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Cancer stem cells (CSC) or tumor-initiating cells represent a small subpopulation of cells

within the tumor bulk that share features with somatic stem cells, such as self-renewal

and pluripotency. From a clinical point of view, CSC are thought to be the main drivers of

tumor relapse in patients by supporting treatment resistance and dissemination to distant

organs. Both genome instability and microenvironment-driven selection support tumor

heterogeneity and enable the emergence of resistant cells with stem-like properties, when

therapy is applied. Besides hypoxia and nutrient deprivation, acidosis is another selection

barrier in the tumor microenvironment (TME) which provides a permissive niche to shape

more aggressive and fitter cancer cell phenotypes. This review describes our current

knowledge about the influence of the “acidic niche” on the stem-like phenotypic features

of cancer cells. In addition, we briefly survey new therapeutic options that may help

eradicate CSC by integrating and/or exploiting the acidic niche, and thereby contribute

to prevent the occurrence of therapy resistance as well as metastatic dissemination.

Keywords: cancer stem cell, acidosis, niche, microenvironment, drug resistance, metabolism, metastasis,

dormancy

INTRODUCTION

Despite a broader arsenal of (targeted) therapies, prognosis is still very poor for several types of
cancer. At present, most patients with advanced cancers die because tumor cells have a remarkable
capacity to develop drug resistance, through both genetic and non-geneticmechanisms (1). Current
therapeutic failures are thought to originate, at least partly, from the Darwinian nature of cancer
according to which, both genetic alterations and highly selective local microenvironments (the
so-called niches) help to develop tumor cell adaptive phenotypes to sustain malignant progression
(2, 3). Indeed, while current clinical protocols aim to eradicate the tumor as quickly as possible
[i.e., maximum-tolerated dose (MTD) strategies], they often lead to therapeutic failure due to
the occurrence of tumor relapse and dissemination of cancer cells to distant organs, after an
initial tumor response or the lack of effectiveness at the outset. This alarming observation is
thought to arise from two neglected evolutionary concepts. First, phenotypic heterogeneity within
a tumor makes it very likely that resistant cells are present before therapy regardless of the cancer
genetic landscape (i.e., de novo drug resistance). Second, MTD-based therapy promotes the growth
of resistant populations via the clonal selection of cancer cells with adapted phenotypes and
elimination of all potentially competing populations (the so-called “competitive release”) (4).

Cancer stem cells (CSC), also referred to as tumor-initiating cells, have been thought to actively
contribute to the so-called “minimal residual disease” which is a small population of cancer cells
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that survive drug treatment and re-initiate the malignant disease,
with poor outcome, even some years later (Figure 1) (5, 6).
Within the tumor mass, CSC are typically dormant (i.e., non- or
slow-proliferating) but they have also the capacity to proliferate
either for their maintenance (self-renewal) or for the generation
of progenitor tumor cells (clonal tumor initiation and long-term
repopulation) (Figure 1) (7). CSC are located in specific niches,
determined by tumor microenvironment (TME) peculiarities,
that enable them to be phenotypically better adapted and more
prone to regain fitness (i.e., ability to survive and proliferate
in a given environment) than other cancer cell populations
within the tumor bulk (8, 9). Moreover, these niches are
thought to help protect CSC from the immune system, resist
conventional treatments by reducing their proliferation state
and/or evading apoptosis, and facilitate their metastatic potential
(9–11). Since most of the normal stem cell populations (e.g.,
hematopoietic, mesenchymal, and neural stem cells) are located
in hypoxic niches, how hypoxia contributes to the maintenance
and/or emergence of the CSC phenotype has been extensively
studied and reviewed over the years (12–14). Moreover, the role
of stromal cells (e.g., cancer-associated fibroblasts, adipocytes,
endothelial cells, or immune cells), as cellular components
of specific CSC-supportive niches, has been also reported
elsewhere (15–18). In this review, we describe how acidosis,
another hallmark of TME, may act as a permissive niche for
adaptive stem-like cancer cell phenotypes. We also discuss

the contribution of the acidic niche to tumor initiation and
progression, as well as to therapy resistance and metastatic

dissemination. This review finally explores potential therapeutic
strategies that may help eradicate CSC by integrating and/or
exploiting the acidosis-induced phenotypic alterations.

Acidosis and CSC-Related
Phenotypic Features
Glycolysis, Mitochondrial Respiration, and

Tumor Acidosis
Acidosis is now considered as a hallmark of the

microenvironment in solid tumors with mean values of
extracellular pH (pHe) ranging from 6.2 to 6.8 (19, 20). Although
initially described as a strict consequence of the exacerbated

glycolysis in tumor cells and the disorganized tumor vasculature,
accumulation of H+ ions in the TME also results from the

mitochondrial respiration-derived CO2 hydration (Figure 2)
(21, 22). Direct measurements of both intratumoral pO2 and

pH have indeed revealed a spatial heterogeneity as well as
an imperfect overlapping of hypoxia and acidosis gradients,
with the existence of acidic areas that are also well-oxygenated
(23, 24). Other studies have also shown that glycolysis-impaired
or LDH-deficient tumor cell lines still have the ability to
acidify the extracellular environment in vivo (25–27). More
recently, Hulikova et al. (28) reported a role for stromal cells
in the venting of hypoxia-induced acidosis, with gap junction-
mediated connections that enable the cell-to-cell shuttling of
cancer cell-derived H+ ions and their venting at far distance
from the hypoxic regions.

Tumor Acidosis and CSC-Related

Gene Reprogramming
Although the effects of acid exposure on stem cell phenotype
have been under controversy (29), there are now several lines
of evidence for the role of tumor acidosis in the emergence
and/or maintenance of CSC phenotypic features (e.g., slow-
proliferating state, invasive capacities, and therapy resistance)
that may participate to the minimal residual disease and the long-
term clinical dormancy/relapse (30, 31) (Figure 2). Nevertheless,
the straightforward contribution of a transcriptional acidosis-
responsive element that could mediate gene reprogramming has
not been reported so far. Several studies have however identified
the hypoxia-inducible factor 2α (HIF2α) as a master regulator
of gene expression in cancer cells, under acidic conditions
(32–35) (Figure 3). Besides an increase of HIF2α abundance,
acidosis also enhances its transcriptional activity through the
activation of NAD+-dependent histone deacetylases sirtuins 1
and 6 (SIRT1/6) (32, 36), thereby leading to the deacetylation
of lysine residues in the HIF2α regulatory amino-terminal
transactivation domain (N-TAD) region (32, 37). Another study
has shown that highly acidic conditions (pH 5.8–6.2) can trigger
nucleolar sequestration of the von Hippel-Lindau (VHL) tumor
suppressor protein and subsequent HIF2α stabilization (35)
(Figure 3). However, a recent report has observed that VHL-
deficient renal carcinoma cells are still responsive to acidosis
with an increase in HIF2α levels, and that the acidic pH-
induced stabilization of HIF2α is mediated by the HSP90
chaperone protein (33). Acidic pH, under normoxia, was also
found to induce L-2-hydroxyglutarate (L-2HG) production
through several mechanisms including the activation of lactate
dehydrogenase A and malate dehydrogenase 2 enzymes, the
inhibition of the mitochondrial L-2HG removal enzyme L-2HG
dehydrogenase and the stimulation of the reverse reaction of
isocitrate dehydrogenase (carboxylation of α-ketoglutarate to
isocitrate), thereby leading to stabilization of HIF-1α (38, 39).
Although 2HG-mediated epigenetic changes have been thought
to support a stem-like cell state (40–42), the direct implication
of an acidosis/2HG/HIF-2α signaling axis in cancer stem cell
biology remains to be determined (Figure 3). These data are
however reminiscent of the occurrence of lactic acidosis in some
2-HG aciduric patients (43) and it could be hypothesized that
acidotic episodes may induce 2HG accumulation.

In glioma, where HIF2α is now considered as a marker of CSC
(44), acidic conditions were documented to increase both the
expression of a panel of glioma stem cells (GSC)-associated genes,
including POU5F1 (OCT4), OLIG2, and NANOG, independently
of a restricted O2 availability (34), and the fraction of cells
positive for the GSC markers CD133 and CD15 (33). Acidosis
also promotes production of angiogenic factors such as VEGF
and IL-8 in GSC that favor tumor growth through paracrine
effects (34). Acidosis has been also correlated to stem cells
through the role of mesenchymal stem cells (MSCs) within
the tumor stroma. MSCs grown in acidic pH express a higher
level of transforming growth factor-β (TGFβ) that induces an
epithelial-to-mesenchymal transition (EMT)-like phenotype in
melanoma cells (45). Acidosis-exposed MSCs also stimulate
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FIGURE 1 | Hypothetical model for the role of cancer stem cells (CSC) and microenvironmental selection pressure in clinical relapse. CSC display both self-renewal

capacity and multi-lineage differentiation potential, leading to intratumoral heterogeneity. Local TME peculiarities such as hypoxia, acidosis, and nutrient deprivation

act as high selection pressures for adaptive stem-like phenotypes that participate to therapy resistance, minimal residual disease, and long-term clinical relapse.

FIGURE 2 | Tumor acidosis influences and maintains CSC-related phenotypic features. Both exacerbated glycolysis and mitochondrial respiration-derived CO2

hydration in tumor account for production of H+ ions and subsequent environment acidification. Tumor acidosis contributes to the emergence and/or maintenance of

stem-like phenotypic features such as dysregulated metabolism, immune surveillance escape, (epi)genetic reprogramming, low proliferation, apoptosis evasion, and

EMT-like phenotype. CAIX, carbonic anhydrase IX; MCT4, monocarboxylate transporter 4; NHE1, sodium-hydrogen antiporter 1; OXPHOS, oxidative phosphorylation;

TCA, tricarboxylic acid cycle.

the invasive and clonogenic capacities of osteosarcoma (OS)
cells via the secretion of a variety of factors, including colony-
stimulating factor 2 (CSF2, also referred to as GM-CSF), CSF3
(also known as G-CSF), bone morphogenetic protein 2 (BMP2),
and interleukins 6 and 8 (IL6 and IL8) (46). MSCs, under acidic
pH conditions, can also promote a stem cell phenotype in OS, by
enhancing the sphere formation capacity and chemoresistance,
via the induction of octamer-binding protein 4 (OCT4) (46).
Finally, some studies have shown that cancer cell exposure to
acidic conditions was associated with changes in the epigenetic
landscape, including histone acetylation levels (36, 47), as well
as a reprogramming of the genome-wide transcriptome (48, 49).
Further investigations are however needed to study in depth the
influence of the acidic niche on CSC (epi)genetic pattern, in other
cancer types, but also in preclinical in vivomodels.

Tumor Acidosis and Multidrug Resistance Phenotype
As stated above, CSC are resistant to anti-cancer treatments
and they support long-term cancer cell survival and tumor
relapse in patients. Acidosis has been directly correlated
with drug resistance since it can reduce the passive
permeability of weak base chemotherapeutic agents (e.g.,
doxorubicin, paclitaxel, mitoxantrone) by increasing their
protonation state (the so-called “ion trapping” phenomenon)
(50) (Figure 4). Several studies have indeed shown that
neutralization of tumor-derived acid with systemic buffers
(e.g., sodium bicarbonate, imidazoles, and lysine) (51) or
the reversal of the pH gradient with proton pump inhibitors
(e.g., omeprazole, esomeprazole) (52–54) can restore the
sensitivity of cancer cells to chemotherapeutic drugs, such
as doxorubicin.
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FIGURE 3 | HIF2α as a transcriptional regulator of acidosis-induced gene reprogramming. Tumor acidosis leads to an increase of HIF2α abundance either by directly

inducing EPAS1 gene transcription or by promoting HIF2α protein stabilization. For the latter, several mechanisms have been proposed, including the nucleolar

sequestration of the von Hippel-Lindau (VHL) protein, the competitive binding of the chaperone heat shock protein 90 (HSP90) instead of the receptor of activated

protein kinase C (RACK1), and an increased L-2-hydroxyglutarate (L-2-HG) production, thereby inhibiting HIF2α hydroxylation and subsequent proteasomal

degradation. Besides its stabilization, acidosis also enhances HIF2α transcriptional activity through sirtuin-mediated deacetylation of lysine residues in its regulatory

amino-terminal transactivation domain (N-TAD). αKG, α-ketoglutarate; Ac, acetyl group; CUL2, cullin-2; IDH, isocitrate dehydrogenase; LDHA, lactate dehydrogenase

A; MDH2, malate dehydrogenase 2; PHD, prolyl hydroxylase; Ub, ubiquitin.

Besides this direct effect on the physico-chemical nature of
anti-cancer drugs, acidosis can also promote a resistance-
sustaining phenotype in cancer cells through different
mechanisms. Indeed, while conventional treatments such
as chemotherapies and/or radiation therapy are usually
designed to eradicate highly proliferative cells, acidosis has
been reported to reduce the proliferation status of cancer
cells, that in some conditions even become relatively dormant
(quiescent). Several studies have shown that cancer cells,
exposed to acute acidic conditions, exhibit a low-proliferating
phenotype as a consequence of a non-permissive intracellular
acidification, an increased activity of the metabolic stress
sensor AMP-activated protein kinase (AMPK) and a reduction
of the multi-component mechanistic target of rapamycin
complex 1 (mTORC1) signaling (Figure 4) (55–58). Another
study reported that acidic conditions triggered a reduced
proliferation state and high resistance to apoptosis in
BRAFV600E mutant melanoma cells (59). Acidosis-mediated
melanoma cell phenotype was also associated with an acquired
resistance to vemurafenib, a BRAF inhibitor, that could
be overcome by treatment with everolimus, an inhibitor
of mTOR activity (59).

Acidosis can also increase drug efflux capacities, both in in
vitro and in vivo cancer models, through the upregulation and
activation of membrane transporters such as the ATP-binding
cassette protein ABCG2 (60), and the P-glycoprotein (P-gp) (61–
64). For the latter, acidosis-induced chemotherapy resistance is

mainly mediated through p38 signaling and can be reversed by
treatment with verapamil, a P-gp inhibitor (61, 63). Another
mechanism reported to mediate acidosis-induced therapy
resistance is the unfolded protein response (UPR) pathway.
Indeed, acidic conditions can trigger endoplasmic reticulum
stress, thereby resulting in UPR activation and overexpression
of the glucose-regulated protein 78 (GRP78) chaperone that
contributes to chemotherapy-induced cell death resistance (65–
67) (Figure 4). Finally, autophagy has also been described as an
adaptive survival mechanism for cancer cells under acidosis, in
particular through the enhanced expression of autophagy-related
protein 5 (ATG5) (68, 69). Although an increased autophagic
flux has already been associated with chemotherapy resistance
in a variety of cancers (70), Avnet et al. (52) have reported
that acidosis-induced doxycycline resistance in OS cells is not
supported by autophagy since ATG5 gene silencing cannot
restore drug sensitivity. These observations suggest that acidosis-
driven drug resistant phenotype might be tumor type-dependent
and/or supported by a variety of mechanisms that are redundant
and have therefore the ability to compensate for the inhibition of
one of them.

Tumor Acidosis and Immune Escape
Besides their ability to resist conventional treatments, CSC needs
also to evade immune surveillance to support cellular dormancy
and long-term clinical relapse. Acidic pHe conditions have been
reported to decrease T cell proliferation and their capacity
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FIGURE 4 | Ion trapping phenomenon and acidosis-induced multidrug resistance. Under acidic conditions, several weak base chemotherapeutic agents become

positively charged species and therefore lose their ability to diffuse passively across cellular membranes (the so-called “ion trapping phenomenon”). Tumor acidosis

also directly promotes a resistance-sustaining cell phenotype through several mechanisms including the upregulation of glucose-related protein 78 (GRP78) or Bip, an

increased autophagic flux, a lower proliferation rate, and an increase of drug efflux capacities via the P-glycoprotein (Pgp) and the ATP-binding cassette protein

ABCG2. AMPK, AMP-activated protein kinase; ATG5, autophagy-related protein 5; ER, endoplasmic reticulum; LC3, microtubule-associated protein light chain 3;

mTORC1, mammalian target of rapamycin complex 1; UPR, unfolded protein response.

to produce a variety of cytokines, including interleukin-2 (IL-
2), interferon-γ (IFN-γ), granzyme B and perforin, in a dose-
dependent manner (71). Tumor acidosis also impairs immune
system functions by reducing dendritic cell maturation (72),
monocyte-derived tumor necrosis factor (TNF) secretion (73),
and natural killer (NK) activity (74). Indeed, tumor-derived H+

and/or lactate accumulation, in the extracellular compartment,
supports the suppressive effect on T cell function by inhibiting
the glycolytic pathway within T cells (71, 73). Moreover,
inhibition of the transcription factor nuclear factor of activated
T cells (NFAT) has been proposed to mediate the blockade of
IFNγ production in T cells and NK cells, upon intracellular
accumulation of H+ and lactate (75). The same authors also
proposed a direct role of LDHA for lactate generation and the
subsequent inhibition of tumor surveillance by T and NK cells
(75). Mouse melanomas with reduced H+ and lactate generation
(upon LDHAgenetic knockdown) actually exhibit a lower growth
rate than control tumors and show an increased infiltration of
IFNγ-producing T and NK cells (75). Importantly, this effect
was lost when LDHA-knockdown tumors were grown either
in immunodeficient Rag2−/−γ c−/− mice or in Ifng−/− mice.
Another study has revealed that phosphoenolpyruvate (PEP),
a glycolytic intermediate, can act as a metabolic checkpoint
to sense glucose availability and modulate a Ca2+-NFAT
signaling, such that a decrease of PEP intracellular concentration
triggers a T cell anergy (76). A recent study also reported
that extracellular acidification, within melanoma tumors, can

be sensed by tumor-associated macrophages (TAMs), resulting
in macrophage polarization and promotion of tumor growth
(77). Mechanistically, a macrophage G-protein-coupled receptor
(GCPR) can sense tumor acidification and leads to expression,
by macrophages, of the inducible cyclic AMP early repressor
(ICER), a transcriptional repressor that mediates the functional
polarization into TAMs, which support tumor growth (77).
Neutralization of tumor acidity with sodium bicarbonate (78), or
with proton pump inhibitors (79) helps to improve the response
to antitumor immunotherapy by restoring T cell cytolytic
activity and cytokine secretion together with an increased tumor
lymphocyte infiltration in mouse models but also in human
cancer patients.

Tumor Acidosis and Metabolic Rewiring
Current controversy about the metabolic characteristics of
CSC, described as either strictly glycolytic (80, 81) or instead
dependent on mitochondrial metabolism (82, 83) may simply
reflect their adaptability upon microenvironmental fluctuations.
Here below, we will strictly focus on the current understanding
of the influence of a low pH on cancer cell metabolism in an
attempt to delineate the anticipated interplay between stemness
and metabolism in the acidic TME niche.

Indeed, while cancer cells can use a variety of substrates
to fulfill their need in energy and/or biosynthetic precursors
(84, 85), we have recently documented, by using tumor cell
lines chronically adapted to acidosis, a metabolic shift toward

Frontiers in Oncology | www.frontiersin.org 5 March 2019 | Volume 9 | Article 159

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Vander Linden and Corbet Acidosis and Cancer Stem Cells

a preferential use of glutamine to the detriment of glucose
utilization (32). HIF2α was found to drive glutamine metabolism
by increasing expression of the glutamine transporter ASC-like
Na+-dependent neutral amino acid transporter 2 (ASCT2) and
glutaminase 1 (GLS1) (32). On the contrary, HIF1α activity
and expression are reduced under chronic acidosis, thereby
decreasing the expression of several target genes, including the
glucose transporter GLUT1 and themonocarboxylate transporter
4 (MCT4) (32). Another study has also reported that several
breast cancer cell lines, exposed to acute acidic conditions (24 h),
show an increased glutaminolysis and redirection of glucose
toward the oxidative branch of the pentose phosphate pathway
(PPP), via a p53-dependent induction of glucose-6-phosphate
dehydrogenase (G6PD), and glutaminase GLS2 expression (56).
These metabolic changes certainly support an antioxidant
response of acidosis-exposed cancer cells by increasing NADPH
production and may have yet a broader impact considering
how glycolysis inhibition may lead to various defects in protein
glycosylation (86).

Besides changes in glutamine and glucose metabolism, tumor
acidosis has also been related to profound alterations in
lipid metabolism (Figure 5). Indeed, acidosis-induced reductive
carboxylation of glutamine-derived α-ketoglutarate was reported
as a source of acetyl-CoA from citrate to neo-synthesize
fatty acids (36). Acetate was identified as another source of
acetyl-CoA for fatty acid synthesis, under acidic conditions,
in response to activation of sterol regulatory element-binding
protein 2 (SREBP2) and subsequent upregulation of acyl-
CoA synthetase short-chain family member 2 (ACSS2) (87).
Importantly, fatty acid oxidation (FAO) is also stimulated
in acidosis-exposed cancer cells (36, 56). This apparent
juxtaposition of mitochondrial FA catabolism and cytosolic FA
synthesis is rendered possible through a sirtuin-mediated histone
deacetylation of the ACACB gene, encoding the mitochondrion-
associated acetyl-CoA carboxylase 2 (ACC2) enzyme that
normally prevents the degradation of neo-synthesized fatty acids
in healthy tissues (Figure 5) (36).

Mild acidosis can also change mitochondrial morphology to
preserve efficient ATP production regardless of O2 levels (88);
these data are supportive of the concept of an acidic niche that
shapes cancer cells toward an OXPHOS-dependent metabolic
phenotype. Interestingly, compelling evidence indicates that
cancer stem-like cells, including therapy-resistant tumor cells,
mostly rely on mitochondrial respiration and OXPHOS for
growth (82, 83, 89, 90). Moreover, a recent study reported the
isolation and characterization of a new distinct subpopulation of
proliferating CSC, called “energetic” CSC, showing a significantly
increased oxidative metabolism and mitochondrial mass, as well
as a strict reliance on OXPHOS when grown in 3D anchorage-
independent conditions (91). All these studies position an
elevated mitochondrial metabolism as an important phenotypic
adaptation for cancer stem-like cells and expand on the
anticancer potential of mitochondrial biogenesis inhibitors, such
as doxycycline or tigecycline (92).

More precisely, the role of FA metabolism, together with
the concept of an adipose tissue niche, has been reported to
support tumor growth and resistance to chemotherapy (18, 93,

94). Indeed, some investigators have documented that cancer
cells transiently exposed to low pH conditions may accumulate
neutral lipids into lipid droplets (LD) (95, 96). More recently,
Menard et al. (97) reported that acute exposure of cancer cells
to acidosis increases the uptake of lipoproteins, in a heparan
sulfate proteoglycan (HSPG)-dependent manner, which are then
accumulated into LD. This LD-loaded phenotype is associated
with enhanced spheroid-forming capacity in vitro and metastatic
potential in vivo; pharmacological or genetic targeting of HSPG
could fully reverse these effects (97). This acidosis-induced
LD-loaded phenotype is reminiscent of the accumulation of
neutral lipids observed in colorectal CSC populations (Figure 5)
(98–100). High levels of LD were actually found as a distinctive
mark of CSC in colorectal cancer, as revealed by label-free Raman
spectroscopy, and they correlated with CSC markers such as
CD133 and Wnt pathway activity (98). Finally, an elegant study
revealed that increased lipid desaturation, via the activity of
the stearoyl-CoA desaturase 1 (SCD1) enzyme, is essential to
stem-like characteristics in ovarian cancer cells (94). Indeed, the
authors have shown that ovarian CSC (ALDH+/CD133+) have a
higher ratio of unsaturated to saturated fatty acids, and this ratio
is essential for the cells to retain stemness. Further investigations
are however needed to address whether acidic conditions in the
TME also induce similar changes of the lipid profile in cancer
(stem) cells.

Acidosis-Based Therapeutic Strategies to
Tackle CSC Compartment
Therapeutic Strategies to Directly Manipulate/Exploit

Extracellular pH
Utilization of systemic buffers, such as sodium bicarbonate,
imidazoles and lysine, was proposed several years ago as an
obvious strategy to directly neutralize the tumor-derived acid
and hamper tumor cell aggressiveness (101–106). Importantly,
all these studies actually showed that oral administration of
such buffers reduces the metastatic dissemination of cancer
cells in animal models without affecting primary tumor growth.
Many groups have already documented that acidosis could
facilitate migration/invasion of cancer cells in vitro as well as
metastasis formation in vivo via the activation of proteases
(101, 107, 108), the secretion of pro-angiogenic factors (109) or
the promotion of an EMT-like phenotype (110, 111). Further
investigations are however needed to address whether interfering
with tumor acidification is directly correlated with a decrease
in stem-like cell population. As stated above, several studies
have shown that buffer therapy (51) can restore the sensitivity
of cancer cells to chemotherapeutic drugs, such as doxorubicin.
There is however no direct evidence for a straightforward
modulation of acidosis-induced cancer cell phenotype (vs.
changes of the physico-chemical properties of the drug) by
systemic buffer administration.

Because of their relative small proportion into the tumor
bulk and their phenotypic features strongly associated with the
local microenvironment peculiarities, CSCs are indeed inherently
difficult to isolate and to maintain in culture, making almost
unfeasible a direct CSC-selective screening of small molecules.
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FIGURE 5 | Fatty acid metabolism dysregulation as a phenotypic feature of cancer cells under acidic conditions. Tumor cells, exposed to low pH conditions, exhibit

profound alterations in lipid metabolism, with a concomitance of fatty acid oxidation (FAO) in mitochondria and synthesis from glutamine (FAS) in the cytoplasm

rendered possible through a sirtuin 1 and 6 (SIRT1/6)-mediated downregulation of the acetyl-CoA carboxylase 2 (ACC2). Saturated fatty acids (SFA) can be actively

transformed by stearoyl-CoA desaturase enzyme (SCD) into mono-unsaturated FA (MUFA), and then into triglycerides. Acidosis-exposed tumor cells also increase

lipoprotein uptake in a heparan sulfate proteoglycan (HSPG)-dependent manner. Increased accumulation of neutral lipids (i.e., triglycerides or LDL particle-derived

cholesteryl esters) into lipid droplets is observed in cancer cells under acidic pH conditions. Ac, acetyl group; ACSL1, long-chain fatty acid CoA ligase 1; ASCT2,

alanine serine cysteine-preferring transporter 2; CD36, cluster of differentiation 36; CPT1, carnitine palmitoyl transferase 1; GLS1, glutaminase 1; IDH1, isocitrate

dehydrogenase 1; LDL, low-density lipoprotein.

This obstacle has prompted the artificial induction of EMT
to produce cells displaying CSC-like characteristics suitable for
high-throughput phenotypic screening (112–114). Salinomycin,
an ionophore antibiotic, was identified as a selective agent
against experimentally-induced CSCs (113, 115). Interestingly,
salinomycin-induced cytotoxic effects were enhanced under
conditions of transient and chronic acidosis, with in particular
an inhibition of autophagic flux in breast CSC-like cells (116).

Tumor acidosis can also be exploited in order to selectively
deliver anti-cancer drugs (117). Over the years, a variety of pH-
sensitive nano-systems, such as peptides, micelles, liposomes,
nanoparticles and polymersomes, have been synthesized, as
extensively reviewed elsewhere (118–120). Nevertheless, only
few studies have reported the use of such nano-scale carriers,
responding to an acidic pH, for the selective targeting of
CSC. A pH-responsive prodrug (PEG-modified doxorubicin)
has for instance been co-delivered with SN38, an active
metabolite of irinotecan, to eradicate both breast CSC and
non-CSC populations (121). Such stable nanomedicine with
pH sensitivity enhances drug accumulation at the tumor site,

thereby leading to a potent tumor growth inhibition, while
reducing chemotherapy-induced adverse effects (121). Finally,
pH low-insertion peptides (pHLIP) have recently emerged as
new modalities for tumor-specific drug delivery, but also for
tumor imaging (122). These water-soluble membrane peptides
undergo pH-dependent folding that triggers insertion across the
cell membrane (123, 124). A pHLIP can directly translocate
cargo molecules (attached to its C-terminal tail) through cell
membranes without binding to cell surface receptors or pore
formation. Although systemic administration of pHLIP has
been used for the translocation of a variety of molecules,
including chemotherapeutic drugs such as paclitaxel and
doxorubicin (125, 126), antimicrobial peptides (127), polar
membrane-impermeable peptides (e.g., phalloidin and other
toxins) (128, 129) and peptide nucleic acid antimiRs (130),
none study has investigated a specific targeting of CSC-like
tumor cells with pHLIP-conjugated anti-cancer drugs. pHLIP
grafted with agents known to interfere with CSC phenotypic
features could be particularly suited to selectively kill this small
cell subpopulation.
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Therapeutic Targets and Modalities to Exploit

Acidosis-Induced Phenotypic Alterations
As stated above, tumor acidosis induces several CSC-like
phenotypic features that could be directly targeted for
a therapeutic purpose. Among them, acidosis-mediated
metabolic rewiring has a huge potential to be genetically or
pharmacologically targeted since many enzymes/transporters
that sustain cancer cell growth under low pH conditions
are known (see above). Indeed, systemic administration of
chitosan-based nanoparticles loaded with siRNA targeting two
key transporters of energy fuels for acidosis-adapted cancer cells,
namely the lactate/acetate transporter MCT1 and the glutamine
transporter ASCT2, could lead to significant in vivo antitumor
effects (131). Moreover, in vitro and in vivo experiments revealed
that acidosis accounts for a net increase in tumor sensitivity to
BPTES, an inhibitor glutaminase GLS1 (32).

Dysregulated fatty acid metabolism is another critical
determinant of acidosis-adapted cancer cell growth, with the
simultaneous occurrence of FAO and FAS pathways. Inhibition
of mitochondrial transport of acyl-CoA, via the blockade of
carnitine palmitoyltransferase 1 (CPT1) activity with etomoxir,
showed a selective growth inhibitory effect in acidosis-adapted
cancer cells (36). This is in adequation with the important
role of FAO to support tumor proliferation and survival in a
wide panel of tumors, including triple-negative breast cancer,
glioma, leukemia, and colon (132). It is noteworthy that some
compounds of interest, able to interfere with FAO, are currently
under clinical development or already in use (perhexiline,
trimetazidine, ranolazine) for the treatment of cardiovascular
diseases; the anticancer potential of these molecules could
therefore be rapidly evaluated in clinical trials.

Finally, acidosis-induced (epi)genetic reprogramming is
another feature that might be targeted to eradicate stem-like
cancer cells. Dual inhibition of SIRT1/6, with EX-527 compound,
could for instance trigger selective growth inhibition of acidosis-
adapted cancer cells (32). This effect was indeed associated with
the re-expression of ACC2 enzyme that prevents the concomitant
occurrence of FA oxidation and synthesis in acidosis-adapted
cancer cells (36). Another study documented that human
osteosarcoma cells were more sensitive to the inhibitor of histone
deacetylases MC 1742 under acidosis than under neutral pH
(47). Of note, this compound was reported by others to suppress
proliferation and induce apoptosis of CSC in the same cancer
type (133). In view of the central role of HIF-2α signaling
under acidosis (see above), the use of recently developed HIF2α-
selective inhibitors, PT2399 and PT2385 (134, 135), also appears
as a promising therapeutic approach to selectively kill cancer
(stem) cells exposed to acidic conditions.

CONCLUDING REMARKS

Frequent occurrence of tumor relapse is a major limitation for
the cure of many patients, and that despite major improvements
in prevention, diagnosis, and treatments. It is now acknowledged
that local microenvironmental conditions select stem-like cancer
cell phenotypes that dictate therapy resistance and re-initiation

of the disease at the primary site but also into distant organs
after metastatic dissemination. Recent findings reviewed here
point to acidosis as one of the major selection barriers in the
TME forcing the outgrowth of adaptive fitter phenotypes, when
therapy is applied. While hypoxia has been reported as a CSC-
permissive niche for many years, effects of acidosis by itself
on CSC-related features were investigated more recently, upon
the compelling evidence that oxygen and pH gradients were
not perfectly overlapping in tumors. The reliance of CSC on
the acidic niche is mediated by several mechanisms, including
gene reprogramming, metabolic rewiring, apoptosis evasion and
immune surveillance escape. Because a low pHe is a common
feature of most solid tumors (vs. healthy tissues), there is an
obvious interest to identify new therapeutic modalities that
aim to take advantage of acidosis to selectively deliver anti-
cancer drugs into tumors and eradicate resistance-sustaining cell
populations such as CSC.

Since environment-mediated phenotype of cancer (stem) cells
evolves de facto with time and tumor development, relevant pre-
clinical, experimentally tractable, models as well as innovative
approaches are needed to explore the intimate relationship
between TME (in particular acidosis), cancer cell phenotypic
adaptations (e.g., metabolic preferences) and drug response.
Indeed, despite the strong evidence supporting the CSCmodel in
a variety of cancers, it is critical to acknowledge major limitations
associated with the poor reliability of CSC identification based on
cell-surface markers expression and the lack of direct evidence
about their in vivo existence. Future challenges to tackle the
contribution of CSC in tumor relapse and to evaluate their
clinical significance during drug resistance, minimal residual
disease and metastatic dissemination rely therefore on the
capacity to better integrate and exploit the microenvironment-
driven phenotypic changes (e.g., dormant, mesenchymal-like
state), including specific metabolic alterations (e.g., dysregulated
FAmetabolism, OXPHOS dependence) in order to propose novel
CSC-targeting therapeutic modalities.
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