to be determined.

4. Peritoneal Inflammation

Inflammation is the body’s adaptive response to remove
the inciting insult and restore homeostasis to the tissue.
Given the molecular heterogeneity of bacteria pathogens, it is
quite remarkable that efficient and coordinated recognition
strategies have evolved to deal with bacterial infection,
and this is based primarily on the ability of the host to
detect molecular patterns that are unique to bacteria. If the
epithelial barrier is breached, the pathogen is eliminated by
the innate immunity, followed by the adaptive host immune
processes. Innate immunity consists of various preexisting,
rapidly mobilized cells that include the immune cells, that
is, neutrophils, macrophages, mast cells, eosinophils and
natural killer cells, and resident cells. These cells express a
number of pattern recognition receptors such as the toll-like
receptors (TLRs) that are activated by microbial components
resulting in complement activation and the release of proin-
flammatory mediators such as cytokines, chemokines, nitric
oxide, prostaglandin, acute phase proteins, and antimicrobial
peptides. Cells of the innate immune system subsequently
activate the adaptive immune system, which initiate the
maturation of dendritic cells and recruitment of T and B
cells [128]. Under normal circumstances, cell infiltration is
initiated within minutes of detecting a bacterial insult and
through a coordinated series of cellular and humoral events
[129], the inciting insult is removed with a systematic return
of the normal physiological functions of the tissue within
days. With successful resolution of inflammatory processes,

the extent of tissue damage is limited. If the inciting insult
persists, chronic inflammation ensues, which may persist for
weeks, months, or even years.

4.1. The Role of Infiltrating Cells in Peritoneal Inflam-
mation. Before the processes of bacterial-induced peri-
toneal inflammation and the involvement of infiltrating
and mesothelial cells in these processes are discussed, one
must remember that the peritoneal host defense system
of PD patients is already compromised. In vitro and ex
vivo studies have demonstrated that PD fluids have a
marked effect on macrophage functions. In this respect,
PD fluid has been shown to induce cytokine secretion and
inhibit the respiratory burst and phagocytotic property of
peritoneal macrophages [130, 131]. Furthermore, McGregor
et al. demonstrated that peritoneal macrophages became
increasing immature with increasing time on PD, which
was accompanied by an increase in cytokine release [130].
Components of PD solution have also been shown to alter
leukocyte functions and are cytotoxic to these immune cells
[132, 133]. Daily use of PD not only dilutes the number of
macrophages and leukocytes and concentration of opsonins
in the peritoneal cavity of PD patients, but these cells and
components are lost from the peritoneal cavity after each PD
exchange, further compromising peritoneal host defense.

How does onset of infection affect the inflammatory
processes and the structural and functional properties of
the peritoneum when on-going peritoneal inflammation is
already present? Is it possible to dissect out subtle changes
that occur within the peritoneum consequent to peritonitis
from those that have already arisen from the use of long-term
PD? Whilst it is impractical to obtain frequent peritoneal
biopsies from PD patients to monitor the morphological
changes within the peritoneal membrane with time on PD
and during episodes of infection, we rely on the measure-
ment of surrogate markers in dialysate effluent that may
provide limited insight in the inflammatory processes that
occur within the peritoneum. The use of transgenic mouse
studies has provided us with intricate details of the roles
of inflammatory and fibrotic mediators and their ligands
synthesized by immune and resident cells, in inflammatory
and reparative processes of the peritoneum [134–136].

The initial recognition of an infection in the peritoneum
is mediated by peritoneal macrophages and mast cells,
triggered by TLR activation, which results in the release of
various vasoactive substances such as prostaglandins and
histamines. This results in vasodilatation and increased per-
meability of the peritoneal blood vessels leading to increased
synthesis of complement, immunoglobulins, opsins, fibrin,
and clotting factors [25]. Peritoneal macrophages also syn-
thesize various inflammatory mediators that include IL-1β,
TNF-α, IFN-γ, and TGF-β1, which in turn mediate the
induction of chemokine secretion. The main effect of these
mediators is to elicit the recruitment of polymorphonu-
clear neutrophils that are normally restricted to the blood
vessels to the site of injury [129]. These neutrophils are
activated either by direct contact with the invading pathogen
or through the actions of the cytokines and chemokines
secreted by resident mesothelial cells. In order to eradicate



6 Mediators of Inflammation

the pathogen, neutrophils release the toxic content of their
granules which include reactive oxygen and nitrogen species,
cathepsin G, and elastase [137]. These potent effectors do
not discriminate between pathogens and host cells and
therefore injury to the peritoneal membrane is unavoidable.
Neutrophils are subsequently progressively cleared from the
peritoneal cavity by apoptosis and are replaced by a popula-
tion of monocytes/macrophages and leukocytes. Ingestion of
neutrophils by macrophages results in the release of TGF-β1,
its mode of action now becoming anti-inflammatory where
it assists in the reparative processes [138]. Repopulation
of resident macrophages in the peritoneal cavity following
the resolution of peritoneal inflammation has recently been
shown to be through local proliferation [139].

The temporal switch in immune cell population is pivotal
for the clearance of infection and resolution of inflammation,
mediated in part through IL-6, a cytokine known to prevent
the accumulation of neutrophils. Hurst et al. demonstrated
that leukocyte recruitment into the peritoneal cavity is
mediated by the interaction of soluble IL-6R and IL-6,
shed from infiltrating neutrophils and mesothelial cells,
respectively, which in turn induce chemokine expression
essential for lymphocyte recruitment [140]. Over the last
decade or so, our understanding of the mechanisms through
which neutrophils are recruited from the circulation, migrate
across the submesothelium into the peritoneal cavity, and the
sequential change in the population of infiltrating cells to
initiate peritoneal inflammation and resolution has increased
significantly through a series of in-depth in vitro, ex vivo, and
experimental studies [134–136, 141–144].

4.2. The Role of Mesothelial Cells in Peritoneal Inflammation.
Both infiltrating and resident peritoneal cells play critical
roles in the initiation and amplification of peritoneal inflam-
mation during PD and peritonitis through their ability to
synthesize chemotactic and proinflammatory mediators [4,
33–35]. Whilst the roles of infiltrating cells in peritoneal
inflammation have been described above, the next section
will focus on the resident mesothelial cells and their contri-
bution to cellular infiltration and initiation and resolution of
peritoneal inflammation.

The initiation phase is characterized by the activation of
resident macrophages and mesothelial cells by the invading
microorganism or its secreted products. The initiation
phase is followed by the amplification phase, in which
mesothelial cells play a predominant role. Mesothelial cells
are activated by proinflammatory cytokines, such as TNF-
α and IL-1β derived from peritoneal macrophages [25].
Stimulation of mesothelial cells by TNF-α or IL-1β induces
IL-8 production, a potent chemoattractant that mediates
leukocyte migration from the circulation to the peritoneal
cavity [145, 146]. Mesothelial cells constitutively express
adhesion molecules, such as ICAM-1, VCAM, and PECAM,
which are required for leukocyte adherence and migration
across the mesothelium [147–149], a multistep process that
is dependent on the establishment of a chemotactic gradient
across the mesothelium, increased mesothelial expression
of ICAM-1, and specific adhesive interactions between the
leukocytes and the endothelium [146, 150].

CD40 is a member of the TNF family of receptors and
is expressed on the membrane of activated CD4+ T-cells. Its
activation contributes to increased chemokine and cytokine
secretion during inflammatory processes and binding to its
ligand initiates mononuclear cell infiltration during peritoni-
tis [143]. Basok et al. demonstrated that mesothelial cells
also express CD40 [151]. Activation of CD40 on mesothelial
cells by proinflammatory cytokines induced IL-15 secretion,
a T-cell growth factor and activator [152]. The presence of
CD40 on mesothelial cells may suggest that these cells play
an important role in T-cell regulated inflammatory response
during peritonitis.

In the previous section, the importance of macrophages
in the initiation and resolution of peritonitis was high-
lighted. Once the pathogen is eliminated, resolution of
peritoneal inflammation may begin. Rapid and effective
clearance of macrophages dictates the duration of peritoneal
inflammation and may be an important determinant of
chronic peritoneal inflammation. Unlike neutrophils which
are removed by apoptosis, macrophage clearance is through
emigration into the draining lymphatics [153]. Recently,
Bellingan et al. demonstrated in a murine model of peritoni-
tis that macrophages adhered specifically to the peritoneal
mesothelium through VLA-4 and VLA-5 and this interaction
was RGD sensitive [154]. The adhesion of macrophages to
the mesothelium was localized to areas overlying the draining
lymphatics, was adhesion molecule dependent, and the rate
of emigration was controlled by the level of macrophage
activation [154]. Mesothelial-macrophage interactions are
therefore prerequisite for the removal of macrophages from
the peritoneal cavity and for the resolution of peritoneal
inflammation.

We and others have demonstrated that increased levels of
cytokines and growth factors may persist in the peritoneal
cavity despite clinical resolution of peritonitis [26–28],
which will prolong injury to the mesothelial cells. This will
initiate the fibrogenic phase within the peritoneum, which is
followed by the destruction phase. Overproduction of matrix
proteins in the peritoneum will result in peritoneal fibrosis
and sclerosis and invariably lead to cessation of treatment.
Table 1 summarizes the detrimental processes that occur
during each phase.

5. The Role of Defensins during Peritonitis and
Peritoneal Inflammation

Numerous host proteins have been shown to possess anti-
microbial activity. Many are constitutively expressed by
resi-dent cells and stored in secretory granules, whereas
others are induced upon proinflammatory stimuli. Defensins
are a group of antimicrobial peptides that are produced
by mesothelial cells and cells of the innate immune system in
response to bacterial infection [155, 156]. These peptides are
activated in the presence of bacteria and act by disrupting the
lipid membranes of bacteria. In order to avoid elimination
from the host, bacteria have developed mechanisms that
allow them to utilize components of the host cells to enhance
their virulence. In this respect, pathogens have been shown
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Table 1: Induction of peritoneal fibrosis.

Phases of peritoneal fibrosis Events that occur in the peritoneum during each phase

Induction phase

Release of chemokines by mesothelial cells

(i) Infiltration of mononuclear cells

(ii) Release of profibrotic mediators

(iii) Activation of resident cells (mesothelial cells and fibroblasts)

Fibrogenic phase
Increased synthesis and deposition of matrix

Continued secretion of profibrogenic mediators by infiltrating cells

Peritoneal destruction phase

Cessation of primary inflammatory stimulus

Secretion of profibrotic cytokines by mesothelial cells

Autocrine proliferation of fibroblasts and myofibroblasts

EMT

Submesothelial thickening

Vasculopathy

to exploit cell surface proteoglycans, which have a high
net negative charge, to neutralize the antimicrobial actions
of cationic defensins. Schmidtchen et al. demonstrated
that exogenous dermatan sulfate and heparan sulfate gly-
cosaminoglycans are able to bind α-defensin, which fully
neutralized its bactericidal activity against P. aeruginosa, E.
faecalis, and S. pyogenes [157]. These researchers further
demonstrated that through the actions of their proteinases,
these pathogens have the capacity to utilize and degrade host-
derived proteoglycans to release anionic glycosaminoglycan
chains that bind and neutralize the actions of defensins
[157]. Syndecan-1 is a cell surface heparan sulfate proteo-
glycan that is synthesized by fibroblasts, mesothelial cells,
airway epithelial cells, and intestinal epithelial cells [158–
160]. In an animal model of S. aureus corneal infection,
Hayashida et al. noted that S. aureus induced shedding of
the syndecan-1 ectodomain, which resulted in the inhibition
of the innate immune mechanism and the inability of
neutrophils to eradicate S. aureus [161]. The observation
that syndecan-1 knockout mice were resistant to S. aureus
infection underscores the importance of syndecan-1 shed-
ding as a pathogenic mechanism that mediates virulence
of S. aureus [161]. P. aeruginosa is also able to release
the ectodomain of syndecan-1 from the cell surface of
mouse mammary epithelial cells, lung epithelial cells, and
fibroblasts using LasA, a zinc metalloendopeptidase [162],
and this has been implicated as a pathogenic mechanism
that permits P. aeruginosa to mediate tissue injury in the
lung and cornea. Given that S. aureus and P. aeruginosa are
common pathogens that induce peritonitis in PD patients,
it is possible that both microorganisms implement the
shedding of syndecan-1 ectodomain from the mesothelium
to promote their pathogenesis during peritonitis. In this
regard, our preliminary studies have demonstrated increased
levels of glycosaminoglycans in dialysis effluent obtained
from patients with peritonitis. It is also plausible to suggest
that this mechanism may also account in part for the loss of
anionic sites from the mesothelium in experimental models
of peritonitis.

Mesothelial cells are a major contributor of defensin
production in the peritoneum but their antimicrobial func-
tion role in the peritoneum remains to be fully eluci-
dated. Denudation of mesothelial cells from the peritoneal
membrane during PD and peritonitis would suggest a
concomitant loss of defensin production, but thus far, this
does not appear to have any impact on the incidence of
peritonitis [163]. In addition to their antimicrobial activity,
defensins are thought to possess chemoattractant properties
for immature dendritic cells and indirectly contribute to
leukocyte infiltration by activating resident cells to secrete
proinflammatory chemokines and cytokines [164–166]. It is
therefore possible that defensins may contribute to both the
innate and adaptive immune responses in the peritoneum
although further studies are warranted to confirm this.

6. Effect of Peritonitis on Mesothelial Cells

There is compelling evidence to show that mesothelial cells
play an essential role in the orchestration of peritoneal
responses during inflammation and peritonitis. Changes to
the structural and functional integrity of the mesothelium
during PD and infection will therefore have a profound
effect on how peritonitis is resolved. In order to delineate
the mechanisms through which mesothelial cells regulate
peritoneal inflammation and infection, and the underlying
mechanisms through which peritonitis can modulate the
structural and functional integrity of the mesothelium, the
establishment of a reproducible model that can mimic the
in vivo environment is essential to allow researchers to
perform experiments in a controlled manner. Mesothelial
cells isolated from omental specimens possess identical
biochemical and morphological characteristics to those
identified in peritoneal mesothelial stem cells. Therefore,
cultured mesothelial cells provide a relevant tool to study
the underlying mechanisms through which pathogens alter
the structural and functional properties of the mesothelium.
It is noteworthy that mesothelial cells isolated from mature
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donors have an inflammatory phenotype even in the absence
of any stimuli [167] and therefore it is imperative when
assessing inflammatory processes that one can distinguish
between changes induced by the inciting stimulus and that
by the age of the cells.

Previous studies have shown that different causative mi-
croorganisms of peritonitis are associated with distinct clini-
cal outcomes and therefore should not be considered compa-
rable in terms of outcome [10]. Troidle et al. reported that
patients with Gram-positive peritonitis fared better on PD
compared to patients with Gram-negative peritonitis since
the latter was associated with a greater need for hospitaliza-
tion and catheter removal, and higher incidences of relapse
and mortality [10]. It is therefore conceivable that Gram-
positive and Gram-negative bacteria will have distinct effects
on the mesothelium and therefore one should not ideally
collate data from Gram-positive and Gram-negative bacteria
together.

γδ T-cells constitute approximately 0.5–5% of the
total human peripheral blood T-cell population and are
activated by small nonpeptide phosphoantigens such as
(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-
PP) [168]. HMB-PP is produced predominantly in Gram-
negative bacteria [169]. HMB-PP-dependent cross-talk
between Vγ9/Vv2 T-cells and autologous monocytes has
recently been shown to drive the induction of chemokine
and cytokine secretion and induce the differentiation of
monocytes to inflammatory dendritic cells [169]. It is thus
possible that HMB-PP may contribute to the observed
difference between the severity of peritoneal inflammation in
Gram-positive and Gram-negative bacteria although further
studies are warranted to confirm this.

6.1. Toll-Like Receptors and Nucleotide-Binding Oligomeriza-
tion Domain- (Nod-) Like Receptors. TLR play important
roles in the initial recognition of bacterial, viral, and fungal
components in the host defense system, and ten TLRs
have been identified thus far. Independent researchers have
demonstrated that both human and murine mesothelial
cells constitutively express mRNA for TLR1-6, whilst TLR7-
10 are barely detectable [170, 171]. TLR4 recognizes LPS,
a major component of the outer membrane of Gram-
negative bacteria. In an attempt to delineate the biological
role of TLR4 during infection, Kato et al. administered
LPS to C3H/HeN and C3H/HeJ mice by intraperitoneal
injection, the latter strain being hyposensitive to LPS due
to a point mutation in the TLR4 gene and investigated
its effect on inflammatory processes. The observation that
NFκB activation, induction of MCP-1 and MIP-2 secretion,
and recruitment of leukocytes into the peritoneal cavity was
dependent on TLR4 highlights its importance in peritoneal
inflammation [170]. Recently, Colmont et al. demonstrated
that human peritoneal mesothelial cells are able to respond to
Gram-positive and Gram-negative bacterial ligands through
TLR2 and TLR5, respectively [171]. Unlike murine mesothe-
lial cells, human mesothelial cells demonstrated a lack of
TLR4 responsiveness to LPS [171]. Although the functional
consequences of these interactions remain to be determined,
given that Gram-positive and Gram-negative bacteria induce

different clinical outcomes in PD patients, is it possible that
their recognition by mesothelial cells through distinct TLR
subsets may induce distinct inflammatory processes within
the peritoneum and which may explain, at least in part, the
observed differences in clinical outcome?

Sensing of bacterial pathogens by mesothelial cells may
also be mediated by nucleotide-binding oligomerization
domain- (Nod-) like receptors [172]. Whilst TLR mediates
the recognition of bacterial components either at the cell sur-
face or in endosomes, Nod-like receptors induce the innate
immune system through cytosolic recognition of bacterial
constituents [173]. Recently, in transgenic animal studies,
Park et al. demonstrated that Nod-1 and Nod-2 can regulate
chemokine and antibacterial innate immune responses in
mesothelial cells through the kinase RICK/RIP2 pathway,
which mediated the downstream activation of NF-κB and
MAPK pathways [172]. The ability of mesothelial cells to
respond to bacterial components to initiate inflammatory
responses highlights their pivotal role in peritoneal host
defense.

6.2. Induction of Inflammatory and Fibrotic Mediators. Peri-
tonitis has been shown to induce local production of various
inflammatory and fibrotic mediators in mesothelial cells.
Although the list of mediators is ever increasing, we will
focus on some mediators that have been suggested to possess
dual roles in inflammation and fibrosis. Hyaluronan is
a negatively charged, linear polysaccharide that is widely
distributed in epithelial, connective, and neural tissues
[174, 175]. In normal tissues, hyaluronan is synthesized
as a macromolecule with a molecular weight in excess of
106 Da [176]. Despite its simple structure, hyaluronan is
a multifaceted molecule that contributes to the structural
integrity of tissues, maintains water balance, and possesses
anti-inflammatory properties [177, 178]. High-molecular-
weight hyaluronan undergoes steady-state turnover and its
degradation into small, nonbiologically active fragments is
rapidly removed from the body by the liver. In chronic
inflammation, elevated serum levels of hyaluronan and its
deposition at sites of injury have been observed. Frag-
mentation of extracellular matrix (ECM) components often
occurs during tissue injury and these fragments possess
functional properties that are distinct from their parent
molecule [178]. Removal of ECM fragments from the tissue
is therefore vital for the resolution of tissue injury. Indepen-
dent researchers have suggested that hyaluronan fragments
may deposit in inflamed tissues consequent to their de
novo synthesis or through the depolymerization of native
hyaluronan following increased activity of hyaluronidase or
reactive oxygen species [178–180]. Unlike native hyaluronan,
hyaluronan fragments have been shown to induce multiple
signaling cascades and increase cell proliferation, cytokine
secretion, MMP activity, and matrix protein synthesis in
murine models of lung disease or cultured mesothelial cells,
keratinocytes, macrophages, and dendritic cells [178, 181–
187]. Proinflammatory cytokines and profibrotic growth
factors have been shown to increase synthesis of both high-
and low-molecular-weight hyaluronan in various cell types
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[188–191]. Studies have also demonstrated that TLR-2, TLR-
4 and nod-like receptors can detect low molecular weight
hyaluronan, and through these interactions are able to
initiate inflammatory responses in an animal model of lung
injury, whereas over-expression of high molecular weight
hyaluronan was shown to maintain epithelial cell integrity
and promote recovery [192].

Hyaluronan is a surrogate marker of inflammation. We
and others have demonstrated that low levels of hyaluro-
nan can be detected in dialysis effluent obtained from
noninfected PD patients, and these levels are significantly
increased during peritonitis [193, 194]. Our observation that
dialysate hyaluronan levels are almost 2- and 10-folds higher
that the corresponding serum levels in noninfected and
infected PD patients, respectively, suggests that hyaluronan
is synthesized locally [193]. We have demonstrated that
cultured mesothelial cells can synthesize hyaluronan in
abundance, of which 90% is secreted into their culture
medium. The observation that the hydrodynamic size of
hyaluronan synthesized by mesothelial cells is identical to
that of hyaluronan detected in PD fluid, together with our
observation that infected PD fluids can induce de novo
synthesis of hyaluronan in these cells, provides evidence
that mesothelial cells contribute to the increased local
synthesis of hyaluronan during PD and peritonitis [193].
The molecular weight of hyaluronan present on the surface
of mesothelial cells is higher than the secreted form,
suggesting partial depolymerization of the parent molecule
as it is released from the plasma membrane. Once released,
hyaluronan appears stable and does not undergo further
fragmentation in the peritoneal cavity during chronic PD
or peritonitis [193]. Increased synthesis of hyaluronan in
mesothelial cell during peritonitis is attributed to their
induction by proinflammatory cytokines and growth factors,
in particular, IL-1β IL-6, TNF-α, TGF-β1, and PDGF
[188, 194]. The inability to detect hyaluronan fragments
in spent infected and noninfected dialysate corroborates
previous reports that low-molecular-weight hyaluronan is
rarely observed in injured tissue in vivo [195]. It is
noteworthy that studies detailing hyaluronan fragments as
inflammatory mediators predominantly stem from in vitro
studies [178, 183, 184, 196–199] and thus their existence
in injured tissues and clinical relevance remains to be
defined.

We have demonstrated that increased hyaluronan levels
can induce EMT in mesothelial cells under physiological con-
ditions, which is essential for cell migration during wound
healing and remesothelialization [73]. Once the mesothelial
monolayer is restored, hyaluronan levels are reduced [73].
A sustained increase in hyaluronan levels within the peri-
toneum during peritonitis would imply prolonged activation
of mesothelial cells thereby preventing mesenchymal-to-
epithelial transdifferentiation and their ability to revert
back to their epithelial morphology. The acquisition of a
migratory and invasive phenotype allows mesothelial cells
to adopt a more fibrogenic characteristic whereby synthesis
of MMPs that degrade the underlying basement membrane
is increased, thus permitting the migration of transdiffer-
entiated mesothelial cells into the submesothelium [59]. In

this respect, Fukudome et al. demonstrated increased MMP-
9 activity in dialysis effluent obtained from PD patients
with peritonitis [200]. Transdifferentiated mesothelial cells
have been shown to contribute to the thickening of the
submesothelium and subsequent peritoneal fibrosis [55,
201]. Their migration into the submesothelium may also
contribute to the denudation of the mesothelium, although
this warrants further investigation.

Apart from hyaluronan, mesothelial cells also synthesize
and secrete TGF-β1, IL-1β, IL-6, and TNF-α [26, 33–35, 55,
202] and their levels are increased during peritonitis. These
peptides have also been shown to induce EMT in mesothelial
cells and further augment peritoneal inflammation and
fibrosis [55, 84, 93, 203–205]. Failure to restore the mesothe-
lial monolayer is associated with unfavorable structural
and functional changes to the peritoneal membrane of PD
patients [3]. The role of TGF-β1 in the pathogenesis of
peritoneal fibrosis is well documented [55, 205]. TGF-β1 also
possesses an anti-inflammatory property but its ability to
regulate peritoneal inflammation has been less characterized.
In an animal model of peritonitis induced by E. Coli, Wang
et al. noted a transient increase in TGF-β1 in the peritoneum
that was associated with the activation of TGF-β1 and
NFκB signaling pathways, increased secretion of TNF-α, and
impaired peritoneal function [206]. Resolution of peritonitis
was observed after 7 days without progressing to peritoneal
fibrosis. In rats whereby TGF-β1 signaling pathways were
block by genetic manipulation, E. coli-induced peritonitis
exacerbated peritoneal inflammation as demonstrated by
increased infiltration of leukocytes and further induction of
inflammatory signaling pathways and secretion of TNF-α
[206]. These data would suggest that TGF-β1 may also exert
a protective, anti-inflammatory activity on the peritoneum
during peritonitis. The role of TGF-β1 in immune tolerance
and in particular in the inhibition of T-cell mediated
immunopathology was first demonstrated over 2 decades
ago in TGF-β1, deficient mice, which developed an early
and fatal multifocal inflammatory disease [207, 208]. TGF-
β1 can induce T-reg cell differentiation, but in the presence
of IL-6, TGF-β1 induction of T-reg cells is inhibited [209].
TGF-β1 together with IL-6 has been shown to induce Th17
cells, a subset of T helper cells that have been implicated in
autoimmune disease [209, 210]. Th17 cells have also been
shown to synthesis IL-17 A, IL-17F, and IL-22 following
infection, and these cytokines are involved in the recruitment
and activation of neutrophils and tissue homeostasis [211].
The mechanisms that dictate whether TGF-β1 should follow
an anti-inflammatory or profibrotic pathway remain to be
determined.

HGF is a growth factor that has antifibrotic and profi-
brotic properties depending on the cell type. It has been
shown to attenuate renal fibrosis by suppressing the actions
of TGF-β1, slow the progression of diabetic nephropathy in
db/db mice, and ameliorate podocyte injury and proteinuria
in a murine model of chronic progressive glomerular disease
[212–215]. On the other end of the spectrum, HGF has
also been shown to induce cell proliferation and EMT in
endothelial cells and hepatocytes [216, 217]. Rampino et al.
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demonstrated that HGF induced cell proliferation, EMT,
and collagen synthesis in mesothelial cells, thus indicating
a pro-fibrotic role for HGF in the mesothelium. These
researchers also observed an increase in the levels of HGF
in dialysis effluent obtained from patients with peritonitis
when compared to levels detected in non-infected PD
fluid. This would indicate that HGF may contribute to the
denudation of the mesothelium and increase fibrogenesis
during peritonitis [218].

Angiotensin II is a potent vasoactive peptide that plays
a critical role during renal fibrosis and peritoneal injury
[219, 220]. Its levels are increased during peritonitis and
angiotensin II has been shown to induce ERK1/2 and p38
MAPK activation and fibronectin synthesis in mesothelial
cells, thereby contributing to peritoneal inflammation and
fibrosis, respectively [221].

6.3. Alterations in the Fibrinolytic Cascade. Mesothelial cells
play a critical role in maintaining the balance between
fibrin accumulation and degradation through the expression
of plasminogen activators, namely, tissue-type plaminogen
activator (tPA) and urokinase plaminogen activator (uPA),
and their specific inhibitor plasminogen activator inhibitor
type 1 (PAI-1) [222]. Depending on the fibrinolytic capacity
of mesothelial cells during peritonitis, fibrin may be lysed,
which promotes healing, or deposited within the peritoneal
structure where they induce fibroblast proliferation and
collagen deposition, which inevitably results in peritoneal
fibrosis [223, 224]. Most often that not, during peritoneal
inflammation and peritonitis, a peritoneum devoid of
its mesothelium and therefore devoid of its fibrinolytic
mechanism is accompanied by the accumulation of fibrin
within the peritoneum. If it is not removed, the fibrin
will be replaced by granulation tissue, which in turn will
be substituted by dense fibrous matter [225]. Studies have
demonstrated that S. aureus complicating peritonitis can
contribute to peritoneal fibrosis by their ability to produce a
self-protecting coagulase that initiates the clotting of plasma
and generation of a thrombin-like substance that permits the
conversion of fibrinogen to fibrin [223, 225]. In vitro studies
have shown that upon stimulation with proinflammatory
mediators, such as IL-1α and TNF-α, tPA synthesis is
inhibited in mesothelial cells, which is accompanied by an
increase in PAI-1 synthesis [226, 227]. Furthermore, TGF-β1
has been shown to increase gene and protein expression of
PAI-1 in cultured mesothelial cells, which enhanced fibrin
deposition [222]. These cytokines are all increased in the
peritoneum during peritoneal inflammation and peritonitis
and may thus impede fibrin degradation in vivo. Recently,
Haslinger et al. provided evidence that simvastatin could
abrogate the suppressive effect of TNF-α on tPA synthesis in
cultured mesothelial cells [228], but in the clinical setting, it
is unlikely to be of much benefit if the mesothelium is already
denudated.

6.4. Injury to Mesothelial Cells. The mesothelium plays an
essential role in peritoneal homeostasis and host defense
against infection. Prolonged use of PD and recurrent

episodes of peritonitis result in the denudation of the
mesothelium [3, 229]. In contrast to noninfected PD,
where exfoliated mesothelial cells still remain viable in the
peritoneal cavity, and which may have the potential to
reestablish the mesothelium, emerging evidence has shown
that invading pathogens such as S. aureus can induce caspase-
independent mesothelial cell death [230]. Haslinger-Löffler
et al. investigated the ability of various laboratory strains of
S. aureus and S. epidermidis to induce mesothelial cell death.
These researchers demonstrated that only S. aureus with
an invasive and hemolytic phenotype induced mesothelial
cell death, whereas none of the strains of S. epidermidis
demonstrated any cytotoxic effect on mesothelial cells [230].
S. aureus has developed a number of mechanisms that
allow the pathogen to adhere to the host cell, which is
essential for progression of infection. Adhesion of S. aureus
to components of the host cell is mediated by adhesins
[231]. Fibronectin has been shown to mediate S. aureus
attachment and subsequent invasion in mesothelial cells, an
observation also noted in endothelial cells [231, 232]. In
an intact, polarized mesothelium, fibronectin is normally
localized to the basolateral cell membrane and therefore not
readily available from the luminal aspect of the cell. In the
context of PD and peritonitis, it is plausible to suggest that
due to a compromised mesothelium with reduced synthesis
of tight junctions, extracellular fibronectin may be exposed
and accessible for S. aureus to bind, although this warrants
further investigation. We have previously demonstrated that
fibronectin is also present on the surface of mesothelial cells
[40], which may also contribute to the binding and invasion
of S. aureus. The molecular mechanism of S. aureus inva-
sion bears remarkable similarities to complement-enhanced
phagocytosis mediated by β2-integrins in macrophages and
neutrophil granulocytes [231]. The pathogen is engulfed by
pseudopodia in a time-, dose-, and temperature-dependent
manner [233] and can be located in vacuoles within
mesothelial cells without being digested. This is dependent
on the strain of bacteria, for example, S. aureus Cowan I
can remain in the host cell without inducing any visible
signs of cell injury, whilst other strains (S. aureus ST 239)
can induce cell and nuclear shrinkage, vacuolization, and
chromatin condensation [230]. Studies have demonstrated
that at low concentrations of bacteria, cell death may
be mediated by caspase activation and apoptosis, whereas
higher concentrations result in necrotic cell death [234].
Haslinger-Löffler et al. demonstrated that S. aureus with
a hemolytic phenotype mediated mesothelial cell death
through necrosis [230]. Increased levels of TNF-α and
Fas ligand during peritoneal inflammation and peritonitis
may also induce apoptosis in mesothelial cells [235]. In
our preliminary studies, we have demonstrated that Gram-
negative bacteria such as P. aeruginosa, K. pneumoniae and
E. coli induced denudation of the mesothelial monolayer and
cell lysis more prominently that Gram-positive species (Yung
and Chan, unpublished data). If cell death through apoptosis
or necrosis supersedes cell proliferation, the replenishment
of mesothelial cells will be insufficient, which will initiate
subsequent peritoneal fibrosis.
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7. Potential Role of Mesothelial Cell
Transplantation and Gene Therapy in
Peritoneal Preservation

It is without doubt that mesothelial cells play a crucial
role in numerous cell processes in the peritoneum and a
loss of mesothelial cells is accompanied by impairment of
the structural and functional integrity of the peritoneal
membrane. The omentum is a highly vascularized tissue that
has been used in reconstructive surgery over the past two
decades [236–238]. How the omentum facilitates the healing
process remains to be fully defined, but it has been suggested
that mesothelial cells may secrete growth factors at sites of
injury or are themselves incorporated into the tissue. In order
to preserve the dialytic efficacy of the peritoneum during PD
and peritonitis, due to encouraging results obtained with the
use of the omentum in reconstructive surgery, it is perhaps
possible to transplant cultured mesothelial cells into the
peritoneum once the structure of the peritoneal membrane is
compromised. Independent researchers have suggested that
genetic engineering may offer a novel therapeutic strategy,
whereby omental specimens from predialysis patients are
removed at the time of catheter implantation and mesothelial
cells isolated and stored frozen until required [93, 239]. Ex
vivo gene therapy may potentially bestow upon the peritoneal
membrane an increased healing property or replenish pro-
teins crucial for the maintenance of the mesothelium, which
are lost during PD. Following peritonitis episodes when
denudation of the mesothelium is prominently observed,
genetically modified mesothelial cells may be infused into the
peritoneal cavity through the catheter, allowed to settle on
the denuded tissue and repopulate the peritoneal membrane.
This stimulating concept is timely since it is currently
impossible to completely dialyzed patients with PD solutions
free of glucose and mesothelial injury will inevitable always
emerge. In reality, is such a technique feasible in PD
patients? Although mesothelial transplantation in an animal
model of peritonitis has provided us with some encouraging
results, it was also accompanied by deranged changes to the
structure of the peritoneum with induction of inflammatory
processes and activation of the peritoneum [240], which
rather alarmingly this technique was specially intended to
prevent. Before clinical trials can even be considered, it
is essential that we determine the mechanisms by which
transplanted mesothelial cells are activated in order to devise
approaches to inhibit such activation.

In an in-depth morphologic study of the peritoneal
membrane, Williams et al. observed that of the peritoneal
biopsies analyzed, mesothelial denudation was noted in
18.1% of specimens obtained from predialysis and hemodial-
ysis patients, and in specimens that presented with an
intact mesothelium, the cells assumed a reactive state [3,
229]. Although the mechanisms that results in mesothelial
denudation in predialysis and haemodialysis patients have
yet to be fully identified, given that chronic inflammation
is a common feature of patients with end-stage renal failure
[241–245], it is possible that local ischemia, uremia, and
systemic inflammation may result in increased levels of
proinflammatory mediators and growth factors within the

peritoneum, possibly derived from the circulation or local
production, which induce cell detachment. These mediators
include TNF-α, IL-1β, and TGF-β1, peptides known to
induce cell detachment in mesothelial cells [201]. Plasma
levels of AGE are elevated in patients with chronic renal
disease [246] and these may also play a role in mesothelial
cell denudation although further studies are warranted to
confirm this. In predialysis diabetic patients, it is also possible
that increased tissue levels of TGF-β1 may contribute to
mesothelial cell detachment. Is it therefore possible to obtain
adequate quantities of mesothelial cells from uremic patients
to store for future transplantation? Given that mesothelial
cells in culture have a defined life-span and enter senescence
after the second to third passage, is it possible to collect
sufficient mesothelial cells that maintain their polygonal
morphology without a loss of their proliferative potential?
Growth factors may be added to maintain their prolifera-
tive capability but this may also increase their fibrogenic
potential. Accumulating evidence suggests that mesothelial
progenitor cells exist, which may be harvested to assist in the
repair and regeneration of the denuded mesothelium [247].

Much of the structural changes that are observed in the
peritoneal membrane are induced by the bioincompatible
nature of PD fluids. The use of PD solutions with alternative
osmotic agents or partial or complete replacement of lactate-
buffer with bicarbonate may be more beneficial in preserving
the structural and functional integrity of the peritoneal
membrane. A recent study demonstrated that PD patients
using bicarbonate-buffered, neutral pH PD solutions showed
a reduction in the frequency of peritonitis compared to
conventional glucose-based, lactate buffered PD fluids [248],
but these data have yet to be reproduced.

Although peritonitis exacerbates structural changes to
the peritoneal membrane, the initial insult to the peritoneal
membrane is the bioincompatible nature of PD fluids
resulting in the induction of peritoneal inflammation. In
an attempt to halt or even reverse peritoneal injury during
PD and peritonitis, is it feasible to rest the peritoneum?
Zhe et al. demonstrated that overnight peritoneal rest can
improve ultrafiltration capacity in stable PD patients who
had been on PD for more than 3 months [249]. In a separate
study, Rodrigues et al. observed a recovery in ultrafiltration
following peritoneal rest in 8 of 12 PD patients who had
developed hyperpermeability [250]. In experimental models
of PD, a period of 4–12 weeks of peritoneal resting was
associated with a marked reduction in peritoneal fibrosis
and angiogenesis, and complete remesothelialization of the
peritoneal membrane [251, 252].

8. Conclusions

Despite considerable improvement in PD over the past 3
decades, peritonitis remains one of the major complications
of PD and is an important cause technique failure and
unfavorable clinical outcomes. A frequent cause of peritonitis
is contamination at the time of exchange with Gram-positive
bacteria that originate from the skin flora. Numerous studies
have highlighted the critical role of Staphylococcus species
in mediating mesothelial cell injury, denudation, and cell
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Figure 1: Mesothelial cells line the peritoneal membrane and play a crucial role in peritoneal homeostasis. Their apical surface is endowed
with a glycocalyx that provides a protective barrier against abrasion, and a slippery, nonadhesive surface for intracoelomic movement (1).
Through their ability to synthesize various cytokines, growth factors, and matrix protein components, mesothelial cells actively participate
in tissue repair and induction and resolution of peritoneal inflammation (2). Synthesis of matrix proteins by mesothelial cells may be
incorporated into the underlying basement membrane on which mesothelial cells adhere to. Mesothelial cells facilitate in the transport
of fluids and solutes across the peritoneal membrane (3), are the first line of defense against bacterial peritonitis (4), and can maintain a
chemotactic gradient to assist in leukocyte infiltration (5) during peritoneal inflammation. The submesothelium contains sparse fibroblasts,
collagen fibrils and capillaries. Changes to the structural integrity of the peritoneal membrane are invariably observed in PD patients.
Constant exposure of the peritoneum to PD fluids, together with peritonitis, results in a reduction of the glycocalyx volume and a
concomitant loss of anionic charge in the glycocalyx (6). Alterations in the anionic charge of the peritoneum can result in the reduction in the
length and density of microvilli on the surface of mesothelial cells (7). Chronic exposure to PD fluid and peritonitis can induce detachment
of mesothelial cells from their underlying basement membrane (8) resulting in partial (9) or complete denudation of the mesothelium.
A loss of cell-cell interaction between mesothelial cells permits PD fluid to enter into the submesothelium (10). Increased synthesis of
proinflammatory cytokines and matrix proteins is observed following the activation of infiltrating and resident peritoneal cells (11), leading
to morphological changes such as reduplication of the basement membrane (12), induction of EMT in mesothelial cells, a breakdown of
the basement membrane and their migration into the submesothelium (13). Transdifferentiated mesothelial cells have a greater fibrogenic
potential and thus contribute to the deposition of matrix proteins and fibrin in the submesothelium (14), which if not controlled will lead
to thickening of the submesothelium and ultimately peritoneal fibrosis and sclerosis. A loss of the protective mesothelium allows PD fluid
and toxins released by bacteria to induce the activation of peritoneal fibroblasts (15), hyalinization of blood vessels, and vasculopathy (16).
Such detrimental changes to the peritoneal membrane will significantly suppress the dialytic potential of the peritoneal membrane, which
will invariably lead to the cessation of treatment.

death, which leads to increased fibrin and matrix protein
accumulation, and ultimately peritoneal fibrosis. Repeated
episodes of peritonitis will aggravate these processes and
accelerate catheter removal and technique failure. Gram-
negative complicating peritonitis is less common that Gram-
positive infections but is associated with higher rates of
death, hospitalization, and transfer to hemodialysis com-
pared to Gram-positive peritonitis [9]. Our preliminary
studies have demonstrated that mesothelial cell denudation
is more pronounced when they are exposed to dialysis
effluent from PD patients with Gram-negative peritonitis,

attributed in part to the higher dialysate levels of proinflam-
matory cytokines compared to Gram-positive peritonitis
[27]. One should therefore bear in mind that different
species of microorganisms induce distinct changes to the
mesothelium and submesothelium and therefore should
not be grouped as one. Furthermore, for experimental
and in vitro studies simulating PD-related peritonitis, it is
noteworthy that subtle structural and regulatory changes to
laboratory-based bacteria may result in alterations in their
invasiveness and cellular behavior, which are not observed in
the clinical setting.
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With a greater understanding of the underlying mech-
anisms through which different species of microbes can
modulate mesothelial cell function and their attachment to
the peritoneal membrane during peritonitis, it is envisaged
that in time we may devise novel therapeutic interventions
to preserve the structural and functional integrity of the
peritoneum and thereby improve patient survival on PD.
Figure 1 is a schematic diagram that highlights our current
knowledge of how PD and peritonitis may affect the
structural integrity of the peritoneal membrane.
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