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Background: There is a growing demand for total joint arthroplasty (TJA) surgery. The applications of
machine learning (ML), mathematical optimization, and computer simulation have the potential to
improve efficiency of TJA care delivery through outcome prediction and surgical scheduling optimization,
easing the burden on health-care systems. The purpose of this study was to evaluate strategies using
advances in analytics and computational modeling that may improve planning and the overall efficiency
of TJA care.
Methods: A systematic review including MEDLINE, Embase, and IEEE Xplore databases was completed
from inception to October 3, 2022, for identification of studies generating ML models for TJA length of
stay, duration of surgery, and hospital readmission prediction. A scoping review of optimization stra-
tegies in elective surgical scheduling was also conducted.
Results: Twenty studies were included for evaluating ML predictions and 17 in the scoping review of
scheduling optimization. Among studies generating linear or logistic control models alongside ML
models, only 1 found a control model to outperform its ML counterpart. Furthermore, neural networks
performed superior to or at the same level as conventional ML models in all but 1 study. Implementation
of mathematical and simulation strategies improved the optimization efficiency when compared to
traditional scheduling methods at the operational level.
Conclusions: High-performing predictive ML-based models have been developed for TJA, as have
mathematical strategies for elective surgical scheduling optimization. By leveraging artificial intelligence
for outcome prediction and surgical optimization, there exist greater opportunities for improved
resource utilization and cost-savings in TJA than when using traditional modeling and scheduling
methods.
© 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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Introduction

Total joint arthroplasty (TJA) procedures, including total knee
arthroplasty (TKA) and total hip arthroplasty (THA), are the most
commonly performed surgical procedures in North America [1e3].
Given their success in restoring function and improving quality of
life, combined with an aging population and increasing demand,
sociation of Hip and Knee Surgeons. This is an open access article under the CC BY-
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the rate at which TJA procedures are performed will continue to
rise [4,5]. By 2030, the number of TKAs and THAs performed
annually in the United States are projected to reach over 1.26
million and 635,000, respectively [6]. With an average cost of
$16,000 to $60,000 USD, the financial burden of these procedures
will place significant strain on health-care institutions [7,8].

In order to keep up with the growing demand for TJA proced-
ures, significant investments must bemade in strategies to improve
the efficiency and cost-effectiveness of care [9]. The growing vol-
ume of patient data combined with the utilization of new tech-
nologies such as artificial intelligence (AI) provides opportunities to
improve the delivery of care in orthopaedic surgery [9e12]. In
particular, machine learning (ML), a subset of AI, has caught the
attention of orthopaedic surgeons and health-care institutions due
to its potential for generating accurate patient-specific predictive
models by recognizing linear and nonlinear relationships from
large data sources [13e16]. Deep learning (DL) models, typically in
the form of neural networks, are a subset of ML models theoreti-
cally capable of generating highly accurate predictions when
trained with appropriate and sufficient data (Fig. 1a). Using con-
ventional ML and DL models, perioperative outcomes associated
with increased costs can be anticipated, and measures can be taken
to minimize their burden. Such outcomes include length of stay
(LOS), duration of surgery (DOS), and unplanned hospital read-
missions [17e20]. Following the generation of accurate predictions,
in order to implement or realize any predicted gains, optimization
of available resources must also be performed. The optimization of
surgical schedules is typically considered a nondeterministic
polynomial time-hard problem, with various optimization strate-
gies available (Fig. 1b) [17]. Applying the principles of operations
research in health care is facilitated by advances and wider-spread
availability of high-performance computing and growing amounts
of curated digital data.

Numerous studies have recently emerged assessing the ability of
ML models to predict perioperative resource-utilization-related
outcomes surrounding TJA; however, the success of different al-
gorithms, data sets, and comparison to traditional statistical
methods have not been systematically evaluated. Furthermore, the
theoretical optimization of elective surgical scheduling across sur-
gical specialties has been heavily investigated in the engineering
literature. However, many of these principles have not been
translated into the orthopaedic literature to guide surgeons and key
stakeholders as they evaluate and implement these methods of
efficiency optimization in real-life situations. The purpose of this
study was to systematically evaluate the literature investigating the
impact of ML and optimization strategies on the planning, sched-
uling, and overall efficiency of TJA care.

Material and methods

This systematic review was registered in the National Institute
for Health Research PROSPERO (International Prospective Register
of Systematic Reviews) database (ID #: CRD42022377977). The
review process was conducted according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) 2020
guidelines [18].

Search strategy

The MEDLINE, Embase, and IEEE Xplore databases were
searched using the following combination of search terms: ((ma-
chine learning) OR (artificial intelligence) OR (deep learning) ORML
OR AI OR prediction OR (neural network) OR (branch and cut) OR
(Monte*Carlo) OR simulation OR heuristic OR stochastic OR (ant
colony) OR (meta*heuristics) OR optimization OR (operations
research)) AND (scheduling OR planning OR theatre OR theater OR
(patient admission scheduling) OR (length of* stay) OR (duration of
surgery) OR (surg* time) OR (surgical duration) OR (operative time)
OR (operating time) OR (outpatient) OR DOS OR LOS) AND (TKA OR
THA OR TKR OR THR OR (total knee arthroplasty) OR (total hip
arthroplasty) OR (total knee replacement) OR (total hip replace-
ment) OR (joint replacement) OR (joint arthroplasty)). All studies
from inception to October 4, 2022, were retrieved, and duplicate
manuscripts removed. Manual searching of the reference lists of
included studies was also conducted.

Inclusion and exclusion criteria

Abstract and title screening of search results was performed by 3
independent reviewers (B.E., J.R.L., and R.K.). Full texts were
screened for study inclusion according to the inclusion and exclu-
sion criteria by all 3 reviewers. Conflicts were resolved by
consensus among all reviewers throughout the screening process.
Relevant data were extracted and recorded on a predetermined
data-collection form by 2 independent reviewers (B.E. and R.K.).
Studies of all languages were included and translated into English
as required. Abstracts and reviews were excluded.

Artificial intelligence prediction
This section of the reviewwas performed systematically. Studies

were included if they used any type of ML model to predict 1 of 3
outcomes following TJA; LOS, DOS, or postoperative readmission.
Studies evaluating patients undergoing primary or revision TKA,
THA, partial knee arthroplasty, or hip resurfacing were included.
Studies were not excluded based on varying definitions of DOS,
namely whether it was total patient time in the room, surgical time,
or included room turnover. No studies were excluded based on data
set size or type.

Mathematical optimization
Due to the size, complexity, and depth of the existing literature,

many of the concepts and articles were beyond the scope of this
review. Therefore, this section of the review was performed in the
form of a narrative review. Studies were included if they used
computational modeling or mathematical optimization in an
attempt to improve the efficiency of elective surgical scheduling.
These articles were recorded regardless of surgery specialty as
operations research for health care is traditionally specialty-
agnostic and aims to optimize the schedule of the entire institu-
tion; however, these strategies can be applied to any elective
surgery scheduling problem.

Data extraction

Artificial intelligence prediction
General study data collected included first author name, publi-

cation year and country, data source, and procedure. Model data
were collected for control and ML models, where control models
were considered those using average times, multivariable linear or
logistic regression. ML models were considered as any algorithms
having undergone training without explicit manual programming.
Model data collected included outcome(s) of interest (LOS, DOS,
and hospital readmission), algorithm type(s), total population size,
training size, validation size and method, testing size, input fea-
tures, and feature importance. For articles generating multiple
models, the most important features from the best-performing
model were recorded. Metrics for scoring model performance
were collected. For the purpose of model comparison, mean
squared error (MSE) was used as the gold standard for regression-
type models, followed by root MSE, and mean absolute error; area



Figure 1. Diagrammatic representation of (a) neural network models, demonstrating the transformation of a combination of input features in hidden layers to yield outcome
predictions, and (b) types of optimization strategies. ASA, American Society of Anesthesiologists; BMI, body mass index.
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under the curve (AUC) was used as the gold standard for
classification-type models, followed by accuracy, and F1 score.

Mathematical optimization
Collected data included the study optimization problem goal,

overall strategy, and the main findings. Surgical scheduling is typi-
cally broken down into 3 levels with corresponding definitions: (1)
strategic level, planning and operating room (OR) allocation to
specialties/surgeons over the period of a year or longer; (2) tactical
level, cyclic regular seasonal or weekly OR schedules; and (3) oper-
ational level, scheduling cases by date, time, and specific resources
required. The decision level at which the optimization problemwas
targeted to solve was recorded. The optimization strategy was
categorized into the use of a heuristic algorithm, stochastic algo-
rithm, integer programming, or simulations (including Markov de-
cision process) to find the optimized scheduling solution (Table 1).
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Results

Search results and study characteristics

Following removal of duplicates, the search revealed a total of
1753 unique articles via MEDLINE, Embase, and IEEE Xplore data-
bases (Fig. 2). Upon abstract and title screening, 1715 articles were
excluded. Eighteen additional articles were excluded following full-
text review, leaving 25 eligible articles for inclusion [19e43]. An
additional 12 articles were retrieved via manual searching of ref-
erences and included in the scoping review of mathematical opti-
mization [44e55].
Study characteristics

Across the 20 included studies reporting results of AI models, 16
developed predictive models for LOS, 3 for DOS, and 2 for 90-day
hospital readmission (Table 2). Models were built using various data
sources, ranging from single institutional data sets to national (ie, the
New York State Department of Health’s Statewide Planning and
Research Cooperative System [SPARCS], National Inpatient Sample
[NIS], and Orthopedic Minimal Data Set Episode of Care [OrthoMiDaS
OME]databases) andmultinationaldatabases (ie, theAmericanCollege
of Surgeons National Surgical Quality Improvement Program [NSQIP]
database), with data set sizes ranging from 525 to 424,443 patients
(Table 2). Despite the variability in data sets, there was significant
similarity in the features used to generate the models. The 10 most
frequently utilized input features for model development were age
(100%), gender/sex (100%), body mass index/obesity (70%), ethnicity/
race (60%), diabetes (55%), hypertension (50%), anaesthetic type (45%),
smoking status (45%), cardiovascular disease (45%), and American So-
cietyofAnesthesiologists score (45%) (SupplementaryTableS1). Fifteen
different types of ML algorithms were developed (Supplementary
Table S2). These included Bayesian, K-nearest neighbor, support vec-
tor machine, stochastic gradient descent, random forest classifier, de-
cision tree, gradient boosted decision tree, XGBoost, AdaBoost,
CatBoost, RUSBoost, ridge regression, lasso regression, elastic net
regression, and artificial neural network (ANN) models. Ten of the 20
studies (50.0%) compared the developedMLmodels to controlmodels,
Table 1
Categories of optimization strategies and their associated benefits and limitations.

Optimization strategy Definition

Heuristic algorithms Specific rules-based functions to provide an
approximate solution

Stochastic algorithms Optimization that uses random inputs, random
objective functions, or random constraints

Integer programming Mathematical optimization to solve problems,
can be linear or mixed (if some variables are not
integers). Overarching term including exact
algorithm solutions and heuristic and stochastic
algorithms

Monte Carlo simulation Use of random sampling with a range of
assigned probabilities to model or find best
outcome from systems with uncertainty (such
as scheduling)

Discrete-event simulation Used to model systems over time. Systems are
broken down into a sequence of steps where
entities compete for limited resources and can
develop queues

Markov decision process Mathematical framework for modeling
decision-making, combining random inputs
with chosen inputs
including mean regressor, multivariate linear regression, and logistic
regression models (Supplementary Table S2).

Length of stay

Six studies developed predictive models for THA LOS, 9 for TKA
LOS, and 1 for revision TKA LOS [19e21,24e28,31e33,35e37,56].
One study generated a combined model for TKA and THA LOS [38].
The average number of input features was 16.7 (range: 8 to 29)
(Table 3). Among those studies reporting AUC values, model per-
formance ranged from 0.64 to 0.87. The best-performing model for
THA LOS prediction was the Bayesian model generated by Ram-
kumar et al. using 8 input features, with an AUC of 0.87 [22]. For
TKA LOS, the ANN developed by Ramkumar et al. using 15 input
features yielded the highest reported AUC of 0.83 [20]. The ANN
developed by Klemt et al. using 26 input features for the prediction
of revision TKA LOS had an AUC of 0.87, outperforming the support
vector machine and elastic net regression models developed with
the same data [31]. Within no single study did a control model
outperform its equivalent ML model in the prediction of LOS.

Among studies that generated ANNs and conventional MLmodels,
only 1 found a conventional ML model to outperform its neural
network counterpart: The random forest classifiermodel generated by
Han et al. using 27 input features for the prediction of LOS showed
significantly superior performance to their ANN (Table 3) [26]. Using a
decision curve, this model was also found to yield superior clinical
usefulness when compared to the ANN model [45]. All other studies
demonstrated ANNmodels performed superior to or at the same level
as their conventional ML counterparts (including k-nearest neighbor,
support vector machine, stochastic gradient descent, random forest
classifier, XGBoost, etc.) [25,29,33,35].

Duration of surgery

Three studies developed ML models for the prediction of DOS,
all of which were for TKA [30,33,34]. The CatBoost model of
Motesharei et al. demonstrated an R2 value of 0.76, outperforming
their control multivariate linear regression model with an R2 value
of 0.71, as well as the random forest classifier and gradient-boosted
Benefits Limitations

Less computational resources
and time to solve

Solution may not be optimal or complete

Accommodates for imprecise
measurements in data,
estimates the average model
performance

Random elements prevent problem from
finding optimal solution

Used to find optimal
optimization problem solutions

Searching for optimal solutions may require
high computational power, and random
inputs after solution implementation may
differ from optimal solution

To solve mathematical
problems too complicated to
solve analytically

Requires many samples for good
approximation, high computational power
requirement

Evaluate the impact of changes
in practice prior to
implementation

Complex decision-making processes and
real-world constraints can be hard to
model, require significant amount of data

Evaluate the impact of changes
in practice prior to
implementation, less
computational power required
than other simulations

Complex decision-making processes and
real-world constraints can be hard to
model, require significant amount of data



Figure 2. PRISMA flow diagram of the search strategy.

Table 2
Characteristics of the included predictive modeling studies.

Study, year Country Procedure Total patients Data source Outcome(s) of interest Number of input features

Navarro et al., 2018 USA, UK TKA 141,446 SPARCS LOS 8
Ramkumar et al., 2019 USA, UK TKA 170,766 NIS, OrthoMiDaS OME LOS 15
Ramkumar et al., 2019 USA, UK THA 79,226 NIS, OrthoMiDaS OME LOS 15
Ramkumar et al., 2019 USA, UK THA 122,334 SPARCS LOS 8
Lee et al., 2019 USA Both 525 Local (USA) 90-d readmission 33
Gabriel et al., 2019 USA THA 960 Local (USA) LOS 9
Wei et al., 2021 USA TKA 25,115 NSQIP LOS 11
Han et al., 2021 China TKA 1298 Local (China) LOS 27
Kugelman et al., 2021 USA THA 1409 Local (USA) LOS 15
Yeo et al., 2022 USA TKA 10,021 Local (USA) DOS 15
Klemt et al., 2022 USA rTKA 2588 Local (USA) LOS 26
Lopez et al., 2022 USA Both 424,443 NSQIP LOS 20
Abbas et al., 2022 Canada TKA 302,300 NSQIP LOS, DOS 29
Motesharei et al., 2022 France TKA 1061 Local (USA) DOS 17
Zalikha et al., 2022 USA TKA 305,577 NIS LOS 15
Johannesdottir et al., 2022 Denmark Both 9512 Local (Denmark) LOS 22
Klemt et al., 2022 USA TKA 10,021 Local (USA) 90-d readmission 24
Li et al., 2022 China TKA 1590 Local (Singapore) LOS 14
Kugelman et al., 2022 USA TKA 899 Local (USA) LOS 15
Trunfio et al., 2022 Italy THA 2515 Local (Italy) LOS 15

NIS, National Inpatient Sample; NSQIP, National Surgical Quality Improvement Program; OrthoMiDaS OME, Orthopedic Minimal Data Set Episode of Care; rTKA, revision total
knee arthroplasty; SPARCS, New York State Department of Health’s Statewide Planning and Research Cooperative System.
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Table 3
Metrics describing the performance of the best-performing machine learning and control algorithms of the included studies.

Stud, year Procedure Outcome Training
size

Validation
size

Testing
size

Best control algorithm Control metric,
value

Best ML algorithm ML metric,
value

Navarro et al., 2018 TKA LOS 106,085 - 35,361 - - Bayesian AUC, 0.78
Ramkumar et al., 2019 TKA LOS 150,074 16,675 4017 - - ANN AUC, 0.83
Ramkumar et al., 2019 THA LOS 68,810 7645 2771 - - ANN AUC, 0.80
Ramkumar et al., 2019 THA LOS 91,751 - 30,583 - - Bayesian AUC, 0.87
Lee et al., 2019 Both 90-d

readmission
473 52 - Logistic regression Accuracy, 0.93 RUSBoost Accuracy, 0.87

Gabriel et al., 2019 THA LOS 644 316 - Logistic regression AUC, 0.75 Ridge regression AUC, 0.76
Wei et al., 2021 TKA LOS 15,069 - 10,046 Logistic regression AUC, 0.80 ANN AUC, 0.80
Han et al., 2021 TKA LOS 1038 260 - Logistic regression AUC, 0.70 RFC AUC, 0.77
Kugelman et al., 2021 THA LOS 902 225 282 - - XGBoost AUC, 0.82
Yeo et al., 2022 TKA DOS 6413 1603 2005 - - ANN AUC, 0.82
Klemt et al., 2022 rTKA LOS 1656 414 518 - - ANN AUC, 0.87
Lopez et al., 2022 TKA LOS 216,960 - 54,420 - - ANN AUC, 0.80

THA LOS 122,442 - 30,611 - - ANN AUC, 0.81
Abbas et al., 2022 TKA DOS 182,000 57,841 62,459 Linear regression MSE, 0.99 ANN MSE, 0.89

TKA LOS 182,000 57,841 62,459 Linear regression MSE, 0.79 ANN MSE, 0.69
Motesharei et al., 2022 TKA DOS 708 177 176 Linear regression R2, 0.71 CatBoost R2, 0.76
Zalikha et al., 2022 TKA LOS 195,556 48,906 61,115 - - SVM AUC, 0.68
Johannesdottir et al., 2022 Both LOS 8561 951 - Logistic regression AUC, 0.70 RFC AUC, 0.71
Klemt et al., 2022 TKA 90-day

readmission
6413 1603 2005 Logistic regression - ANN AUC, 0.85

Li et al., 2022 TKA LOS - - - Logistic regression AUC, 0.64 XGBoost AUC, 0.74
Kugelman et al., 2022 TKA LOS 575 144 180 - - XGBoost AUC, 0.69
Trunfio et al., 2022 THA LOS 2012 - 503 Linear regression RMSE, 3.84 GBDT RMSE, 3.84

GBDT, gradient-boosted decision tree; rTKA, revision total hip arthroplasty; R2, coefficient of determination; RFC, random forest classifier; RMSE, rootmean square error; SVM,
support vector machines.
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decision tree models generated in this study (Table 3) [34]. Simi-
larly, the ANN developed by Abbas et al. demonstrated a MSE of
0.89, outperforming their control multivariate linear regression
model with an MSE of 0.99, as well as every other ML model
(Bayesian, K-nearest neighbor, stochastic gradient descent, random
forest classifier, decision tree, XGBoost, AdaBoost, and elastic net
regression) [33]. Finally, with an AUC value of 0.82, the ANN model
of Yeo et al. yielded the best performance when compared to their
k-nearest neighbor and random forest classifier models [30].

Hospital readmission

Two studies developed ML models for the prediction of hospital
readmissions [23,29]. In addition to a control logistic regression
model, Klemt et al. developed K-nearest neighbor, support vector
machine, elastic net regression, and ANN models for the prediction
of 90-day readmissions following TKA using 24 input variables
(Supplementary Table S2) [29]. The ANN was the best-performing
model, with an associated AUC of 0.85 (Table 3). Using 33 input
variables, Lee et al. developed a RUSBoost model for the prediction
of 90-day readmissions following both TKA and THA [23]. This
model demonstrated an accuracy of 87%, compared to an accuracy
of 93% produced by the control logistic regression model. The recall
rate of this control model, however, was significantly lower than
that of the ML model, thus resulting in the ML model yielding an
overall more reliable output.

Optimization

There has been a wide variety of optimization goals for the
scheduling problems ranging from maximizing overall OR utiliza-
tion to optimizing all processes of OR, recovery, and ward bed
utilization (Table 4). Few studies have been conducted specifically
targeting schedule optimization at the tactical level [39,43,46,49].
Adan et al. and Cardoen et al. utilized mixed integer programming
to generate an optimized assignment of weekly OR schedules to
maximize hospital bed capacity [39,46]. Adan et al. also used
stochastic LOS times from a distribution of surgical groupings to
improve the model by accounting for random variation [46].

Compared to using heuristic, or rules-based, optimization stra-
tegies alone, accounting for uncertain DOS times with the combi-
nation of stochastics rather than using an average time was found
to significantly improve model performance [42,44]. However,
other strategies such as tight clustering of surgeries with similar
DOS have also been proven to be effective when combined with
heuristic schedule optimization [40,45,48]. Patient and provider
characteristics can also be considered in optimization problems.
Silva et al. optimized OR utilization accounting for anaesthetist
skill, while Wang et al. optimized scheduling while accounting for
patient priority level [52,53].

Using discrete-event simulation, Lehtonen et al. identified that
using a schedule with higher granularity improved OR utilization
[40]. Similarly, Baesler et al. used discrete-event simulation to also
account for preoperative and postoperative times in addition to
DOS to optimize surgical scheduling [51]. Other simulation strate-
gies such as Monte Carlo simulation and Markov decision process
have been used to simulate the impact of different optimization
strategies and determine the ideal number of required hospital
resources from historical data prior to the implementation of
change (Table 4).

Discussion

Given the rapid projected rise in costs associated with TJA, there
exists an imminent need for the development and implementation
of novel strategies aimed at improving hospital efficiency and
optimizing resource utilization. Generally, the findings of this study
support the use of ML for prediction modelling and surgical opti-
mization in TJA. In the prediction of LOS, the ML models evaluated
in this study performed superior to or at the same level as matched
control models. With only 3 studies generating ML models for the
prediction of DOS and 2 for hospital readmissions, further research
is required to assess the performance of ML models for the pre-
diction of these outcomes in particular. Preliminary models,



Table 4
Characteristics and summary findings of the included optimization studies.

Study Decision level Schedule optimization
strategy

Optimization goal Main findings

Denton et al., 2007 Operational level Stochastic, heuristics Minimize cost Heuristic to sequence surgeons in order of
increasing DOS variance and use of stochastic
modelling to hedge against uncertain DOS times
improves OR utilization.

Hans et al., 2008 Tactical level
Operational level

Heuristics, Monte Carlo
simulation

Minimize overtime Clustering surgeries with a similar DOS and
variability leads to reduced overtime and slack
compared to base surgical plans generated by
specialists.

Adan et al., 2009 Tactical level MIP, stochastic Minimize OR, ICU and ward
bed overutilization and
underutilization

Using MIP, can generate improved master surgical
schedules by considering a stochastic LOS.

Lamiri et al., 2009 Operational level Monte Carlo
simulation, MIP,
multiple heuristics

Minimize cost and overtime Compared multiple optimization techniques.
Combination of Monte Carlo simulation and MIP
performed best and with least data.

Fei et al., 2009 Tactical level Heuristics Maximize OR utilization,
minimize cost

Using a column-generation-based heuristic, cases
are assigned to optimized ORs for the week, using
an open scheduling strategy.

Cardoen et al., 2009 Tactical level
Operational level

MIP Maximize bed utilization To determine the amount of OR time assigned to
surgeons for outpatient surgery.

Marques et al., 2012 Operational level Integer linear
programming

Maximize OR utilization Improvement in total OR utilization with reduction
in length of surgical wait lists.

Lehtonen et al., 2013 Operational level Discrete-event
simulation

Maximize OR utilization Improved DOS categorization and higher levels of
schedule granularity (30 min vs 60 min) improve
utilization.

M’Hallah et al., 2014 Operational level Discrete-event
simulation

Maximize OR utilization,
minimize overtime

Cases grouped by mean DOS and OR utilization
simulated. Recommends transfer of the last case in a
busy room to a free one, group patient waitlists, and
reduce workload by 10% or cancel last cases if
planned overtime in schedule.

Van Huele et al., 2014 Tactical level
Operational level

MIP Minimize overtime Evaluated the effect of certain surgeon constraints
(surgeon availability, number of OR days/week, and
consecutive surgeon hours and days) on
performance of elective OR schedule.

Astaraky et al., 2015 Operational level Heuristics, stochastic,
Markov decision
process

Minimize patient wait,
overtime, and ward
capacity

Improved surgical planning using combined model
with stochastics over heuristics alone. Provides
different schedules depending on hospital resource
availability.

Baesler et al., 2015 Operational level Heuristics, discrete-
event simulation

Minimize total OR time Account for surgery-grouping-specific
preoperative, postoperative, setup, and recovery
times. Combined heuristics with simulation to
search for an optimal schedule.

Silva et al., 2015 Operational level Heuristics, integer
linear programming

Maximize OR utilization Assign surgeries to maximize the OR utilization
while matching surgeries to anaesthetist skills.

Wang et al., 2015 Operational level Heuristics Optimize number of ORs
and PACU beds

Schedule patient surgeries based on priority where
fixed resources are limited. But optimizes ORs and
surgery allocation if flexibile.

Guido et al., 2017 Tactical level Heuristics Maximize number of
surgeries

Assigns available OR time to surgeons while
considering hospital objectives, surgery
characteristics.

Zhang et al., 2019 Operational level Stochastic, Markov
decision process

Minimize cost Combined Markov decision process and stochastic
optimization lowered cost, shortened wait time,
and improved OR and recovery bed utilization
compared to stochastic optimization alone.

Bai et al., 2022 Operational level Heuristic Minimize OR idle time Model can reduce total OR time while meeting
resource (personnel and hospital) constraints.
Connected stages of preop, OR, and recovery
optimization.

ICU, intensive care unit; MIP, mixed integer programming; PACU, postoperative anesthesia care unit.
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however, show promising outputs and encourage further investi-
gation. As for surgical scheduling, a majority of optimization
research for surgical scheduling has been targeted at the opera-
tional level. This is likely due to the complex and multifactorial
nature of the problem, presenting as an ideal target for optimiza-
tion compared to the distribution of yearly or weekly OR time
among specialties. Various optimization strategies have been uti-
lized to improve the efficiency of surgical scheduling, all of which
improved the outcome of interest compared to traditional manual
scheduling practices.

Potential clinical uses of these algorithms include the automa-
tion of surgical scheduling and improved utilization of hospital
resources. This may lead to a reduction in cost and increased pa-
tient throughput. Targeted education, resources, and monitoring
can be provided to those identified to be at high risk of readmission
following TJA to reduce readmission events. Custom-bundled
hospital compensation based on patient-specific predicted
resource requirements may also be developed using more accurate
models.

There exist countless variations of ML models that may be
generated for the prediction of TJA LOS, DOS, and hospital read-
missions. To avoid research waste, algorithms standing out above
others must be identified, refined, validated, and ultimately
implemented in clinical practice [57]. As a part of the fine-tuning
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process, input features may be adjusted to improve model perfor-
mance, with more heavily weighted features in top-performing
models being retained in future model iterations. In addition to
patient factors, institutional factors, including surgeon, teaching
status, geographic region, and location, as well as features derived
from medical imaging may also be considered where sufficiently
sized data sets are available. When considering the use of DL
models vs ML models, the unique advantages and disadvantages of
both must be considered. It is recognized that compared to con-
ventional ML models, neural networks have the potential to yield
superior results due to their ability to perform more sophisticated
transformations of data [14,58]. For this to hold true, ANNs must be
built using expansive data sets, requiring considerable investments
in time and computational resources [59,60]. Another potential
barrier to the utilization of ANNs is that they are less interpretable
than typical ML models [61]. This is important as methods to
evaluate these models must be developed to ensure bias (eg, based
on certain patient characteristics) does not affect access to care if
these models are to eventually be used to inform surgical
scheduling.

All attempts to optimize scheduling rely on using an average
DOS or LOS. Assumptions of DOS have a significant impact on OR
underutilization and overtime [62,63]. Despite strategies to ac-
count for this by using stochastic methods of randomly sampling
from a historical distribution, this is still a major limitation to the
current attempts at optimization. A potentially effective strategy to
improve scheduling may be to combine patient-specific ML pre-
dictions of DOS and downstream resource requirements, by pre-
dicting LOS, with optimization research.

A wide range of optimization goals were encountered in the
literature depending on the generated mathematical problem.
Most models were generated to optimize total OR utilization and
minimize overtime and/or idle time, which may be the best metric
when trying to maximize the utility of a finite resource. However,
one ideal metric cannot be defined, as the solution to each OR
optimization problem depends on the specific goals of the insti-
tution. Some hospitals may have incentive to maximize the
throughput of cases, reducing the size of surgical waitlists. Without
appropriate constraints, this could bias the optimization models to
select cases with a shorter predicted DOS and impact care for pa-
tients with more complex needs. Most research in OR optimization
has focused on a daily planning horizon. This focused the problem
on direct patient care and not at decisions made involving stake-
holders frommultiple different specialties. However, optimizing OR
utilization at a higher level, based on overall hospital resources and
demand, may be important and reveal greater room for
improvement.

This present review is not without limitations. The quality of the
included studies was not formally assessed due to the lack of a
standardized risk-of-bias assessment tool for studies generating
ML-based predictive models; however, this tool is currently under
development [64]. This can be attributed to the relatively recent
rise in popularity of ML in predictive analytics within medicine,
resulting in a paucity of defined criteria describing best practices in
model generation and evaluation. For example, it remains unclear
as to what performance metrics to report and the minimum
required sample size to train a robust model [65]. Despite there
being no formal assessment of the quality of the included studies,
many gross shortcomings are observed. First, the details of the
model-generation process, most notably, validation size and/or
method, were not described for 12 of the presented ML models.
This calls into question the veracity of the results described in these
studies [66]. Furthermore, only 2 of the 22 generated models
externally validated their models on test sets from sources unique
to those used during training and validation. Beyond the limitations
associated with the quality of the included studies, an additional
shortcoming of this present review lies in the lack of quantitative
comparison of the predictive abilities of ML models vs control
models. This is due to the variable use of metrics describing the
predictive abilities of models generated across studies. Many
studies reported AUC; however, this is a classification metric based
on varying arbitrary cutoffs (eg, LOS of <2 days or �2 days vs <3
days or �3 days), which should be avoided for continuous out-
comes [67]. Finally, synthesizing optimization research to improve
elective surgical scheduling is a challenge as unique solutions may
be required to address different goals, institutional constraints, and
data sets. As such, optimization results can only be compared to
local historical performance or within a limited context.

Conclusions

With TJA costs expected to rise rapidly in association with an
increasing demand, there exists an imminent need for the devel-
opment and implementation of novel strategies aimed at
improving hospital efficiency and optimizing resource utilization.
With increasing access to big data in addition to technological ad-
vances in AI reaching new heights, applications of ML within
medicine are becoming increasingly feasible and gaining notable
popularity. High-performing ML models have been developed for
predictive analytics in TJA, as have mathematical strategies for
surgical scheduling optimization. While there remains work to be
done in refining these tools, there exists considerable opportunities
for improved efficiency in resource utilization surrounding TJA,
especially when considering the combined utilization of predictive
modelling with optimization strategies.
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Supplementary Table S1
Fifteen most frequently used input features included among predictive modeling studies.

Study, year Input features

Age Gender/sex BMI/obesity Ethnicity/race Diabetes HTN Anesthetic Smoking CVD ASA score CCI Hb/HCT/anemia Pulmonary disease/COPD Neoplastic disease CKD/dialysis

Navarro, 2018 ✓ ✓ ✓ ✓

Ramkumar, 2019 ✓ ✓ ✓

Ramkumar, 2019 ✓ ✓ ✓

Ramkumar, 2019 ✓ ✓ ✓ ✓

Lee, 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gabriel 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wei, 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Han, 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kugelman, 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Yeo, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Klemt, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lopez, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Abbas, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Motesharei, 2022 ✓ ✓

Zalikha, 2022 ✓ ✓ ✓

Johannesdottir, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Klemt, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Li, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kugelman, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trunfio, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total Number of Studies 20 20 14 12 11 10 9 9 9 9 8 8 8 8 7

ASA, American Society of Anesthesiologists; BMI, body mass index; CCI, Charlson Comorbidity Index; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; Hb, hemoglobin;
HCT, hematocrit; HTN, hypertension.
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Supplementary Table S2
Control and machine learning algorithms generated among predictive modeling studies.

Study, year Control algorithms ML algorithms

Mean regressor Linear reg Logistic reg Bayesian KNN SVM SDG RFC DT GBDT XGB ADB CB RUSBt Ridge reg Lasso reg Elastic net reg ANN

Navarro, 2018 ✓

Ramkumar, 2019 ✓

Ramkumar, 2019 ✓

Ramkumar, 2019 ✓

Lee, 2019 ✓ ✓ ✓

Gabriel 2019 ✓ ✓ ✓ ✓

Wei, 2021 ✓ ✓

Han, 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kugelman, 2021 ✓ ✓ ✓ ✓

Yeo, 2022 ✓ ✓ ✓

Klemt, 2022 ✓ ✓ ✓

Lopez, 2022 ✓

Abbas, 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Motesharei, 2022 ✓ ✓ ✓ ✓

Zalikha, 2022 ✓ ✓ ✓ ✓

Johannesdottir, 2022 ✓ ✓ ✓ ✓

Klemt, 2022 ✓ ✓ ✓ ✓ ✓

Li, 2022 ✓ ✓

Kugelman, 2022 ✓ ✓ ✓ ✓

Trunfio, 2022 ✓ ✓ ✓ ✓

ADB, AdaBoost; BMI, body mass index; CB, CatBoost; DT, decision tree; GBDT, gradient boosted decision tree; KNN, k-nearest neighbor; RFC, random forest classifier; reg, regression; RUSB, RUSBoost SDG, stochastic gradient
descent; SVM, support vector machine; XGB, XGBoost.
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