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Land use change alters the structure and composition ofmicrobial communities. However, the links between environmental factors
andmicrobial functions are notwell understood.Herewe interrogated the functional structure of soilmicrobial communities across
different land uses. In a multivariate regression tree analysis of soil physicochemical properties and genes detected by functional
microarrays, the main factor that explained the different microbial community functional structures was C :N ratio. C : N ratio
showed a significant positive correlation with clay and soil pH. Fields with low C :N ratio had an overrepresentation of genes for
carbon degradation, carbon fixation, metal reductase, and organic remediation categories, while fields with high C :N ratio had
an overrepresentation of genes encoding dissimilatory sulfate reductase, methane oxidation, nitrification, and nitrogen fixation.
The most abundant genes related to carbon degradation comprised bacterial and fungal cellulases; bacterial and fungal chitinases;
fungal laccases; and bacterial, fungal, and oomycete polygalacturonases. The high number of genes related to organic remediation
was probably driven by high phosphate content, while the high number of genes for nitrification was probably explained by high
total nitrogen content.The functional gene diversity found in different soils did not group the sites accordingly to landmanagement.
Rather, the soil factors, C : N ratio, phosphate, and total N, were the main factors driving the differences in functional genes across
the fields examined.

1. Introduction

Nutrient cycling within terrestrial ecosystems is mostly per-
formed via the activities of soil-borne microorganisms [1].
With the advent of molecular biological methods, consid-
erable amount of knowledge has been accumulated, con-
cerning the diversity and distribution of microorganisms in
soil environments [2–4]. Most of the studies related to the
impact of land use change on microbes have focused on the
phylogenetic composition of the soil microbial community.
With respect to microbial functions in soils, most studies
have traditionally been based on enzyme activity screening,
with relatively little attention paid to functional marker gene
screening [5]. The use of functional gene markers to monitor
the presence and activity of genes responsible for key steps in
terrestrial nutrient cycles may provide a much more directed

approach to the analysis of the nutrient cycling properties of
terrestrial ecosystems.

A large amount of knowledge is becoming available con-
cerning the microbial enzymes responsible for the key steps
of the major nutrient cycles in soil (i.e., carbon, nitrogen,
sulphur, etc.). Recent studies have revealed a great diversity
within the genes encoding these key enzymatic processes [6–
10], providing an expanding database representing the known
diversity of genes encoding key enzymatic steps involved
in nutrient cycling. Microarray technologies have made it
possible to represent the diversity of key enzyme functions
as an array of probes, which can be interrogated with DNA
or RNA extracted from the environment [11–13]. In this way,
the total metagenome of an environmental sample can be
examined for the presence, diversity, and activity of genes
critical to the major nutrient cycles. Coupling such data with
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nutrient flux measurements, enzyme activities, and other
measures of soil quality (including phylogenetic microar-
ray data) could potentially provide a quantum advance in
our understanding of nutrient cycling in soil systems [14].
Although sequence databases are becoming rather extensive,
we clearly have yet to detect the full expanse of the diversity of
key enzyme functions, and such microarray-based analyses
still necessarily fail to cover all gene families that may be
critical to nutrient cycling. Thus, as our knowledge of gene
diversity increases, so too will our ability to design probes
to monitor a broader range of genes and activities, and such
functional microarrays will continue to improve and become
more complete as research progresses.

Anthropogenic perturbations (e.g., pollution, fertilizer
deposition, and habitat destruction) are known to influence
soil nutrient cycles, but little is known about the mecha-
nistic aspects of such disturbances. This lack of knowledge
inhibits our ability to assess the extent to which human
activities disturb terrestrial nutrient cycling potential and
thwarts efforts to predict future anthropogenic impacts.
Before the influence of such perturbations can be established
or predicted, one must characterize the natural variation and
normal operating range with respect to the diversity and
expression of key genes related to nutrient cycle functions.
To establish such normal operating boundaries, the dynamics
of the gene diversity and expression must be monitored
across relevant spatial and temporal scales and in response to
natural and imposed variability. Although this still remains
technically challenging, with hurdles related to limits of
signal detection and reproducibility [15, 16], functional
microarray platforms provide a powerful, high throughput,
tool for the detailed assessment of microbial nutrient cycling
activities.

In the current study, we exploited the functional structure
of microbial communities in soils under different land uses.
First, we determined the soil parameters of each field. Next,
we tracked themicrobial functional communities across land
uses. Lastly, we identified links between soil parameters and
microbial functions. The main questions addressed in this
study were how does the microbial community functional
structure vary with different soil managements and what are
the main drivers that are related to this variation. In order
to answer these questions, we used functional gene arrays
(FGA), focussing on crucial steps of key nutrient cycles (C,
N, P, and S) across eight fields representing five generally
representative forms of land use (conventional arable field,
organic arable field, pasture, natural grassland, and pine
forest) in The Netherlands. To our knowledge, this is one of
few studies to apply functional microarray technique across a
range of different land managements. In addition, this study
is one of the first to include a suite of soil measurements
to explore the environmental factors driving soil microbial
functions under different land uses.

2. Material and Methods

2.1. Experimental Design, Sampling, and Soil Analyses. Eight
fields subjected to five generally representative forms of

land management in The Netherlands (pine forest, natural
grasslands, pasture, conventional arable field, and organic
arable field) were sampled (Figure S1, Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2014/216071)
in May 2007; see Table 1. The eight fields were selected
from a previous study [17] on soil factors driving microbial
community composition in 26 fields across The Netherlands
under different land management. In each field, a central
point was selected, and subsequently four sampling points
at 20m of the central point were chosen so as to obtain five
samples per field (A, B, C, D, and E). Each sample (A, B, C,
D, and E) was comprised of five subsamples (A1, A2, A3, A4,
A5; B1, B2, B3, B4, B5, etc) from soil cores (8 cm diameter
× 20 cm deep) taken randomly within a two-meter radius
of each of the five sample points A, B, C, D, and E. Soil
samples were sieved through a 4mmmesh to remove stones,
roots, and plant materials. Equal amounts of each of the five
subsamples of a given sampling point were pooled, thereby
yielding a replication of five composite samples per field. Each
composite sample was divided into two parts. One part was
stored at −80∘C for DNA extraction and the other part kept
at 4∘C for physical and chemical analysis. For physical and
chemical analysis, equal amounts of each of the five replicates
per field were pooled.

Physicochemical characterization was performed by
BLGG (Bedrijfslaboratorium voor Grond en Gewasonder-
zoek, Wageningen, The Netherlands, http://blgg.agroxpertus
.nl/). Soil pH was measured in a 1 : 2.5 soil/water suspension,
and soil moisture was determined gravimetrically (g/100 g).
Soil organic matter content (% OM) was determined by loss
on ignition (LOI) analysis. Soil texture was determined using
a Bouyoucos densimeter after shaking the soil vigorously
with NaOH 1M as dispersant. Soil CaCO

3
was determined

a by Scheibler’s method. Phosphate (P) was determined as
the amount extracted from a soil after addition of water at a
shaking ratio of 1 : 60, a procedure typically used to determine
the soil fertility status of arable fields inThe Netherlands. Cr,
Cu, Hg, As, Ni, Cd, Pb, and Zn were extracted by Mehlich 1
and determined by atomic absorption spectrometry.

2.2. DNA Extraction, Amplification, Labelling, and Hybridiza-
tion. DNA extractions were performed separately on each
of the five replicates per field using the MoBio Power Soil
Extraction kit (MoBio, Carlsbad, CA, USA) with bead-beat-
ing (RestchMM301, RetschGmbH,Germany) at 5.5m s−1 for
10min. Total DNA concentration was quantified on a ND-
1000 spectrophotometer (Nanodrop Technology, Wilming-
ton, DE, USA).

The DNAs from replicates of each sample were pooled.
Because the amount of DNA extracted was in most cases
insufficient for direct labeling and hybridization, 30 ng of
DNA per sample was amplified by whole community rolling
cycle amplification (WCRCA) using a TempliPhi kit (GE
Healthcare, Piscataway, NJ). We used the GeoChip func-
tionalmicroarray platform, which containsmore than 24,000
oligonucleotide (50-mer) probes targeting targeted approxi-
mately 10,000 genes involved in nitrogen, carbon, sulfur and
phosphorus transformations and cycling, metal reduction
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Table 2: Total number and percentage of functional genes unique and overlapping in samples of different land uses.

% of genes 25F 19F 16F 13F 10F 8F 4F 1F
25F 13 (6.9) 132 (19.7) 136 (23.8) 145 (14.5) 119 (31.4) 61 (20.4) 123 (22.1) 72 (27.6)
19F 113 (18.4) 300 (36.0) 429 (37.6) 214 (30.1) 107 (15.7) 264 (31.3) 109 (16.7)
16F 72 (13.8) 381 (34.8) 206 (33.0) 110 (18.9) 251 (33.0) 116 (21.1)
13F 319 (33.4) 254 (25.1) 133 (13.3) 328 (29.3) 120 (12.2)
10F 16 (5.1) 100 (26.0) 186 (30.1) 94 (25.9)
8F 16 (9.2) 96 (16.8) 59 (22.7)
4F 97 (19.7) 120 (23.1)
1F 4 (2.7)
Total number of genes 187 614 520 956 311 173 493 146
Italic numbers represent unique genes in each soil sample.
The remaining numbers represent the numbers of genes and their percentage (in parenthesis) overlapping between two samples.

and resistance and organic xenobiotic degradation [18].
The number of technical replicates for microarray hybridiza-
tion was four for samples of fields 1F, 4F, 10F, 13F, 16F,
19F, and 25F and three for field 8F. The amplified DNAs
were labelled with a Cy5 fluorescent dye, purified, and then
hybridized to the GeoChip functional array (FGA II) [18]
in a Tecan hybridization station (Durham, NC) at 42∘C for
10 hours. Arrays were washed, dried, and scanned using a
ScanArray 5000. The signal intensity for each probe was
determined digitally by Imagene software (Biodiscovery Inc.,
Los Angeles, CA).

2.3. Microarray Data Processing and Analysis. The data pro-
cessing was according toHe et al. [18]. Each array was cleaned
by deleting flag 1.3 and SNR < 2 and normalized by mean of
all spots in the same slide. The final table of all intensities of
all samples were obtained by removing the outline spotsmore
than 2 sigma, themaximal ratio between spots was 3 if certain
genes had only 2 spots in the array, the spots with final spot
numbers was 0.51 times less than the original number and the
minimal spots number for a gene was 2.

2.4. Statistical Analysis. Pearson correlations were calculated
between soil factors (total C, total N, C :N ratio, organic
matter, soil pH, CaCO

3
, Cr, Cu, P, Zn, soil texture, and soil

moisture) using the “multtest” package in R (version 2.6.0,
The R Foundation for Statistical Computing). 𝑃 values were
corrected for multiple testing, using the false discovery rate
controlling procedure [19]. The probe intensities and soil
physicochemical factorswere used formultivariate regression
tree (MRT) analysis by using the “mvpart” package in R, and
the distance matrix was based on Bray-Curtis built by the
function “gdist.”

Microbial community functional structure was related to
soil factors using canonical correspondence analyses (CCA)
in Canoco 4.5 for Windows [20]. Probe intensities were used
as “species” data, while soil data was included in the analysis
as “environmental” variables. Variables having the most
significant influence on the microbial community structure
were chosen by forward selection with a 𝑃 < 0.01 baseline.
The variables selected this way were then included in a
model whose significance was tested with 999 permutations.

Gene functional category and land fields were added as extra
variables but not involved in the calculations.

3. Results and Discussion

3.1. Soil Properties. In general, the pasture field 19F was very
different from the other fields with highest cadmium, clay,
chromium, copper, mercury, nickel, organic matter, silt, total
carbon, total nitrogen, and zinc contents (Table 1). The pine
forest 4F had higherC :N ratio, sand, and total C contents and
lower cadmium, clay, chromium, pH, phosphate, and zinc
contents than the other sites (Table 1).The highest percentage
of CaCO

3
was found in organic arable field 13F. The soil

moisture at the time of sampling varied among fields. The
moisture contents of 19F and 25F fields were the highest,
while moisture contents of 10F and 1F fields were the lowest
(Table 1).

The correlation analyses showed significant correlation
between several soil factors. Soil pHwas negatively correlated
with C :N ratio. C : N ratio was negatively correlated with silt
and chromium and positively correlated with sand. Total N
was positively correlated with total C, organic matter, clay,
chromium, and zinc and negatively correlated with sand.
Chromium and zinc were positively correlated (Table S1).

3.2. Microarray Analyses. A total of 1405 genes across all
samples were detected. The pasture field 1F had the lowest
numbers of genes (146) detected by the GeoChip followed by
conventional arable field 8F (173 genes) and natural grassland
field 25F (Table 2). The organic arable field 13F had the
highest number of genes detected (956). The pasture field 1F
with lower functional gene number had high overlap with
communities of natural grassland 25F (27.6%) and organic
arable field 10F (25.9%) (Table 2). The shared genes between
two or more field-soils varied from 12.2 to 37.6%, and the
numbers of unique genes identified in only one soil were
relative very small, varying from 2.7 to 19.7%, except for
organic arable field 13F (33.4%) (Table 2). Although there
were large differences in the number of genes detected in
each field, fields with similar soil characteristics, such as high
total nitrogen in 1F, 25F, and 10F and low phosphate content
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Figure 1: Percentage of gene categories given in the GeoChip
present in soils from different land uses: pasture (1F, 19F), conven-
tional arable field (8F, 16F), organic arable field (10F, 13F), forest (4F),
and natural grassland (25F). CDEG: carbon degradation; CFIX:
carbon fixation; DSR: dissimilatory sulfate reductase; MET: metal
reductase; Methane ox: methane oxidation NFIX: nitrogen fixation;
NIT: nitrification; NRED: nitrogen reductase; ORG: organic reme-
diation.

(Figure 2) in 13F and 19F showed themost overlap in detected
genes.

In general, there were differences in microbial commu-
nity functional structure among the study sites (Figure 1).The
percentage of genes related to carbon degradation (17%) was
highest in organic arable fields (10F) and lowest in natural
grassland 25F.This low representation of carbon degradation
genes in field 25F is somewhat expected, as this particular
field represents a typical Dutch “Blauwgrasland” soil type,
which is often inundated and therefore exposed to anaer-
obic conditions. Indeed, soil water content impacts oxygen
diffusion what higher moisture content leads to decrease in
organic matter decomposition due to low oxygen supply [21].
Genes detected for carbon fixation were generally similar
across the soils examined, except for 10F and 1F fields, which
both had a lower percentage of genes from this category.
Interestingly, these two fields had the lowest soil moisture
contents. Dissimilatory sulfate reductase genes were highest
(5-6%) in soils from filed 4F, 8F, and 10F. Pine forest field 4F
and conventional arable field 8F had higher percentages (6-
7%) of genes of methane oxidation. The conventional arable
field 8F had highest number of genes of nitrogen fixation
(4%), while fields 16F and 1F had highest gene numbers for
organic remediation (44%) (Figure 1).

In amultivariate regression tree (MRT) analysis, combin-
ing the measured soil factors (pH, total N, total C, C :N ratio,
organicmatter, phosphate, clay, silt, sand, CaCO

3
, Cd, Cr, Cu,

Ni, Pb, Zn, As, and Hg) and the intensities of the 1405 genes

detected by the GeoChip, the main factor that explained the
microbial community functional structure differences in the
eight fieldswasC :N ratio (Figure 2). C : N ratio differentiated
the fields into two main groups: (a) fields 16F (conventional
arable field), 19F (pasture), and 13F (organic arable field) with
C :N ratio lower than 11.15 and (b) fields 10F (organic arable
field), 4F (pine forest), 25F (natural grassland), 1F (pasture),
and 8F (conventional arable field) with C :N ratio higher than
11.15. The clustering of the three fields 13F, 16F, and 19F with
C :N ratio lower than 11.16 also corresponds to less sand in the
soil texture and higher soil pH as compared to the other fields,
as C : N was significantly positively correlated with sand and
soil pH.

Themain differences between the two clusters A/B (fields
16F, 13F, and 19F) and C/D (fields 1F, 4F, 10F, 25F, and 8F) were
that fields with C :N ratios lower than 11 had more genes for
carbon degradation (CDEG), carbon fixation (CFIX), metal
reductase (MET), and organic remediation (ORG) categories
than the fields with C :N ratio higher than 11. C : N ratio
is known to have a large influence on decomposition rates
[22]. Fields 16F, 13F, and 19F had the lowest C :N ratios. It is
expected that soils with lower C :N ratios will contain more
easily decomposable organic matters as compared to soils
with high C :N ratios [23]. Our results are consistent with
this expectation, with higher numbers of carbon degradation
genes in those sites with lowest C :N ratios. In addition, CO

2

is released into the environment during the organic material
decomposition, and this may explain the high numbers of
microbial carbon fixation genes [24] in fields 16F, 13F, and
19F. On the other hand, fields with a C :N ratio higher than
11 showed more genes from categories dissimilatory sulfate
reductase (DSR), methane oxidation, nitrification (NIT), and
nitrogen fixation (NFIX) than fields with C :N lower than 11
(Figure 2).

Among fields with C :N ratio lower than 11, field 16F
had the highest number of genes of the organic remediation
(ORG) category. This may be related to the high amount of
phosphate in this soil—that is, greater than 107mg/kg soil
as calculated in MRT analysis and illustrated in the CCA
plot (Figure 3). On the other hand, the high percentage of
genes for CDEG and MET in fields 13F and 19F appeared to
be explained by lower phosphate concentrations (less than
107mg/kg; Figure 2). The higher phosphate contents in fields
13F, 16F, 19F and 16F may be related to the high clay content
of these soils, as it is well known that phosphate availability
strongly depends on clay quantity and quality [25].

The genes detected within the ORG category in 16F are
related to a range of degradation activities (Table S2). In
fact, phosphate has been shown to be an important nutrient
factor required by bacterial biofilter for maximum methane
elimination [26]. The field 16F is a conventional arable field
that has been intensively cultivated with different crops. It has
therefore been subjected to high inputs of inorganic fertilizers
such as nitrogen, phosphate, and potassium. Phosphate was
negatively correlated with total C and total C was positively
correlated with organic matter content. In other words, the
fields 13F and 19F had higher total carbon, higher organic
matter and lower phosphate than field 16F, and these prop-
erties seem to be favourable for genes involved in carbon
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degradation (CDEG) and metal reductase (MET) activities
(Figures 2 and 3). The CDEG genes overrepresented in
samples 13F and 16Fwere related to bacterial and fungal cellu-
lases; bacterial and fungal chitinases; fungal laccases; and bac-
terial, fungal, and oomycete polygalacturonases (Table S3).
The MET genes overrepresented in these same fields 13F and
19F were genes encoding reductases of aluminium, arsen-
ic, cadmium, chromium, cobalt, copper, cytochrome, lead,
mercury, nickel, tellurium, and vanadium (Table S3), and
some soil chemicals, that is, cadmium, chromium, copper,
mercury, and nickel, were indeed highest in the pasture field
19F (Table 1).

Fields with a C :N ratio higher than 11 (1F, 4F, 10F, and
25F) had relatively high percentages of genes of nitrification
(NIT), and high levels of total nitrogen (i.e., >1302mg/kg)
appeared to explain this result. The field 8F had the highest
numbers of genes from categories for dissimilatory sulfate
reductase, methane oxidation, and nitrogen fixation, and this
pattern was explained by total N levels lower than 1302mg/kg
soil (Figure 2). The higher percentage of nitrogen fixation
genes in field 8F than fields 1F, 4F, 10F, and 25F can be
explained by the presence of nitrogen-fixing bacteria in this
particular soil, probably related to the growth of legumes
(beans) at this site. The nitrification-related genes abundant
in fields 1F, 4F, 10F, and 25F were ureases, amoA, pmoA, and
ghd. The DSR genes abundant in 8F were dsrA and dsrB;

the methanol-oxidation category was dominated by pmoA
andmmoA from methanotrophs and nitrogen fixation genes
categorized as nifH from nitrogen-fixing bacteria (Table S4).

The nitrification genes found in fields 1F, 4F, 10F, and
25F were similar to uncultured ammonia-oxidizing 𝛽-Prot-
eobacteria amoA genes. Ureases (E.C. 3.5.1.5) are complex
metalloenzymes that catalyze the hydrolysis of urea to ammo-
nia and carbon dioxide. This enzyme allows many soil bacte-
ria to use urea as nitrogen source, and we detected several
ureases in nitrogen-fixing bacteria such as Mesorhizobium
loti, Bradyrhizobium japonicus, Rhodopseudomonas palustris,
Rhodobacter sphaeroides, Rhodobacter (𝛼-Proteobacteria),
Chromobacterium violaceum (𝛽-Proteobacteria), and Nostoc
(Cyanobacteria) (Table S4). Urease is also an important
virulence factor that improves survival of pathogenic bacteria
in harsh conditions within the host and causes direct damage
to the host due to ammonium, CO

2
, or alkali production

(for reviews see [27, 28]), and in our study we found
ureases similar to those of plant pathogens such Pseu-
domonas syringae, Klebsiella aerogenes, (𝛾-Proteobacteria),
Mycobacterium (Actinobacteria), and Brucella melitensis (𝛼-
Proteobacteria) (Table S4).

Fields 4F and 25F had distinct soil properties or condi-
tions that would be expected to impact numerous microbial
processes.However, we foundno evidence for a sharp distinc-
tion in the functional gene repertoires of these communities.
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Field 4F was extremely acidic which distinguishes it from
other natural and cultivated soils. In fact, in a previous study
on microbial community composition across 26 fields under
different land uses including the eight fields here studied,
Kuramae et al. [17] found that field 4F had the most dis-
tinct microbial community composition. This difference was
linked to low pH and high C :N ratio. However, in the present
study, 4F and 25F have similar microbial function profiles,
despite the differences in soil pH, C :N ratio, and moisture.
Thus, it appears to be that soil microbial composition is
more sensitive to changes in soil pH than the functional
capability of the community.This may be due to the function
redundancy present in soil communities. In addition, the soil
factors that drive microbial composition are not the same as
those driving microbial potential function structures.

4. Conclusion

The soil-borne microbial functional structure in the different
fields in The Netherlands did not group the sites accordingly
to land management. Although the number of fields exam-
ined here was limited to eight, the breadth of our study was
sufficient to assess the differences in microbial functional
genes in different systems of soil management, and specific
soil factors could be identified that explained the differences
observed in functional gene composition of the different soils
examined.
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