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ABSTRACT For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally cru-
cial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris spe-
ciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it
may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources
within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interac-
tions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally
explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive
to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of
170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental
habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated
with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this
coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial commu-
nities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight
into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts’ envi-
ronment.

IMPORTANCE Corals have been proposed as the most diverse microbial biosphere. The high variability of microbial communi-
ties has hampered the identification of bacteria playing key functional roles that contribute to coral survival. Exploring the bac-
terial community in a coral with a broad environmental distribution, we found a group of bacteria present across all environ-
ments and a higher number of bacteria consistently associated with mesophotic corals (60 to 80 m). These results provide
evidence of consistent and ubiquitous coral-bacterial partnerships and support the consideration of corals as metaorganisms
hosting three functionally distinct microbiomes: a ubiquitous core microbiome, a microbiome filling functional niches, and a
highly variable bacterial community.
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Identifying specific bacteria that provide critical functional con-
tributions to a host organism (and the ecosystem it is part of)

requires an understanding not only of the bacterial population,
but of the persistence and stability in time and space of both the
microbial functional niches and the bacteria that utilize them.
This is a challenging task given that bacterial communities tend to
be both highly diverse and highly variable, and functional niches
can be extremely difficult to identify in highly complex commu-
nities. Differentiating the bacterial associations with corals is an
example of this challenge. As in all other natural systems, bacterial
communities associated with corals are proposed to have impor-
tant functional contributions to their health (1, 2), nutrition (3,
4), and nutrient cycling (5, 6). However, the microbiome associ-
ated with corals is one of the most complex and diverse studied to
date (7). Corals harbor thousands of bacterial phylotypes, and the

communities they form vary structurally (composition and abun-
dance) between coral species across geographical, spatial, and
temporal scales (8–10).

The structure of bacterial communities in corals has been
shown to be highly variable and to respond to many biotic and
abiotic factors (8–10). Biological events, such as algal competition,
reproduction, and diseases, as well as changes in environmental
variables, including temperature, pH, nutrients, and dissolved or-
ganic carbon, generate shifts in the composition, richness, and
abundance of coral-associated bacteria (11–16). Moreover, the
responses of the bacterial community (and community members)
differ between host coral species, as well as between stimuli (17).
Thus, while there is evidence that the coral-associated bacterial
communities change in response to disturbance, there is substan-
tial confusion with regard to the impact of underlying natural
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variability in patterns of coral-associated bacteria. For example,
the coral endosymbiosis with the dinoflagellate Symbiodinium
generates patchy microhabitats with different environmental con-
ditions within an individual host (18). Bacterial communities dif-
fer along the host colony and between niche compartments, such
as the surface mucus, the symbiosome, and the skeleton (19, 20).
Therefore, despite over a decade of research documenting coral-
associated bacteria, the identities of specific bacteria playing im-
portant roles in corals and their responses to biotic and abiotic
variables remain poorly characterized. A core microbiome ap-
proach, focused on the identification of ubiquitous bacteria rather
than highly abundant bacteria, has been suggested as an alterna-
tive for differentiating stable and functionally significant coral-
bacterial interactions, overcoming the complexity of bacterial
communities, and functionally differentiating bacterial symbioses
(19, 21).

The high degree of variability of the bacterial communities, the
complexity of the coral host habitat and the coral reef environ-
ment, and the difficulties in identification of functionally impor-
tant bacteria in corals have together contributed to substantial
uncertainty in regards to the identities, roles, and significance of
bacterial symbioses on corals. Addressing this uncertainty re-
quires comprehensive analysis of the diversity, commonality, and
rarity of bacterial phylotypes on coral hosts. To do so, sample sizes
(number of individual hosts investigated) need to be greatly in-
creased, as does the diversity of reef habitats sampled for the same
host species. The environmental-generalist coral Pachyseris spe-
ciosa (Fig. 1) is one coral species that is found in most reef envi-
ronments of the Great Barrier Reef (GBR) and the Coral Sea (22,
23), and as such, it represents an ideal model to test the bacterial-
persistence hypothesis (i.e., the presence of ubiquitous bacteria
within hosts across diverse habitats). The Great Barrier Reef rep-
resents the largest coral reef ecosystem in the world, extending
over 2,300 km (14° of latitude) and encompassing a surface area of
348,000 km2. The adjacent Coral Sea Commonwealth Marine Re-
serve (CSCMR) is located east of the GBR and represents a large
region (989,842 km2) containing numerous coral atolls that, to
date, have remained largely unstudied (Coral Sea Commonwealth
Marine Reserve—Overview, http://www.environment.gov.au/
topics/marine/marine-reserves/coral-sea/overview; accessed 9

February 2016). Host-microbiome interactions and/or symbioses
are potential mechanisms by which environmental-generalist
coral species are able to successfully occupy a broad range of reef
habitats. Here, we characterize the bacterial communities of
P. speciosa samples from reefs across the GBR and the Coral Sea
(CS).

RESULTS AND DISCUSSION

We propose that the coral holobiont of the environmental-
generalist coral P. speciosa should be considered as three func-
tionally different fractions, as follows: first, a ubiquitous core
microbiome consisting of a small group of bacteria that are
persistent across spatial scales and along depth gradients and
are likely to be symbiotic; second, a spatially and/or regionally
explicit core microbiome that is composed of bacteria found
consistently in individuals within specific environmental re-
gimes and that likely aid coral success within the environment;
and third, a highly variable bacterial community that is respon-
sive to processes occurring at both large (hundreds of kilome-
ters; for example, reef regions) and small (meters; for example,
depth ranges) spatial scales.

The bacterial community of P. speciosa. An operational tax-
onomic unit (OTU) database containing 4,176,251 high-quality
reads and comprising 173,690 OTUs was generated for all corals
(n � 123) sampled within the study. OTUs with a percentage of
occurrence of �5% were excluded (i.e., those found in less than 6
of the 123 coral samples), as these were considered to be transient
members, which reduced the number of OTUs to 4,446 phylo-
types.

We find that the bacterial community structures are different
between regions, reefs, and in some reef locations, between depths
(Fig. 2A, C, and D; see also Tables S1 to S6 in the supplemental
material). Biotic and abiotic processes occurring at those regional
scales (factor Regions [see Materials and Methods], scale of 10 to
100 km) are likely to substantially influence coral holobiont bac-
terial communities, both in terms of composition and abundance.
The Coral Sea reefs are in oceanic waters, where variables like flow
rate, mixing and tidal currents, temperature, and concentration of
nutrients are vastly different than in the reefs of the Great Barrier
Reef lagoon (Fig. 2B). Bacterioplankton, biofilms, and coral holo-
biont bacterial communities have previously been shown to be
responsive to alterations in water quality (16, 24, 25). Moreover,
environmental variables like nutrient concentration, tempera-
ture, and light vary significantly across a reef depth gradient
(Fig. 2B). Differences in water quality and oceanography between
the reefs from the GBR and the CS could be affecting the structure
of coral-associated bacteria. However, there is currently a substan-
tial lack of information about how bacterial communities in corals
change in relation to reef depth, since (i) variations in these factors
are site specific (evidenced in our results), (ii) these factors have
been evaluated in isolation, and (iii) bacterial communities in
corals have been studied principally at shallow depths (0 to 30 m)
and only sparsely studied in mesophotic reef zones (depths from
30 m to 200 m) (4, 26, 27). Our findings here support previous
studies that have indicated that coral-associated bacterial commu-
nities (holobionts) are highly responsive to environmental condi-
tions that can change over distances ranging from meters (as in
depth gradient) to hundreds of kilometers (between reefs and re-
gions).

FIG 1 Host Pachyseris speciosa, a depth-generalist coral.
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Persistent bacteria: a core microbiome. Our results provide
the most comprehensive evidence to date for the presence of a
small group of bacteria that are ubiquitously associated with cor-
als regardless of abiotic environmental factors. Despite the high
diversity and variability of coral-associated bacteria found across
spatial scales, we found that of the 173,690 bacterial phylotypes
recovered from P. speciosa, only 9 are present in over 90% of coral
individuals (Fig. 3, red labels), and only 97 are found in over 50%
of individual coral colonies. Traditionally, coral-associated bacte-
ria have been analyzed by focusing on highly abundant bacteria,
regardless of their occurrence across individual corals. However,
abundance measures are known to be biased by the methods of
sample preparation, sample handling, and data generation (28–
30). Our results clearly show that studies focusing on the impor-
tance of highly abundant bacteria overlook the frequently occur-
ring bacteria that are generally in relatively low abundance and/or
rare in whole-colony (or holobiont) community analyses (Fig. 3,
inset). Meta-analysis (Nucleotide BLAST of the National Center

for Biotechnology [NCBI] database) reveals that of the 97 bacte-
rial phylotypes consistently present in over 50% of samples, 49
have been previously reported in specific coral microhabitats
(symbiont and endosymbiont) and/or as part of coral microbiota
(see Table S8 in the supplemental material). These results high-
light the importance of considering persistence instead of abun-
dance to define potentially functionally important bacteria in as-
sociation with reef-building corals. We also find that only two
bacterial phylotypes are both highly persistent (ubiquitous) and
highly abundant within community analyses (OTUs 306 and
25296) (Fig. 3). These two bacteria are both novel in reports on
bacteria within the coral microbiome. The novel identification of
two highly abundant and ubiquitous bacteria is likely the result of
two factors: the large sampling design of the current study (n �
123 corals, the largest undertaken to date) and the application of
Illumina sequencing technology, allowing great depth of sequenc-
ing within the coral microbiome. This result highlights that the
application of sampling designs with greater depth of coverage is

FIG 2 Biographical differences in coral-associated bacterial (holobiont) structures of P. speciosa. (A) Study sites in the Great Barrier Reef (GBR, left) and Coral
Sea (CS, right). (B) Environmental factors changing with depth and with closer proximity to the coast. (C) Differences in bacterial composition between GBR and
CS and between reefs (nMDS, Bray-Curtis; inset, PERMANOVA table). (D) Differences in bacterial abundance between GBR and CS and between reefs (nMDS,
Bray-Curtis, data: fourth root transformed, sample standardized by total; inset, PERMANOVA table). Factors are as follows. (i) Region: Great Barrier Reef (GBR)
and Coral Sea (CS). (ii) Reef (Region): Great Detached (GBR), Tijou Reef (GBR), Yonge Reef (GBR), Myrmidon Reef (GBR), Osprey 1 (CS), Osprey 2 (CS),
Osprey 3 (CS), Holmes Reef (CS), and Flinders Reef (CS). (iii) Depth: 10 m, 20 m, 40 m, and 60 to 80 m. Variation (%) refers to components of variation.
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likely to be crucial in the identification of potentially symbiotic
bacteria within high-diversity (�170,000) coral community anal-
yses.

In the current study, bacterial phylotypes persistently found in
over 50% of the samples (designated the core microbiome in
P. speciosa) predominantly belong to the phyla Proteobacteria
(61.9%), Actinobacteria (10.3%), Bacteriodetes (17.5%), Cyano-
bacteria (1%), and Firmicutes (2.1%). In the phylum Proteobacte-
ria, 53.3% of the core OTUs are class Gammaproteobacteria,
whereas Alphaproteobacteria (16.7%), Betaproteobacteria (6.7%),
Deltaproteobacteria (13.3%), and Epsilonproteobacteria (8.3%)
have lower percentages of representation (see Tables S7 and S8 in
the supplemental material). From nine highly persistent bacterial
phylotypes (defined as core due to their presence in �90% of all
coral colonies) (Fig. 4), four were identified as belonging to genera
Corynebacterium, Alteromonas, and Gluconacetobacter, whereas
the rest were assigned to higher taxonomic levels. The phylotypes
with the highest levels of occurrence, OTUs 306 and 25296, were
identified as phylum Bacteriodetes and class Deltaproteobacteria,
respectively (Fig. 4) and are novel in reports on corals (Fig. 3).

OTUs 142, 84944, and 65268 were assigned to orders Campylobac-
terales and Rhodobacteraceae and class Alphaproteobacteria, re-
spectively; the last two were found as part of the holobiont bacteria
community in previous studies (31, 32), whereas OTU 142 is also
novel in reports on corals.

Eight of the nine highly persistent and ubiquitous bacteria are
present in both reef regions (Coral Sea and GBR) and at all depths
(10 to 80 m), but the abundance of each phylotype was found to
vary between regions and reefs and along the depth gradient
(Fig. 5A and B; see also Table S8 in the supplemental material).
Three of the core bacteria have previously been shown to contrib-
ute to defense against pathogens and to nutrient intake in other
organisms. Members of the genus Corynebacterium are able to
take up and metabolize urea (33) as a nitrogen source and to
synthesize pyrazine (34), a precursor of antibiotic, antitumor, and
diuretic substances in humans. Members of the genus Alteromo-
nas have been reported as part of coral mucus and skeleton bacte-
rial communities and are able to metabolize dimethylsulfide
(DMS) (6), a key organic compound in the cycling of sulfur, and
to incorporate and translocate nitrogen into zooxanthellae in

FIG 3 Comparison of average relative abundances and percentages of occurrence. Each point represents an operational taxonomic unit (OTU). Point colors
indicate microhabitats where these OTUs have been reported previously (NCBI, identities of �97%). Labels display OTU numbers; the top nine OTUs with the
highest percentages of occurrence are in red. See Table S7 in the supplemental material for complete taxonomic identification. Bar chart shows the top 10 OTUs
with the highest maximum values of relative abundance and their taxonomic classification.
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coral larvae (35). Moreover, members of the genus Alteromonas
are able to produce isatin, an antibiotic (36) and antifungal (37)
compound in marine organisms. Bacteria of the genus Gluconac-
etobacter are diazotrophic and colonize intracellular spaces and
vascular tissues in sugarcane and rice plants (38). As well as con-
tributing to nitrogen fixation, Gluconacetobacter bacteria produce
plant growth hormones, improving nutrient acquisition (38) and
stimulating plant defense response (39). In corals, this genus has
been reported in Montipora corals as part of a diazotrophic bacte-
rial community (40); however, these particular phylotypes are
novel in the literature on corals. The ubiquity of these eight core
bacteria in corals across such vast geographic (several degrees of
latitude and two distinct regions) and environmental gradients
(10 to 80 m depth gradient) suggests a highly stable symbiosis
between corals and these bacterial phylotypes. The identification
of potential key bacterial symbioses thus enables us to differentiate
important bacteria and gives rise to hypotheses about how and
when symbioses occur and how critical functional roles are ac-
complished. Similarly, determining explicitly conserved interac-
tions across individual corals from different regions and depths
can allow us to determine potential interactions that aid coral

success under vastly different environmental regimes. However,
differences in the annotation of core or ubiquitous bacteria be-
tween studies are likely, due to several factors, including the type
of host species, reef location, depth of sequencing undertaken,
degree of host replication, and methodology or criteria used for
determining occurrence across samples (7, 19, 21, 29).

Spatial variability in core microbiomes. We further identified
the potential for spatially explicit core microbiomes in P. speciosa:
the annotations of core bacteria were analyzed independently for
presence in both 50% and 80% of the samples from each region,
depth, and depth by region. The GBR and CS corals were found to
have different core microbiome communities (Fig. 5); however,
there is a group of bacteria that are common and therefore inde-
pendent of the environmental variation between regions. Similar
outcomes were observed for depth gradient per region and at all
depths (Fig. 5). For example, the 80% core microbiome for each of
the ocean depths (i.e., determined separately between 10 m and
80 m) is constituted principally of the eight highly persistent
(core) bacteria, thereby providing evidence for a symbiosis that
apparently is able to adjust to different environmental conditions.
An additional 14 phylotypes are also evident in 80% of samples

FIG 4 Dendrogram (Tree of Life) of 97 bacteria with high percentages of occurrence (�50%). Circles represent the microhabitats (symbiotic, endosymbiotic,
and holobiont) where OTUs have been reported previously (NCBI, identities �97%). Bacterial groups identified as relevant in coral microbial literature are
highlighted with color rows. See Table S7 and Table S8 in the supplemental material for complete taxonomic identification and relevant citations.
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from the 60 to 80 m depth range, suggesting that there is habitat
partitioning and ecological diversification in core bacterial as-
sociations of corals related to reef depth. Niche differentiation
and higher genotypic diversity at mesophotic depths have also
been observed for coral hosts and their photosymbiotic part-
ners, the Symbiodinium dinoflagellates, and this could indicate
a bacterial community adaption, or facilitation, to deep envi-
ronmental conditions (e.g., light, temperature, and nutrient
availability) (42–45).

Three functionally different fractions of the coral holobiont.
Our data support the hypothesis that P. speciosa is represented by
three functionally distinct bacterial fractions. The symbiotic frac-
tion is represented by a group of ubiquitous core bacteria that are
likely to be highly conserved in corals. These eight ubiquitous
bacteria are from the classes Actinobacteria and Alpha-, Delta-,
Epsilon-, and Gammaproteobacteria and the phylum Bacteriodetes.
A high specificity in host-microbe interactions and symbioses has
been observed in other natural systems, as is the case in the squid-

vibrio symbiosis. During embryogenesis, the bobtail squid, Eu-
prymna colopes, develops appendages covered by cilia through
which Vibrio fischeri colonization occurs. E. scolopes squid do not
establish symbiosis with any other bacteria, and the cilium ap-
pendages are lost once the symbiosis is established, making this
one of the most specific bacterial symbioses studied to date (46).
The contributions and mechanisms of selection for highly specific,
core interactions also need to be investigated in coral, since by
doing so, we can have greater insight into the capacity for bacterial
symbioses to provide ecological advantages to coral.

We also provide evidence for a functional niche fraction of the
coral microbiome. Bacteria that are persistent in specific environ-
mental regimes that are likely to contribute to coral success in
particular habitats are characteristic of this functional niche. For
example, in P. speciosa, this niche fraction is filled by the 14
phylotypes persistently present in the 60 to 80 m depth range,
composed of the classes Actinobacteria, Bacilli, Flavobacteriia, Syn-
echococcophycideae, and Alpha-, Beta-, Delta-, and Gammaproteo-

FIG 5 Presence of the eight highly persistent bacteria in coral core microbiome. (A) Venn diagrams of occurrence by region, depth by region, and all depths
using 50% and 80% as percentages of occurrence to define coral core microbiome. Numbers inside the areas represent the number of OTUs that are part of the
core microbiome, and numbers in the intersections represent the number of OTUs in common. (B) Average relative abundances of the eight highly persistent
bacteria between regions and reefs and along depth gradients. See Table S7 in the supplemental material for complete taxonomic identification.
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bacteria. Many similar examples of functional niches have been
presented for plants, where bacteria present in the rhizosphere
(habitat directly surrounding the root) assist the plant in over-
coming abiotic stresses like drought, high and low temperatures,
salinity, flooding, heavy metals, organic pollutants, and nutrient
deficiency (reviewed in Selvakumar, et al. [47]). Soil and host type,
as well as developmental stage, are factors that influence the rhi-
zospheric microbiome (48–50).

P. speciosa also hosts numerous bacteria (hundreds of thou-
sands) whose occurrence and abundance are highly variable, and
these are likely to be highly responsive to biotic and abiotic pro-
cesses occurring at diverse spatial scales. This fraction of the bac-
terial community could be principally inhabiting coral mucus,
which is high in nutrients and has fast turnover and rapidly chang-
ing abiotic conditions. The surface mucus environment, being the
most external coral microhabitat, is exposed to and directly af-
fected by changes in the marine environment, including nutrient
fluctuations in the water column, water flow, and sedimentation
(20, 25, 51, 52). These micro- and macroscale conditions likely
create a fluctuating biotic and abiotic environment that attracts
and supports a large diversity of bacteria that are able to colonize
microniches, form biofilms, and utilize nutrients.

The occurrence of 8 bacteria within over 100 individual P. spe-
ciosa colonies collected from 9 geographically distinct coral reefs
and at depths of 10 m to 80 m provides substantial evidence for the
existence of a coral core microbiome and stable bacterial symbio-
ses in corals. In order to understand the long-term stability of
coral bacterial symbiosis, as well as its universality, it is now crucial
to test the hypothesis of core microbiome ubiquity across coral
species and across temporal scales. The functional role of the core
microbiome will be greatly affected by the host’s environment and
the conditions in the microhabitat within the host where these
bacteria exist; therefore, it is crucial to determine precisely where
in the coral host these bacteria reside. Meta-analysis suggests a
high likelihood that these bacteria are found in close association
with the coral tissues (see Table S8 in the supplemental material).
Our results also provide the first evidence of higher diversity in the
bacterial communities and of core microbial associations of corals
existing in the mesophotic zone of reefs. Furthermore, the high
bacterial diversity in corals collected from deeper reefs suggests
that there are functional niches in which corals have the capacity
to adapt their microbial associations to suit the environmental
conditions and utilize available nutrients. In vulnerable ecosys-
tems, such as coral reefs, the evaluation of hosts and their symbi-
oses in time and space is fundamental to understanding how these
organisms and the ecosystems they support will be affected by
climate change and to what extent they will be able to overcome it.

MATERIALS AND METHODS
Experimental design and sample preservation. Fragments of the plating
coral P. speciosa (Fig. 1) were collected from reefs of the Great Barrier Reef
and the Coral Sea (Fig. 2A). Fragments (n � 123) were collected on the
Catlin Seaview Survey expeditions during the period from September to
December in 2012 and in November of 2013. Corals were sampled during
dives using self-contained underwater breathing apparatus (SCUBA) at
shallow and intermediate depths (~10 m, ~20 m, and ~40 m), whereas
deep coral samples (60 to 80 m) were collected using a remotely operated
vehicle (ROV). Here, we utilized a nested hierarchical design considering
the following three factors: (i) Depth (fixed factor), with four levels—10 m
(�3 m), 20 m (� 2 m), 40 m (�3 m), and 60 to 80 m; (ii) Region (fixed
factor) (Fig. 2A), with two levels—Great Barrier Reef (GBR) and Coral Sea

(CS); and (iii) Reef (randomly nested in Region) (Fig. 2A), with nine
levels—Great Detached, Tijou Reef, Yonge Reef, and Myrmidon Reef in
GBR and Osprey 1 (Dutch Towers), Osprey 2 (Halfway Wall), Osprey 3
(Bigeye Ledge), Holmes Reef, and Flinders Reef in CS. Lower mesophotic
depths (60 to 80 m) were only sampled in the Coral Sea, whereas the
intermediate depth of 20 m was only sampled at Osprey 1 to 3. Four or five
coral fragments were collected per depth in each reef.

Coral fragments (~3 cm2) were preserved in salt-saturated 20% di-
methyl sulfoxide (DMSO)– 0.5 M EDTA and stored at �20°C. Sample
collection was under permits supplied by the Great Barrier Reef Marine
National Park Authority (Townsville, Australia) and Commonwealth
Marine Reserves, Department of the Environment (Hobart, Australia).

DNA extraction and sequencing. DNA was extracted from approxi-
mately 1.4 g (�0.2 g) of each coral fragment using a modified protocol
from the MoBio PowerPlant pro DNA isolation kit (catalog no. 13400-50;
MoBio, Carlsbad, CA). As described by Sunagawa et al. (17), the modifi-
cation of the MoBio protocol consisted of digesting samples in proteinase
K (final concentration, �0.8 mg ml�1; Invitrogen) at 65°C for 30 min
after homogenization. The purity and quantity of bacterial DNA were
determined using a NanoDrop spectrophotometer (Thermo Scientific,
Wilmington, DE) and PCRs. Samples were held at �20°C before PCR
amplification.

To determine the composition of the bacterial assemblage and the
relative abundances of its members, bacterial 16S rRNA gene amplicons
were amplified from genomic template primers 515/806 in a single-step,
30-cycle PCR (HotStarTaq plus master mix kit; Qiagen, United States).
PCRs were conducted under the following conditions: 94°C for 3 min,
followed by 28 cycles of 94°C for 30 s, 53°C for 40 s, and 72°C for 1 min,
followed by a final elongation step at 72°C for 5 min. After the amplifica-
tion, to check the success of amplification and the relative intensities of the
bands, amplicon products were checked in 2% agarose gel, and based on
molecular weight and DNA concentrations, amplicon products from dif-
ferent samples were pooled in equal proportions. Pooled samples were
purified utilizing calibrated Ampure XP beads and sequenced using the
Illumina TruSeq DNA library preparation protocol (MR DNA; Shallowa-
ter, TX). Sequences have been submitted to the National Center for Bio-
technology Information (NCBI) Short Read Archive (SRA) under the
project number PRJNA328211.

Sequence analysis. Sequence data were analyzed using Quantitative
Insights Into Microbial Ecology (QIIME) (53). Bar codes, primers, and
short sequences (�200 bp) were removed, and sequences with ambiguous
base calls and with homopolymer runs exceeding 8 bp were discarded.
The sequences were denoised and chimeras removed. Operational taxo-
nomic units (OTUs) were defined with clustering at 97% similarity. Tax-
onomy was assigned to OTUs in QIIME using RDP classifier (54) against
a curated GreenGenes database (55). Chloroplast and unidentified OTUs
were excluded from the OTU table.

Statistical analysis and core microbiome. Statistical analysis and data
mining were conducted using PRIMER v7 and PERMANOVA� (56). As
our hypothesis was focused on the determination of highly persistent
bacteria in corals, bacteria present in less than 5% of the samples (�6
samples) were excluded from the analyses, as they were considered rare
bacteria in the coral-associated assemblage. This filter reduced the quan-
tity of phylotypes from 173,690 to 4,446 OTUs. Normalized relative abun-
dance was obtained using a fourth root transformation and a standard-
ization by sample by total. To analyze the composition of the bacterial
assemblage, the matrix of abundances was converted to presence/absence.
For both matrices, significant differences in the bacterial assemblages
were identified by permutational multivariate analysis of variance
(PERMANOVA) using Bray-Curtis distances and explanatory variables as
listed above in “Experimental design and sample preservation.” Observed
patterns (significant differences at any level) were evaluated with a pair-
wise comparison. Statistical significance by the F test was assessed with
9,999 permutations. To visualize PERMANOVA results, nonmetric di-
mensional scaling (nMDS) plots using 95% bootstrap regions and aver-
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ages for the factor Reef were generated from Bray-Curtis similarity matri-
ces of relative abundance and presence/absence data.

The core microbiomes of all the data and for each of the factors con-
sidered in the experimental design and their combinations were identified
using QIIME. Phylotypes consistently present in �80% of the samples
were considered highly persistent bacteria, a conservative representation
of the core microbiome, selected based on previous research on core mi-
crobiome annotations (19). Phylotypes present in 50 to 79% of the sam-
ples were considered persistent bacteria, whereas OTUs not consistently
present in at least 50% of the samples were taken as natural variability
across colonies.

A dendrogram was constructed using the Interactive Tree of Life
software (http://itol.embl.de) (57, 58) from a phylogenetic tree pro-
duced in QIIME. Venn diagrams were generated from 50% and 80%
core microbiome data and visualized using Venn diagram software
(Bioinformatics and Evolutionary Genomics, http://bioinformatics.
psb.ugent.be/webtools/Venn/).

Meta-analysis. Using the Basic Local Alignment Search Tool (BLAST)
algorithm, sequences of the phylotypes that were part of the 50% and 80%
core microbiome were searched against the nucleotide database of the
National Center for Biotechnology Information (NCBI). Moreover, to
determine whether the 50% and 80% core microbiome phylotypes have
been reported as part of specific coral microhabitats, the same sequences
were compared with the Acropora granulosa nucleotide database (19) us-
ing a BLAST search. Based on the nucleotide database, sequences with
�97% identity were classified in four categories and their combinations:
(i) not reported in corals, (ii) symbiotic, (iii) endosymbiotic, and (iv)
holobiont (in other corals). The category symbiotic represents the bacte-
ria reported in coral tissue, composed of endosymbiotic and episymbiotic
tissue regions, and the category endosymbiotic corresponds to coral
endodermal cells, excluding skeleton and mucus (19). The category holo-
biont constitutes bacteria reported in other coral species as part of the
whole bacterial assemblage. Sequences annotated as chloroplast were not
considered in the analyses.

Map of sites. The map of sites (Fig. 2A) was produced with the soft-
ware QGIS using the Group Layer “GBRMPA features,” data courtesy of
the Great Barrier Reef Marine Park Authority (GBRMPA), Copyright
Commonwealth of Australia (2007). Bathymetry was obtained from the
“Great Barrier Reef and Coral Sea Bathymetry” data set (59), available at
http://www.deepreef.org.
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