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Intuitively one might expect independent noise to be a powerful tool for desynchronizing a population of
synchronized neurons. We here show that, intriguingly, for oscillatory neural populations with adaptive
synaptic weights governed by spike timing-dependent plasticity (STDP) the opposite is true. We found that
the mean synaptic coupling in such systems increases dynamically in response to the increase of the noise
intensity, and there is an optimal noise level, where the amount of synaptic coupling gets maximal in a
resonance-like manner as found for the stochastic or coherence resonances, although the mechanism in our
case is different. This constitutes a noise-induced self-organization of the synaptic connectivity, which
effectively counteracts the desynchronizing impact of independent noise over a wide range of the noise
intensity. Given the attempts to counteract neural synchrony underlying tinnitus with noisers and maskers,
our results may be of clinical relevance.

O
ne of the important features of interacting neurons is the ability to coordinate their firing times and
synchronize, which is essentially involved in normal brain function, ranging from sensory information
processing to cognitive and motor function1,2. Abnormal neural synchrony, on the other hand, can

significantly impair neural processes and is a hallmark of several neurological disorders3–5. Accordingly, syn-
chronization control became a focus of the research nowadays5–10. It is known that the extent of synchronization
in oscillatory networks relates to the amount of coupling among oscillators11–13. An important mechanism that
adjusts the synaptic coupling to the underlying neural activity is spike timing-dependent plasticity (STDP), where
the synaptic weights are either potentiated or depressed depending on the order of the spike times of pre- and
post-synaptic neurons14–17. This mechanism plays an important role in temporal coding of information by
spikes14,17.

Synchronized firing of neurons is characterized by narrowly distributed spike times, which, in turn, naturally
leads to a potentiation of synaptic weights in neural ensembles with STDP and a stabilization of a strongly coupled
and synchronized regime5,18. On the other hand, if synchronization is perturbed, the synaptic weights are
depressed until the oscillators get weakly coupled and thus desynchronized5,18. This phenomenon motivated
the development of stimulation methods for counteracting pathological neural synchronization. As shown in
theoretical studies, animal experiments and in a clinical proof of concept study5,18–22, desynchronizing stimulation
can lead to sustained desynchronization, pronounced normalization of effective connectivity and substantial
decrease of symptoms.

Desynchronization can effectively be achieved if the interacting oscillators with fixed coupling are stimulated
by independent noise11–13. It is thus to be expected that in neural ensembles with STDP independent noise will
cause depression of synaptic weights. Indeed, in order to observe a synaptic potentiation due to STDP, a certain
degree of correlation in the input is necessary23. We here show that independent noise delivered to the neural
population with STDP can surprisingly enhance the amount of synaptic coupling among the neurons, i.e., the
neurons counteract the desynchronizing effect of noise by reorganizing their synaptic connectivity and increasing
its strength. As a result, the extent of synchronization in a neural ensemble with STDP can be significantly larger
as compared to without STDP if both receive an independent noisy input of the same intensity. Put otherwise,
STDP leads to self-organized noise resistance. Since noise is inevitable in real systems and, hence, has an impact
on neural information processing requiring precise spike timing1,2,14,17, our findings show how STDP may be
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involved in a homeostatic mechanism preserving the existing level of
collective dynamics in the brain by neutralizing the impact of ran-
dom perturbations.

Results
We first demonstrate the discussed phenomenon for the ensemble of
spiking Hodgkin-Huxley (HH) neurons (5)–(7) with STDP and ran-
dom synaptic input (see Methods). If the input is absent (I 5 0), the
neurons get strongly coupled, and a uni-directional hierarchical
coupling topology is established due to STDP for strong enough
initial coupling [Fig. 1b, Supplementary Fig. S1]. If an independent
random input is applied to the HH ensemble, the amount of coupling
in the perturbed ensemble is significantly enhanced, and, intrigu-
ingly, the random perturbations have a constructive effect on the
dynamics of the synaptic weights [Fig. 1a]. In fact, the noise pro-
motes the development of bidirectional synaptic connections among
neurons [Fig. 1c], the mean coupling �K increases as the input
strength grows, and there exists an optimal noise intensity, where
the neurons get maximally coupled [Fig. 1a]. For the considered
parameters the optimal input intensity I 5 Iopt < 0.14, where
�K<0:374, which corresponds to about 50% of relative increase of
the mean coupling with respect to the input-free case. Furthermore,
if the noise is not particularly strong, the amount of synchronization
in the neural ensemble with STDP is relatively well preserved
[Fig. 1a]. For example, for I 5 Iopt, the time-averaged synchroniza-
tion order parameter ÆRSTDPæ < 0.82 for the ensemble with STDP,
whereas ÆRFixæ < 0.21 for the ensemble without STDP and for fixed
coupling matrix KFix (see Methods). This corresponds to about 11%
and 77% of synchronization suppression relative to the input-free
case, respectively. This mechanism constitutes a self-organized res-
istance to independent noise, where STDP plays a stabilizing role for

the synchronized neural firing against the destructive influence of
external random perturbations.

The mechanism behind the reported phenomenon is based on the
noise-induced dynamics of the spike time differencesDtij used for the
update of the synaptic weights [Supplementary Section S1B]. If
the distribution density rij(Dt) of Dtij is known, the average update
rate of the synaptic weights can be calculated by the integral

Dkij~

ð
W jð Þrij jð Þdj, ð1Þ

where W describes the update rule in one spike event (7). One there-
fore has to describe the form of rij in order to predict the dynamics
of the coupling weights kij: They will be potentiated if Dkijw0
and depressed if Dkijv0. For instance, for a uniform distribu-
tion rij 5 1/2e of Dtij g [2e, e], Dkij~ A1t1 1{ exp {e=t1ð Þð Þ{½
A2t2 1{ exp {e=t2ð Þð Þ�=2e and changes its sign from positive to
negative as e increases over 5 ms for the considered parameters.
Therefore, if Dtij are broadly distributed, e.g., for desynchronized
neurons at a weak initial coupling, the synaptic weights will be
depressed and a weakly coupled regime will be realized. On the other
hand, a synchronized firing for a strong initial coupling will lead to
narrowly distributed Dtij and further stabilization of a strongly
coupled regime [Fig. 1b], see also Supplementary Section S1A.
Notice that the considered STDP will lead to a potentiation of syn-
aptic weights if the neurons fire at a high rate17,24. In this case, the
relative spike times will be narrowly distributed even if the neurons
are not synchronized. In our case the mean firing rate does not
significantly change when the parameters of interest vary
[Supplementary Fig. S3].

We consider the behavior of rij in more detail for the phase oscil-
lators (8) with STDP, where we observe the same constructive effect
of the independent noise: As the noise intensity increases, so does the
mean coupling strength �K until it reaches its maximal value at the
optimal noise intensity m 5 mopt [Fig. 2a]. As for the HH ensemble,
the noise induces the emergence of bidirectional couplings among
oscillators [Fig. 2b], and STDP counteracts the suppression of syn-
chronization by the noise [Fig. 2a]. Although the latter effect for the
phase ensemble is somewhat less pronounced (regarding ÆRSTDPæ/
ÆRFixæ) than for the HH neurons, we still observe the self-organized
resistance to noise for the phase oscillators mediated by STDP, where
ÆRSTDPæ . ÆRFixæ.

We found that the emergence of positive couplings below the
diagonal in the coupling matrix [Fig. 2b] of the phase ensemble
can be explained by evaluating the impact of the noise on the phase
differences for fixed coupling matrix KFix, and we consider such a
system below.

In the strongly coupled regime without noise the oscillators are
phase locked and the phase differences are constant. The following
recurrent formula gives the constant phase shifts of the locked phases
yi 5 vt 1 Qi (see Supplementary Section S2A):

Qi~ arcsin
Siz1ffiffiffiffiffiffiffiffiffiffi
Diz1
p
� �

z arcsin
N ~vi

k
ffiffiffiffiffiffiffiffiffiffi
Diz1
p

� �
, ð2Þ

where Diz1~S2
iz1zC2

iz1, Siz1~
XN

j~iz1
sin Qj

� �
, Ciz1~

PN
j~iz1

cos Qj

� �
, and ~vi~vi{vN . Letting QN 5 0, without loss of general-

ity, we find the constant phase differencesDyij 5 Qj 2 Qi. For weak to
moderate noise the phase differences fluctuate around the above
mean values and get broadly distributed, see Fig. 3a, Supplemen-
tary Section S2B, and Refs. 25, 26. Since the phase differences obey
a circular statistics we approximate them in the noisy case by the von
Mises distribution27

Figure 1 | Constructive effect of independent random input on the
synaptic weights of the HH neural network with STDP. (a), Mean

(ensemble-averaged) synaptic weight �K (scale on the left vertical axis) and

the time-averaged order parameters ÆRSTDPæ and ÆRFixæ (scale on the right

vertical axis) for the ensemble with and without STDP, respectively, versus

input intensity I. For the network without STDP, the coupling matrix is

fixed KFix (see Methods). (b), (c), Coupling matrices established in the HH

ensemble due to STDP for the input intensity I 5 0 in (b) and I 5 0.14 in

(c), where the synaptic weights kij are encoded in color. The elements of the

initial coupling matrix K(0) 5 {kij(0)} are Gaussian distributed around the

mean value �K 0ð Þ~0:5 with standard deviation 0.02. For illustration, the

neurons are sorted with respect to increasing natural spiking frequency

such that fi # fj for i , j.
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M k,Qð Þ~ 1
2pI0 kð Þ exp k cos Q{Q0ð Þð Þ, ð3Þ

where I0(k) is the modified Bessel function of first kind and zero
order, k is the concentration parameter, and Q0 is the mean value.
The parameter k(Dyij) can be determined and demonstrates a
power-law dependence on the noise strength m [Fig. 3b]

k Dyij

� �
~F vi,vj

� �
mc, F vi,vj

� �
~b

~vi ~vj

~viz~vj
, ð4Þ

where the exponent c < 22 seems to be independent of the natural
frequencies vi and vj [Fig. 3b and Supplementary Section S2B]. We
therefore represent the dependence of parameter k(Dyij) on the
natural frequencies as a function F(vi, vj) in equation (4). Detailed
numerical calculations reveal that the contour lines F(vi, vj) 5 Fconst

of the function F align along the hyperbolas b~vi ~vj{Fconst ~viz~vj
� �

~0 for some constant b, where b < 29.52 for the considered fixed
other parameters of the system, see Supplementary Section S2C.

With the use of equation (4) one can predict the noise-induced
emergence of positive coupling kij from slow oscillators to fast ones,
(for indices j , i in Fig. 2b). For this, the STDP function (7) can be
integrated with respect to the distribution density r(Dyij) of the form
(3) according to equation (1) for the mean phase differences (2) and
parameter k from equation (4) with the obtained parameters c and b.
The results of such an approximation are illustrated in Figs. 3c, d,
where the range of potentiated coupling weights increases as
predicted by Dkijw0 [Fig. 3c] which is in good accordance with
the numerical simulations for weak to moderate noise [Fig. 3d].
Moreover, the above equations can effectively be used to approx-
imate the mean coupling [Fig. 2a] and the shape of the coupling

matrix with irregular border between potentiated and depressed
coupling weights [Fig. 2b] for randomly distributed natural
frequencies.

Strong noise destroys the synchronization in the HH and phase
ensembles, which, in turn, leads to a depression of the coupling
among oscillators by STDP, and the mean coupling weight �K nearly
vanishes [Figs. 1a and 2a]. We found that the onset of decoupling

Figure 2 | Constructive effect of independent noise on the coupling of the
phase ensemble with STDP. (a), Mean coupling weight �K and ratio

ÆRSTDPæ/ÆRFixæ (scale on the right vertical axis) between the time-averaged

order parameters for the ensemble with and without STDP, respectively,

versus noise strength m. In the latter case the coupling matrix is fixed KFix

(see Methods). (b), Coupling matrix KSTDP established in the phase

ensemble due to STDP for the noise intensity m 5 0.1. The dashed black

curve in (a) approximates the mean coupling weight �K, and the white curve

in (b) bounds the region of potentiated coupling weights, both as predicted

by the theory (see text for details). The oscillators are sorted with respect to

increasing natural frequencies vi which are uniformly and randomly

distributed in the interval [0.9, 1.1].
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Figure 3 | Impact of the noise-induced dynamics of the phase differences
on coupling weights of the phase ensemble. (a), Noise-induced

distribution densities rij of the phase differences Dyij(m) between the post-

synaptic oscillator i 5 100 and pre-synaptic oscillators j indicated in the

plot. The hatched histograms illustrate the results of numerical simulations

for noise intensity m 5 0.1, the enveloping dashed black curves depict the

von Mises distribution (3) for fitted k, and the vertical lines are delta-peak

distributions for the noise-free case according to equation (2). (b), Log-log

plot of parameter k(Dyij) of the fitted von Mises distribution (3) versus m

for oscillator pairs (i, j) indicated in the plot. The dashed black lines have

the slope 22. (c), The average update rate Dk100,j of the coupling weights.

The black dashed curves depict the theoretical approximation calculated

according to equations (1)–(4) with c 5 22 and b 5 29.52, while the

symbols represent the results of numerical simulations. Vertical dashed

lines indicate the index j where the predicted Dk100,j crosses zero. In plots

(a)–(c) coupling matrix is fixed to KFix (see Methods). (d), Time-averaged

coupling weights Æk100,jæ established in the phase ensemble with STDP for

noise intensities as in plot (c). Natural frequencies vi 5 0.9 1 0.2(i 2 1)/(N

2 1), i 5 1, 2, …, N, N 5 200.
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originates from the fast oscillators (large index j in Figs. 1c and 2b)
and propagates to the interior of the coupling matrix as time evolves,
see Supplementary Videos 1 and 2 for the animated time courses of
the coupling matrices of the HH and phase ensembles, respectively.
The indication of such a decoupling mechanism can be obtained
from the population without STDP and fixed coupling matrix KFix

(see Methods). Already for m 5 mopt 5 0.1625 the coupling weights kij

from the fastest oscillators are predicted to be depressed by STDP as,
for example, for i 5 100 and j 5 200, where Dk100,200v0 [Fig. 3c].
This indicates that the suppression of the coupling for large noise will
start from the fastest oscillators.

For the same parameters of the STDP function (7) the self-orga-
nized resistance against noise is significantly enhanced for another,
multiplicative (state-dependent) update rule, where the coupling
weights are changed relative to their current values kij R kij 1 (kM

2 kij)jdW(Dyij)j, where kM 5 kmax or kM 5 kmin depending on
whether the coupling update dW(Dyij) is positive (potentiation) or
negative (depression), respectively28. Even for strong independent
noise the oscillators with such a coupling update remain strongly
coupled and synchronized [Fig. 4a]. The dynamics of the coupling
matrix is, however, different for this update rule [Fig. 4b]. As the
noise strength increases, the coupling weights kij converge from a
strictly bimodal distribution for the noise-free case via a nearly uni-
form distribution to a well-pronounced uni-modal distribution of
approximately globally coupled oscillators for strong noise. The lat-
ter distribution is in accordance with the results of Ref. 28.
Interestingly, the oscillators are coupled with about the same mean
coupling in the noise-free case (m 5 0) and for strong noise (m 5 0.5)
[Fig. 4a]. In the latter case, however, the population with STDP is
much more resistant to noise than the population without STDP,
while both have the same mean coupling. This also indicates that the
global coupling with narrowly distributed coupling weights [Fig. 4b]
is more favorable if robustness of the synchronized dynamics against
noise is required. These findings also contribute to the problem of the

optimal coupling topology for easily synchronizable networks and
their resistance to noise29.

Discussion
We demonstrated the constructive impact of independent noise on
ensembles of oscillatory HH neurons and phase oscillators with
asymmetric STDP and for two different protocols of the coupling
update based on the difference of either the spike timing or the
phases. In the latter case the coupling update is separated from
possible changes of the frequencies, which means that the reported
phenomenon is in fact based on the phase dynamics. This mech-
anism is different as compared to stochastic or coherence reso-
nances30–32, where the interplay between noise-induced and
internal or external times scales is important. Indeed, the noisy input
does not significantly change the frequency of the synchronized
neurons and only influences the distribution of the phase differences
by broadening it [Fig. 3]. This results in a potentiation of the synaptic
weights that were depressed in the noise-free case.

For the phase model we provided a theoretical approximation of
the structure of the coupling matrix, which is in good agreement with
the results of the numerical simulations. For the HH ensemble we
also verified the reported phenomenon for a random synaptic inhib-
itory input and somatic Gaussian noise as well as for different spike
pairing for STDP [Supplementary Section S1C]. Furthermore, we
verified the phenomenon for different parameter sets for the plas-
ticity function and found that the noise-induced increase of synaptic
weights gets more pronounced if the STDP function is shaped for a
stronger potentiation rather than for depression. In this study we
however considered a non-trivial case, where strongly coupled
synchronized and weakly coupled desynchronized states stably coex-
ist if the communication delay among neurons is small, and syn-
chronization is associated with large coupling33,34. In general, the
noise-induced increase of the mean coupling can be expected for
an asymmetric STDP rule if the neurons can be in-phase locked with
narrowly distributed spike time differences, and a uni-directional
coupling topology like in Fig. 1b is established in the noise-free case.

The resonance-like behavior of the mean coupling versus noise
intensity has been observed for both multiplicative and additive
coupling update rules, where the coupling update either depends
or not, respectively, on the current value of the synaptic weight
and leads to ‘‘soft’’ or ‘‘hard’’ bounds, accordingly23,28. The distri-
bution of synaptic weights however is always bimodal for hard
bounds [Figs. 1 and 2], whereas it undergoes a gradual transforma-
tion from a bimodal to a uniform distribution and then to a relatively
narrow unimodal distribution as noise strength increases for soft
bounds [Fig. 4], see also Refs. 23, 28. These findings point to the
robustness and generality of the reported phenomenon.

Our results suggest a possible homeostatic mechanism of how the
brain may counteract external perturbations and noise in order to
preserve the existing level of neural synchrony and bridge the trans-
ition from information coding by precise spike times to variable and
imperfect spike timing. Noise leads to the development of bidirec-
tional coupling among neurons observed in experiments35. Further-
more, our results show that independent noise can by no means be
considered as an effective method for desynchronization of oscillat-
ory neural networks with STDP. Also from the clinical standpoint
our results may be important. In fact, they may contribute to a deeper
understanding of why maskers and noisers show limited efficacy in
counteracting tinnitus36, the latter being associated with abnormal
neural synchrony4,20.

Methods
Hodgkin-huxley (HH) ensemble. The considered system of N synaptically
interacting spiking HH neurons37,38 reads
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Figure 4 | Constructive effect of independent noise on the coupling of the
phase ensemble with multiplicative (state-dependent) coupling update.
(a), Mean synaptic weight �K (scale on the left vertical axis) and time-

averaged order parameters ÆRSTDPæ and ÆRFixæ (scale on the right vertical

axis) for the ensemble with STDP and without STDP (for fixed coupling

matrix KFix, see Methods), respectively, versus noise strength m. (b),

Normalized histograms of the distribution density of the coupling weights

kij for the noise intensities m 5 0 (no input, scale on the left vertical axis), m

5 0.125 and m 5 0.5 (scale on the right vertical axis) as indicated in the

plot.
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C _Vi~Ii{gNam3
i hi Vi{VNað Þ{gK n4

i Vi{VKð Þ

{gl Vi{Vlð Þz Vr{Við Þ
N

XN

j~1

kijsj tð ÞzIinput
i ,

_mi~am Við Þ 1{mið Þ{bm Við Þmi,

_hi~ah Við Þ 1{hið Þ{bh Við Þhi,

_ni~an Við Þ 1{nið Þ{bn Við Þni,

_si~5 1{sið Þ= 1z exp { Viz3ð Þ=8ð Þð Þ{si,

ð5Þ

where the variable Vi, i 5 1, …, N, models the membrane potential of neuron i, and
am(V) 5 (0.1 V 1 4)/[1 2 exp(20.1 V 2 4)], bm(V) 5 4 exp((2V 2 65)/18), ah(V)
5 0.07 exp((2V 2 65)/20), bh(V) 5 1/[1 1 exp(20.1 V 2 3.5)], an(V) 5 (0.01 V 1

0.55)/[1 2 exp(20.1 V 2 5.5)], and bn(V) 5 0.125 exp((2V 2 65)/80). Parameters C
5 1 mF/cm2, VNa 5 50 mV, VK 5 277 mV, Vl 5 254.4 mV, gNa 5 120 mS/cm2, gK

5 36 mS/cm2, gl 5 0.3 mS/cm2.
The neurons are excitatorily coupled (with reversal potential Vr 5 20 mV) via the

post-synaptic potentials (PSP) si with synaptic weights kij modeling the strength of the
coupling from the pre-synaptic neuron j to the post-synaptic neuron i. We consider
the case without self-coupling kii 5 0. The constant currents Ii are randomly and
uniformly distributed in the interval [10.5; 11.5] mA/cm2. For such parameters Ii the
spiking frequencies fi (number of spikes per second) of the uncoupled neurons (kij 5

0) without an external input (Iinput
i ~0) get distributed around the mean value

70.7 Hz with standard deviation 0.62 Hz. For numerical integration of model (5) with
synaptic input we used a Runge-Kutta method of order 5(4) with adaptive step size39.

Independent random input. The excitatory synaptic input current Iinput
i reads

Iinput
i tð Þ~I Vr{Vi tð Þð Þ

X
ti,kvt

a t{ti,kð Þe{a t{ti,kð Þ: ð6Þ

The a-train in equation (6) models the PSPs received by neuron i at times ti,k with
inter-spike intervals Dti,k 5 ti,k11 2 ti,k $ 0 independently drawn from a Gaussian
distribution with mean ÆDti,kæ 5 14 ms and standard deviation 4 ms, and a 5 24/
ÆDti,kæ. The mean inter-spike interval of such an input approximately equals the mean
period of the coupling- and input-free neurons (5), and each neuron receives an
independent random synaptic input of intensity I, which does not significantly
perturb its natural spiking frequency, see Supplementary Fig. S3.

Spike timing-dependent plasticity (STDP). The neural ensemble (5) is equipped
with STDP14–17, where the synaptic weights kij 5 kij(t) are updated in a point process-
like manner as kij.kijzd:W Dtij

� �
according to the following STDP function when

the post-synaptic neuron i or the pre-synaptic neuron j fires:

W Dtij
� �

~
A1e{Dtij=t1 , Dtij§0

{A2eDtij=t2 , Dtijv0

(
: ð7Þ

Dtij 5 ti 2 tj is the time difference between the nearest spike onsets of the neurons i
and j. The spike onsets are detected by the upward zero crossing by the membrane
potential following an inter-spike hyperpolarization. If the time difference Dtij is
negative (the spike of the post-synaptic neuron advances that of the pre-synaptic
neuron), the corresponding synaptic weight is depressed, otherwise, it is potentiated.
Since STDP acts on a slower time scale than the underlying neural activity, we
consider a slow changing rate of the synaptic weights d 5 0.001, see also Refs. 14, 17. It
also prevents from spuriously moving away from a branch of attractors known as R-
tipping40. The synaptic weights kij are confined to the interval [kmin, kmax] 5 [0, 0.5] by
setting kij to kmin as soon as kij tends to be depressed below kmin via STDP or,
respectively, to kmax if kij is potentiated beyond this value.

We consider parameters A1 5 1, A2 5 0.5, t1 5 1.8, and t2 5 6 such that, if the
input is absent (Iinput

i :0), STDP can lead to a multistability of a weakly coupled
asynchronous state and a strongly coupled synchronized state, see Supplementary
Section S1A and Refs. 18, 41. Depending on the initial coupling, the mean coupling
�K tð Þ~ 1

N N{1ð Þ
P
i=j

kij tð Þ saturates at �K<0:03 in the weakly coupled regime and at

�K<0:25 in the strongly coupled regime, and the synchronization order parameter11

R~ N{1 PN
j~1

eiyj

					
					 is on average ÆRæ < 0.28 and ÆRæ < 0.92, respectively. Here, yj(t) 5

2p(t 2 tj,m)/(tj,m11 2 tj,m), tj,m # t , ti,m11, m 5 0, 1, 2, …, approximates the phase of
neuron j, and tj,m are the times of its spike onsets. For Iinput

i :0, the mean coupling
�K<kmax=2 [Fig. 1a], and the established uni-directional hierarchical coupling topo-
logy [Fig. 1b] results from the asymmetry of the STDP rule (7) and a phase locking of
the neurons to each other, see Supplementary Section S1A and Refs. 42, 43.

Phase oscillators with STDP. We also consider the Kuramoto phase ensemble11 with
independent noise

_yi~viz
1
N

XN

j~1

kij sin yj{yi

� �
zmji, ð8Þ

where the coupling weights kij obey the STDP rule (7) with parameters A1 5 1, A2 5

0.5, t1 5 0.45, t2 5 1.5, and d 5 0.005, and are confined to the interval kij g [kmin,
kmax] with kmin 5 0 and kmax 5 1. The update (7) of the coupling coefficients is based
on the phase difference W 5 W(Dyij), Dyij 5 yj 2 yi, between the pre- and
postsynaptic oscillators j and i, respectively, and undertaken when their phases cross
zero (mod 2p), which is declared as a spike onset if the phase visited an ‘‘inter-spike’’
value p (mod 2p) just before. The phase-based STDP was chosen in order to avoid any
influence of the frequency dynamics and to show that the discussed effects are based
on the noise-induced dynamics of the phase differences. The phase oscillators (8) are
perturbed by a normally distributed independent noise ji with Æjiæ 5 0 and Æji(t),
jj(t9)æ 5 d(i 2 j)d(t 2 t9), and intensity m. The natural frequencies vi are uniformly
and randomly distributed in the interval [0.9, 1.1]. In calculations for fitting the noise-
induced distribution of the phase differences we also used a regular distribution vi 5

0.9 1 0.2(i 2 1)/(N 2 1). For numerical integration of model (8) with noise input we
used the Heun method44 with step size 0.01.

As for the HH neural ensemble, the noise-free (m 5 0) phase ensemble (8) with the
phase-based STDP (7) demonstrates a multistability of a weakly coupled asyn-
chronous regime (with �K<0:11 and ÆRæ < 0.4) and a strongly coupled synchronized
regime (with �K<0:5 and ÆRæ < 0.98). In the latter regime a uni-directional hier-
archical coupling from fast to slow oscillators is established, similarly to the HH
neural population, see Fig. 1b.

Fixed coupling. To compare the effect of the noise for the HH and phase ensembles
with STDP to those without STDP, in the latter case the coupling matrix was fixed to
KFix 5 {kij}, where kij 5 k 5 kmax/2 for i , j, and kij 5 0 otherwise (the oscillators are
sorted with respect to increasing natural frequency), as for the strongly coupled
regimes established without noise.
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35. Song, S., Sjöström, P., Reigl, M., Nelson, S. & Chklovskii, D. Highly nonrandom
features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, 507–519
(2005).

36. Hobson, J., Chisholm, E. & Refaie, E. A. Sound therapy (masking) in the
management of tinnitus in adults. Cochrane Database of Systematic Reviews 11,
CD006371 (2012).

37. Hodgkin, A. & Huxley, A. F. A quantitative description of membrane current and
application to conduction and excitation. J. Physiol. 117, 500–544 (1952).

38. Hansel, D., Mato, G. & Meunier, C. Phase dynamics of weakly coupled Hodgkin-
Huxley neurons. Europhys. Lett. 23, 367–372 (1993).

39. Hairer, E., Nørsett, S. & Wanner, G. Solving ordinary differential equations I:
nonstiff problems (Springer, Berlin, 1993).

40. Ashwin, P., Wieczorek, S., Vitolo, R. & Cox, P. Tipping points in open systems:
bifurcation, noise-induced and rate-dependent examples in the climate system.
Philos. Trans. R. Soc. A 370, 1166–1184 (2012).

41. Popovych, O. V. & Tass, P. A. Desynchronizing electrical and sensory coordinated
reset neuromodulation. Front. Hum. Neurosci. 6, 58 (2012).

42. Masuda, N. & Kori, H. Formation of feedforward networks and frequency
synchrony by spike-timing-dependent plasticity. J. Comput. Neurosci. 22,
327–345 (2007).

43. Bayati, M. & Valizadeh, A. Effect of synaptic plasticity on the structure and
dynamics of disordered networks of coupled neurons. Phys. Rev. E 86, 011925
(2012).

44. Greiner, A., Strittmatter, W. & Honerkamp, J. Numerical integration of stochastic
differential equations. J. Stat. Phys. 51, 95–108 (1988).

Author contributions
O.V.P. designed the specific mathematical analysis, performed numerical simulations and
theoretical approximations, and prepared the manuscript. O.V.P., S.Y. and P.A.T. discussed
the results, drew conclusions and edited the manuscript. P.A.T. supervised the study.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: P.A.T. has a contractual relationship with Adaptive
Neuromodulation GmbH (Cologne, Germany). No competing financial interests exist
related to the presented results. The other authors declare no competing financial interests.

How to cite this article: Popovych, O.V., Yanchuk, S. & Tass, P.A. Self-organized noise
resistance of oscillatory neural networks with spike timing-dependent plasticity. Sci. Rep. 3,
2926; DOI:10.1038/srep02926 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2926 | DOI: 10.1038/srep02926 6

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Constructive effect of independent random input on the synaptic weights of the HH neural network with STDP.
	Figure 2 Constructive effect of independent noise on the coupling of the phase ensemble with STDP.
	Figure 3 Impact of the noise-induced dynamics of the phase differences on coupling weights of the phase ensemble.
	Figure 4 Constructive effect of independent noise on the coupling of the phase ensemble with multiplicative (state-dependent) coupling update.
	References

