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Abstract Oxidized phospholipids (OxPL) were originally

discovered as by-products and mediators of chronic

inflammation such as in atherosclerosis. Over the last

years, an increasing body of evidence led to the notion that

OxPL not only contribute to the pathogenesis of chronic

inflammatory processes but in addition play an integral role

as modulators of inflammation during acute infections.

Thereby, host defense mechanisms involve the generation

of oxygen radicals that oxidize ubiquitously present phos-

pholipids, which in turn act as danger-associated molecular

patterns (DAMPs). These OxPL-derived DAMPs can

exhibit both pro- and anti-inflammatory functions that

ultimately alter the host response to pathogens. In this

review, we summarize the currently available data on the

role of OxPL in infectious diseases.
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Abbreviations

ARDS Acute respiratory distress syndrome

cAMP Cyclic adenosine monophosphate

CD14 Monocyte differentiation antigen CD14

Cdc42 Cell division control protein 42 homolog

CRP C-reactive protein

DAMP Danger-associated molecular pattern

DCs Dendritic cells

EP2R Prostaglandin E2 receptor

GTP Guanosine-50-triphosphate

HDL High-density lipoprotein

LDL Low-density lipoprotein

LPS Lipopolysaccharide

MARCO Macrophage receptor with collagenous

structure

NADPH Nicotinamide adenine dinucleotide

phosphate

NF-jB Nuclear factor kappa light chain enhancer in

B cells

NLRP3 NOD-like receptor family, pyrin domain

containing 3

OxLDL Oxidized low-density lipoprotein

OxPAPC Oxidized 1-palmitoyl-2-arachidonoyl-sn-

phosphatidylcholine

OxPL Oxidized phospholipids

p38 p38 Map kinase

PAF(R) Platelet activating factor (receptor)

PAMP Pathogen-associated molecular patterns

Pam3CSK4 N-Palmitoyl-S-dipalmitoylglyceryl Cys-Ser-

(Lys)4

PAPC 1-Palmitoyl-2-arachidonoyl-sn-

phosphatidylcholine

PazPC 1-Palmitoyl-2-azelaoyl-sn-glycero-3-

phosphocholine
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PEIPC 1-Palmitoyl-2-(5,6)-epoxyisoprostane E2-sn-

glycero-3-phosphocholine

PGPC 1-Palmitoyl-2-glutaryl-sn-glycero-3-

phosphocholine

PGE2 Prostaglandin E2

PKA Protein kinase A

POVPC 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-

phosphocholine

PC Phosphatidylcholine

PL Phospholipids

Rho Ras homolog

Rac Rho-related C3 botulinum toxin substrate

ROS Reactive oxygen species

SRB-1 Scavenger receptor class B, member 1

TLR Toll-like receptor

WAVE1 Wasp family, verprolin homology domain-

containing protein 1

Introduction

Phospholipids are ubiquitously present as they are major

constituents of cell membranes. Oxidation of these phos-

pholipids occurs during physiological processes such as

metabolism or in the course of inflammatory responses,

notoriously so during chronic inflammatory diseases like

atherosclerosis or diabetes. Lipid modification through

oxidation renders phospholipids biologically active, hence

influencing inflammatory processes. It is generally accep-

ted that oxidation-specific epitopes signal the presence of

damage or danger, and these epitopes are, therefore, con-

sidered danger-associated molecular patterns (DAMPs) [1]

in analogy to pathogen-associated molecular patterns

(PAMPs), which signal the presence of infections. To

protect tissue homeostasis, soluble and cell-bound recep-

tors that include natural antibodies, complement factor H

or scavenger receptors were shown to bind and clear these

lipid-derived DAMPs [1, 2]. Any failure to remove these

oxidized phospholipid (OxPL)-derived DAMPs is believed

to interfere with the restoration of tissue homeostasis and to

propagate or even enhance inflammatory conditions such

as atherosclerosis [3].

In addition to the mostly pro-inflammatory function of

oxidation-specific lipid-modifications during chronic

inflammatory diseases, it is increasingly appreciated that

oxidized phospholipids strongly impact the function of

innate immune cells during acute inflammations that include

acute infections. Innate immune cells recognize microbes

via pattern-recognition receptors, which sense the presence

of conserved microbial structures, such as lipopolysaccha-

ride (LPS), to then induce an inflammatory response. The

host response to microbes involves the generation of anti-

bacterial oxygen radicals by macrophages and activated

neutrophils that are recruited to the site of infection. These

oxygen radicals can induce the peroxidation of endogenous

lipids, hence altering host structures [4, 5]. Upon oxidation,

these phospholipids acquire the ability to alter important

functional properties of innate immune cells that include the

release of cytokines, phagocytosis, or the respiratory burst

[6–8]. Not surprisingly so, there is accumulating evidence

demonstrating a role for OxPL in infectious diseases. Here,

we will summarize the available data that show a role for

OxPL as endogenous modulators of inflammation during

infectious diseases.

Generation of OxPL

Phospholipids (PL) are ubiquitously found throughout the

body and as such constitute an integral part of the lipid

bilayer of cell membranes. Glycerophospholipids comprise

a glycerol backbone with three carbon residues. The first

two carbon residues are connected to fatty acid chains,

which form the hydrophobic tails, and the third carbon

residue is linked to a negatively charged phosphate group,

forming the polar headgroup. Binding of choline, serine,

ethanolamine, or inositol to the polar head group at the sn-3

position of the glycerol backbone differentiates PL into

distinct classes. The most abundant phospholipid is phos-

phatidylcholine (PC), which is located mainly in the

extracytosolic leaflet of the plasma membrane, whereas

phosphatidylserine, phosphatidylethanolamine, phosphati-

dylinositol, or phosphatidic acid are found in the cytosolic

leaflet [9]. Polyunsaturated fatty acids are highly prone to

oxidation due to the presence of methylene groups between

the double bonds. Oxidation of PL can occur either enzy-

matically, by, e.g., 12/15 lipoxygenase, or non-

enzymatically by reactive oxygen species (ROS) that are

produced by macrophages and neutrophils to aid the anti-

bacterial defense [4, 5, 10]. Other sources of non-enzy-

matic oxidation are air pollution, UV radiation, and

smoking [11]. Following the primary peroxidation reaction

that can be enzymatic or non-enzymatic, intermediates

such as peroxyl radicals and hydroperoxides are formed,

which then undergo additional oxidation steps by an

enzyme-independent process, leading to the formation of a

variety of different PL oxidation products [11].

In this respect, OxPL differ from other lipid mediators

generated by oxidation of polyunsaturated fatty acids such

as prostaglandins and leukotrienes, which are exclusively

formed by enzymatic reactions [12]. The diversity of glyc-

erophospholipids and the different chemical and enzymatic

reactions involved give rise to a plethora of OxPL deriva-

tives. A prototypic mixture of OxPL is oxidized 1-palmitoyl-

2-arachidonoyl-sn-phosphatidylcholine (OxPAPC), which is
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generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-

phosphatidylcholine (PAPC) and contains different oxidized

PCs that include 1-palmitoyl-2-(5,6)-epoxyisoprostane E2-

sn-glycero-3-phosphocholine (PEIPC) and 1-palmitoyl-2-(5-

oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), and

smaller chemical fragments [11]. If not stated otherwise,

studies cited in this review used a mixture of different

phosphatidylcholines, namely OxPAPC, as data on the role

of its different compounds is limited. In addition to changing

their biological properties, oxidation of PL also induces a

conformational shift in cell membranes, whereby the pre-

viously hydrophobic fatty acid portions turn from the

interior of lipid bilayers to the hydrophilic exterior. Thus,

oxidized epitopes on the surface of, e.g., apoptotic cells can

be recognized by receptors expressed on, e.g., macrophages

and trigger downstream signaling events [13] (see cell sig-

naling section, Fig. 1).

Inactivation of OxPL occurs (1) enzymatically via, e.g.,

epoxide hydrolase and aldehyde dehydrogenase, (2) by

formation of adducts, or (3) by neutralization and scav-

enging via soluble or cell-bound pattern-recognition

molecules such as natural antibodies, C-reactive protein,

complement factor H, or scavenger receptors [11]. The

biological effects exerted by OxPL during infectious dis-

eases are inevitably dictated by the balance between

activation, degradation, and scavenging of these DAMPs.

Detection of OxPL during infections in vivo

Oxidized phospholipids are generated locally, at the site of

injury or infection, where they undergo rapid transforma-

tion and degradation, which makes the quantitative and

qualitative assessment of various OxPL epitopes

Fig. 1 The effects of OxPL on immune cell function. OxPL can

affect four main aspects of immune cell function indicated in a–d:

cytokine secretion (a), phagocytosis (b), adaptive immunity, (c) and

ROS production (d). The various receptors for OxPL are highlighted

in red and downstream signaling is indicated. Further, cross-talk

between these four aspects of immune function is indicated. Question

mark indicates possible effects of OxPL on immune cell function. See

text for further details
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challenging. Mass spectrometry is the best and most

comprehensive technique to analyze the multitude of OxPL

derivatives that are generated during infection and a more

detailed guide was published recently [11]. Using immu-

nological assays, the generation and presence of OxPL has

been established in a variety of organs and inflammatory

diseases. As such OxPL were discovered in atherosclerotic

lesions [14–16], plasma of patients with coronary artery

disease [17], inflamed lung tissue [18–20], diabetic renal

glomerulopathy [21], peritoneal dialysate of patients

undergoing chronic peritoneal dialysis [7], in hemochro-

matosis [22], on apoptotic cells [23–25], on cells

stimulated with inflammatory agonists [26], in CNS lesions

in multiple sclerosis [27] and Alzheimer’s disease [28], but

also in healthy mice [24]. Table 1 summarizes current

evidence for the generation of OxPL in different infectious

diseases, ranging from mycobacterial infections, to sepsis

and a variety of viral infections. The majority of these data

stems from ELISA and immunohistochemistry techniques

that employed a well-defined monoclonal antibody, namely

EO6. EO6 was derived from hybridomas from spleens of

apoE-/- mice and the antigenic specificity of this antibody

is well defined [29]. EO6 is an IgM antibody that specifi-

cally recognizes the phosphocholine head group of OxPL,

but cannot bind to head groups of unoxidized, native

phospholipids [30]. As such, EO6 recognizes a number of

oxidized phosphocholine derivatives, including PEIPC and

POVPC [30].

Effects of OxPL on cell signaling and function

in the context of infectious disease

Oxidized phospholipids impact various effector functions

of innate immune cells. A detailed description of the

effects of OxPL on cell function is beyond the scope of this

review and has been extensively reviewed by others [11,

12]. Here, we focus on the cellular functions affected by

OxPL relevant to infectious diseases and immune cell

functions including cytokine synthesis, phagocytosis,

immune cell maturation, respiratory burst, and mitochon-

drial dysfunction (Fig. 1a–d). These effects are shaped by

signaling events initiated by these DAMPs, which cross-

talk with signals activated by PAMPS on invading patho-

gens. The majority of insight in this context is due to

studies using ‘‘sterile’’ PAMPs, such as LPS (of Gram-

negative bacteria) or poly(I:C), a synthetic dsRNA, that

acts as a viral RNA mimetic. So far, only few studies used

living bacteria or viruses.

Receptors that recognize OxPL include but are not

limited to CD36, SRB-1, platelet activating factor receptor

(PAFR), prostaglandin receptors including E2 and D2

receptors, and possibly TLRs [11] (Fig. 1a, indicated in

red). Binding of OxPL to CD36 and SRB-1 is blocked by

EO6 antibodies, demonstrating the importance of the PC

headgroup of OxPL in binding to these scavenger receptors

[31, 32]. OxPL compete with PAF for binding to the PAFR

in macrophages, suggesting that the PAFR recognizes

OxPL [33]. The PEIPC but not the POVPC component of

OxPAPC activates the prostaglandin E2 receptor (EP2R)

and can compete with the natural ligand of the EP2R,

prostaglandin E2 (PGE2), for binding to EP2R [34]. Evi-

dence that TLRs are involved in the recognition of OxPL

are provided by functional studies in TLR or TLR-adaptor-

deficient mice showing that OxPAPC-mediated lung

inflammation is attenuated in TLR4, myeloid differentia-

tion primary response gene 88 (MyD88) and TIR domain-

containing adaptor inducing interferon-beta (TRIF) null

mice compared to their WT counterparts [20]. OxPAPC-

mediated IL-8 production is lowered by TLR4 anti-sense

oligonucleotides, suggesting that OxPL have the capacity

of inducing inflammation in a TLR4-dependent manner

[35]. Furthermore, another report showed that OxPAPC-

induced inflammation is reduced in TLR2-deficient bone

marrow-derived macrophages, implicating a role for TLR2

in OxPL-mediated signaling [36]. TLR4 and 2 initiate

inflammatory responses in collaboration with several co-

receptors, including CD14, MD2, TLR6, and CD36 [37–

40], which renders the possibility that co-receptors are the

actual receptors for OxPL and can explain differences in

inflammatory responses in TLR-deficient model systems.

The exact contribution of these co-receptors to OxPL-

mediated inflammation requires further investigation

especially given the potent and well-described anti-

inflammatory effects of OxPL on PAMP-mediated cyto-

kine production (Fig. 1a).

Indeed, OxPL exert well-described tissue protective and

anti-inflammatory activities in models of inflammation

using PAMPs. LPS is the major endotoxin of Gram-nega-

tive bacteria and as such capable of inducing a potent

inflammatory response. OxPAPC inhibits LPS but not

TNF-a or IL-1b induced NF-jB activation and gene

expression as OxPAPC prevents binding of LPS to LPS-

binding protein and CD14 [6]. The authors of this study

demonstrated the significance of the anti-inflammatory

effects of OxPAPC in LPS-induced shock as OxPAPC co-

administration with LPS improved survival of mice [6].

The anti-inflammatory effects of OxPAPC on LPS-medi-

ated inflammation were later replicated in several studies,

and OxPAPC components were also found to interfere with

LPS binding to the accessory protein MD2 [41, 42]. These

inhibitory effects of OxPAPC were furthermore extended

to other TLRs by showing that CpG, a short synthetic

oligonucleotide, containing unmethylated CpG dinucleo-

tides, that acts as a bacterial DNA mimetic, elicited

inflammation via TLR9 was attenuated following OxPAPC
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treatment of RAW 264.7 macrophages [43]. Likewise,

OxPAPC inhibited the inflammatory response elicited by

the TLR2 ligand Pam3CSK4 [41]. These studies demon-

strated that OxPAPC could interfere with PAMP-induced

NF-jB and p38 signaling, which are critical nodes in TLR-

induced signal transduction and pro-inflammatory cytokine

production [41, 42, 44, 45].

Aside from OxPAPC binding to LPS-binding protein,

MD2 and CD14 and preventing LPS-induced NF-jB and

p38 mediated cytokine synthesis, direct activation of sig-

naling cascades by OxPL could also exert anti-

inflammatory effects on cytokine synthesis. OxPAPC

treatment increases levels of the second messenger cAMP

[46, 47]. cAMP has pleiotropic effects on cells, including

the inhibition of NF-jB and p38 activation via downstream

signaling through PKA [48, 49]. It should be noted that

although the aforementioned studies demonstrating Ox-

PAPC-mediated cAMP activation have been carried out in

endothelial cells [46, 47], recent data from our own labo-

ratory show that OxPAPC also activates PKA in peritoneal

macrophages. The functional consequence of this in the

context of bacterial infection is the inhibition of bacterial

phagocytosis [7]. Importantly, we could demonstrate that

forskolin, a well-known activator of the cAMP/PKA

pathway, could not mimic the effects of OxPAPC on

macrophages, suggesting that the manner whereby Ox-

PAPC activates PKA in macrophages is different to

classical activators [7]. The exact mechanism of PKA

activation by OxPAPC and whether this has any effects on

the OxPAPC-mediated inhibition of PAMP-induced cyto-

kine synthesis in macrophages will be an interesting area of

future investigation, especially given that LPS antagonism

cannot explain the effects of OxPAPC on TLR9-mediated

cytokine synthesis and NF-jB activation (Fig. 1a, b).

However, OxPAPC inhibits CpG-induced IjB-a phos-

phorylation and degradation, suggesting it is acting at an

upstream node of NF-jB signaling, possibly by interfering

with IKK activation, a critical mediator of IjB-a phos-

phorylation [43, 45] (Fig. 1a, b).

Our studies, demonstrating that OxPAPC inhibits bac-

terial phagocytosis in macrophages [7, 50], are consistent

with observations that OxPAPC activates the small GTP-

ases, Rho, Rac, and Cdc42 [11], which play important

functions in actin cytoskeletal remodeling [11, 51]. How-

ever, pre-treatment of peritoneal macrophages with

clostridium toxin B (an inhibitor of small GTPases), could

not prevent the inhibition of phagocytosis by OxPAPC

suggesting small GTPases are not involved in this process

[7]. The exact contribution of small GTPases to OxPAPC-

mediated actin remodeling, however, requires further

examination and may have some cell type specificity,

especially given that OxPAPC-mediated actin and cyto-

skeletal remodeling in human pulmonary artery endothelial

cells (HPAECs) was inhibited by dominant negative Rac

and Cdc42 mutants [52] (Fig. 1b). It is also possible that

OxPL additionally affects phagocytosis through non-

receptor-mediated mechanisms, such as by disrupting

caveolae and plasma membrane lipid rafts [11] (Fig. 1b).

Oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidyl-

choline not only inhibits bacterial phagocytosis but also

modulates ROS production (Fig. 1d). The major cellular

sources of ROS are the membrane-associated nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase com-

plex and mitochondria. Following phagocytosis, the

Table 1 Documented generation of OxPL in infectious diseases

Pathogen Source Species Method References

Mycobacterium leprae (Lepra) Tissue biopsy Human EO6 immunohistochemistry, mass

spectrometry

[109]

Mycobacterium bovis Macrophages Human Mass spectrometry [109]

E. coli (peritonitis) Peritoneal lavage fluid; peritoneal

macrophages

Mouse EO6 ELISA [7]

SARS coronavirus Lung Human EO6 immunohistochemistry [20]

Avian influenza virus (H5N1) Lung Human, mouse EO6 immunohistochemistry [20]

Bacillus anthracis (anthrax) Lung Rhesus monkey,

rabbit

EO6 immunohistochemistry [20]

Yersinia pestis (pneumonic

plague)

Lung Cynomolgus

monkey

EO6 immunohistochemistry [20]

Monkeypox (Monkeypox virus) Lung Cynomolgus

monkey

EO6 immunohistochemistry [20]

Influenza A virus (H1N1) Lung epithelial cells Human Mass spectrometry [94]

Influenza A virus (mouse adapted

‘‘PR8’’)

Lung Mouse Mass spectrometry [93]

Influenza A (H1N1, H3N2) Lung Mouse EO6 immunohistochemistry [99]
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NADPH oxidase complex assembles at the phagolysoso-

mal membrane and transports electrons across it to oxygen

in the phagolysosome, resulting in the generation of ROS

and oxidative burst [4]. Treatment of neutrophils with

OxPAPC inhibits phorbol-12-myristate-13-acetate (PMA)

and formyl-methionyl-leucyl-phenylalanine (fMLP)

induced ROS production [8]. The authors of this study did

not observe that OxPAPC inhibited PMA-induced p38

phosphorylation in neutrophils, which is in contrast to the

previously mentioned studies demonstrating effects of

OxPAPC on PAMP-induced p38 MAPK [6, 43]. Differ-

ences in stimuli or cell type could explain these different

observations. Furthermore, in some cell types such as

endothelial cells, OxPAPC treatment induces ROS pro-

duction, in part via effects on the NADPH oxidase complex

[53]. The effects of OxPAPC on oxidative burst are

important in the context of infectious diseases as oxidative

burst is crucial for optimal bacterial killing [4]. Indeed,

patients with defects in the NADPH oxidase complex,

exhibit chronic granulomatous disease (CGD), which is

associated with recurrent bacterial and fungal infections

[54].

Mitochondria produce ROS as a by-product of ATP

generation during oxidative phosphorylation. Dysfunction

of mitochondria can lead to excessive mitochondrial ROS

(mROS) production, which damages mitochondrial DNA,

proteins and lipids including the inner mitochondrial

membrane phospholipid, cardiolipin [55]. Further, in vitro

studies indicate that PazPC modulates the interaction of

mitochondrial-associated proteins with their membranes

[56]. Interestingly, cardiolipin has recently been shown to

be a component of the inflammasome, a multi-protein

complex required for the maturation of IL-1b and IL-18

[57]. These cytokines are produced via two signals. The

first signal induces the production of their pro-forms in an

NF-jB-dependent manner in response to PAMPs. The

second signal results in inflammasome generated active

caspase 1, which cleaves the pro-forms into the active

cytokine [58]. Notably, the OxPL receptor CD36, in co-

operation with a TLR4/6 heterodimer, has recently been

shown to provide both signals for the inflammasome in

response to OxLDL, a process that requires endocytosis

and generates cholesterol crystals (Fig. 1d) [59]. It is

tempting to hypothesize that oxidiation of cardiolipin and

other mitochondrial lipids could impact inflammasome-

mediated maturation of these cytokines, influencing out-

come during acute infections, especially given the

documented role of IL-1b in neutrophil influx following

acute challenges such as LPS, Pseudomonas aeruginosa

and S. pneumoniae [60–63]. Consistent with a possible role

of OxPL in inflammasome activation in immune cells,

activation of RAW macrophages with POVPC induces

ceramide synthesis, which is an activator of the NLRP3

inflammasome [64, 65]. However, to our knowledge there

are no reports of IL-1b maturation in response to OxPL.

Further, in line with a potential detrimental role for mito-

chondrial dysfunction and OxPL generation herein in acute

infections, mROS overproduction and mitochondrial dys-

function correlate with poor outcome during sepsis [66,

67].

Oxidized phospholipids can also modulate immunity

during infectious diseases by affecting adaptive immunity

(Fig. 1c). Poly(I:C) is a viral RNA mimetic, and as such

recognized by TLR3 expressed on antigen-presenting cells

(macrophages, B cells, and dendritic cells). OxPAPC

inhibits LPS and poly(I:C)-induced upregulation of the co-

stimulatory molecules CD40, CD80, and CD86 as well as

surface expression of both MHC class I and II and the

chemokine receptor CCR7 on dendritic cells (DCs).

Functionally, this is associated with a decreased T-cell

stimulatory capacity and IL-12 production by DCs [68].

This study not only demonstrated the significance of OxPL

in adaptive immunity, but also importantly showed that

TLR3-stimulated cytokine production could be attenuated

by OxPAPC [68]. In a later study, the authors could show

that the decreased IL-12 production by OxPAPC-treated

DCs was associated with reduced histone H3 phosphory-

lation and acetylation on the IL-12 promoter [69]. These

data suggest that OxPL can modulate immune responses by

epigenetic mechanisms. Interestingly, chronic downregu-

lation of IL-12 gene expression, associated with epigenetic

modifications on the IL-12 promoter, has been observed in

DCs of post-septic mice [70]. These data provide an

intriguing possibility that ‘‘immuno-paralysis’’ and

impaired leukocyte function observed in patients who

survive severe sepsis [71] is associated with epigenetic

modifications on the promoters of cytokines. Data from our

laboratory demonstrated that OxPL are endogenously

produced during bacterial peritonitis [7]; however, we did

not examine any potential epigenetic effects in post-septic

mice. This will be an interesting area of future

investigation.

Altogether, the aforementioned studies demonstrate that

different oxidation-specific epitopes of OxPL are recog-

nized by multiple receptors on immune cells that may

cross-talk (Fig. 1a–d). A plethora of signaling events then

occur ranging from kinase and transcription factor activa-

tion, second messenger, ROS production, cytokine

transcription, and cytoskeletal remodeling. It should be

noted that OxPL can also impact infectious diseases via

their effects on non-immune cells, such as endothelial cells,

by for instance affecting endothelial barrier function and

cytokine production, which will have downstream effects

on leukocyte migration. Of note, all signaling studies we

are aware of in the context of OxPL were performed with

PAMPs, and not with living microorganisms. Thus, a
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protective role in LPS endotoxemia cannot be extrapolated

to Gram-negative infections. Overall in experimental acute

infectious disease models, OxPL were associated with

detrimental effects, which may aggravate disease progres-

sion (as discussed below). Furthermore, it is clear that

soluble mediators including CRP, complement factor H

and natural antibodies exert housekeeper functions by

acting as scavengers for these DAMPS, consequently

influencing immunity during infectious disease [2]. In the

following sections, we will discuss the various infectious

diseases that OxPL have been shown to impact.

How OxPL impact pulmonary inflammation

Surfactant lining the alveolar space consists of 80–90 % of

PL, most of which are saturated and protected from oxi-

dation, but a small proportion of unsaturated PL are

present. These unsaturated PL are prone to oxidation due to

physiologically high concentrations of oxygen, air pollu-

tion, or ROS produced by immune cells [72]. Under steady

state conditions surfactant is protected by antioxidants like

glutathione and surfactant proteins A and D [73, 74].

Oxidative processes within the lungs are implicated in the

pathogenesis of a number of chronic inflammatory diseases

such as asthma [75], chronic obstructive pulmonary disease

[76], and cystic fibrosis [77]. Infections of the respiratory

tract were shown to cause surfactant alterations including

changes in the composition of pulmonary phospholipids

[78, 79]. Thus, a myriad of data points toward a modulation

of inflammation by oxidation products in different lung

pathologies.

Indeed, although mice treated with 100 % oxygen die

after 5 days, survival is significantly improved via over-

expression of the antioxidant enzyme Prdx6 [80, 81]. The

authors hypothesized this was due to a reduction in the

levels of peroxidized phospholipids. One specific oxidized

phospholipid (namely 1-palmitoyl-2-(90-oxo-nonanoyl)-

glycerophosphocholine) derived from ozone-treated calf

lung surfactant was found to reduce macrophage and epi-

thelial cell viability [82], and to induce IL-8 in lung

epithelial cells [83]. The scavenger receptors MARCO and

SR-AI/II were shown to protect against pro-inflammatory

effects of this specific OxPL in mice [84]. These data

demonstrate the detrimental effects of OxPL in the lung

and the importance of scavenger-receptor-mediated

mechanisms in protecting against these.

Aside from receptor-mediated mechanism, additional

receptor-independent mechanisms have been proposed to

protect from the detrimental effects of pulmonary OxPL.

As such it was shown that the antibody EO6, which binds

to OxPL on apoptotic cells, has the ability to block

inflammation in vitro [25] and in vivo [20]. In a similar

manner, the endogenous acute phase protein C-reactive

protein (CRP), which is typically induced during infections

such as pneumonia, binds to oxidized phosphorylcholine

present in OxLDL and on apoptotic cells [85]. This binding

was found to promote the clearance of apoptotic cells and

contribute to the resolution of inflammation [86]. It is

tempting to speculate that CRP is involved in the neutral-

ization of OxPL in vivo and several lines of evidence point

toward a protective role for CRP in bacterial pneumonia.

As such, CRP was found to protect mice from pneumo-

coccal infection independent of its role in binding to

pneumococcal C-polysaccharide and promoting opsono-

phagocytosis [87]. Also, C5a-induced lung injury in rabbits

was attenuated by CRP, suggesting that CRP promotes

improved outcome during acute respiratory distress syn-

drome (ARDS) [88, 89]. Further confirming the idea of a

protective role for CRP during lung inflammation, a clin-

ical study reported that increased CRP plasma levels were

associated with improved outcome in patients suffering

from ARDS [90]. However, the precise molecular mecha-

nism of CRP’s protective role and the potential interplay

with OxPL still needs to be proven.

Generation of oxygen radicals [91, 92] or pulmonary

OxPL—assessed by mass spectrometry or immunohisto-

chemistry (Table 1)—was revealed in various studies of

murine influenza virus infection [20, 93], as was the up to

70-fold increased production of superoxide anion [92].

Underscoring the importance of OxPL in influenza-mediated

lung pathology, infection of human lung epithelial cells with

influenza A virus resulted in the local release and oxidation

of PL, as assessed by mass spectrometry [94]. Addition of

the ApoA-I mimetic peptide D-4F, a main constituent of

HDL, reduced OxPL levels and in parallel attenuated the

production of pro-inflammatory cytokines (IL-6, IFN-a, and

IFN-b) by lung epithelial cells in vitro [94]. These findings

suggest a pro-inflammatory role for OxPL in this setting.

The same group investigated the potential interplay between

infection and cardiovascular events, and focused on changes

in the anti-inflammatory and anti-oxidative properties of

HDL upon infection. As such, they discovered that HDL lost

its anti-inflammatory properties upon influenza infection

in vivo, which was associated with increased oxidation of

LDL [95] and enhanced monocyte traffic into arterioscle-

rotic plaques of LDL-R deficient animals [96]. The authors

hypothesized that the infection-triggered alteration in anti-

oxidant molecules could explain the increased rate of car-

diovascular events following influenza infection.

Epidemiological findings support these concepts as respira-

tory tract infections are associated with an increased risk of

cardiovascular events such as stroke and myocardial

infarction [97, 98].

Oxidized phospholipids generation in lungs was fur-

thermore discovered by immunohistochemistry (Table 1)
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following acid aspiration-induced acute lung injury and

pulmonary infections such as human SARS, murine H5N1,

Anthrax in monkeys and rabbits, and Yersinia pestis or

Monkeypox virus-infected monkeys [20]. Mechanistically,

the authors of this specific study propose OxPL to be a

common denominator that drives lung inflammation and

injury in the course of infections. As such, they found that

intranasal application of OxPAPC (20 lg/g mouse) fol-

lowed by mechanical ventilation triggered a TLR4-

dependent inflammatory response in the lungs. In a mouse

model of acute lung injury using acid aspiration, knock-

down of TLR4 or downstream signaling molecules like

TRIF tremendously blunted lung damage, as assessed by

lung elastance, edema formation, and histopathology [20].

IL-6 produced by alveolar macrophages in vivo and upon

OxPAPC challenge ex vivo was found to be the main

cytokine driving lung injury as IL-6 knockout mice were

protected. Demonstrating the importance of OxPL in this

model, the authors could show that administration of EO6

dampened OxPAPC-mediated inflammation in vitro and

in vivo [20]. Furthermore, acid aspiration or infection with

H5N1 triggered ROS production, upregulated TLR4, and

elevated OxPL generation, which was assessed by EO6

immunohistochemistry. Neutrophil cytosolic factor 1

(ncf1)-deficient mice, which display defects in ROS pro-

duction, showed improved outcome upon challenge with

inactivated H5N1 [20]. Lee et al. [99] corroborated the

presence and impact of OxPL using different Influenza

strains (H1N1 and H3N2) in a murine model: similarly,

immunohistochemical staining using the EO6 antibody

revealed the presence of OxPL epitopes in infected mice,

and ncf1-deficient mice were protected in pneumonia.

These data are in accordance with the pro-inflammatory

effects of OxPL that possibly occur in a TLR4-dependent

manner (Fig. 1). In a similar study performed in our lab-

oratory, we detected elevated—albeit not statistically

significant—levels of OxPL in bronchoalveolar lavage

fluid in a murine model of acute lung injury caused by acid

aspiration [100]. As opposed to Imai et al. [20], we did not

ventilate mice after acid administration. These technical

differences might be important in this context, as applica-

tion of oxygen might further increase levels of OxPL and

exacerbate lung injury.

These findings were recently extended by Shirey et al.,

who treated mice and rats in a model of influenza with the

synthetic lipid-A analog Eritoran, which inhibits TLR-4/

MD2-mediated responses [93]. Strikingly, even if applied

6 days after infection, Eritoran was able to rescue animals

from influenza-induced mortality [93]. In accordance with

the findings of Imai et al., the authors of this study pos-

tulated that OxPLs exert pro-inflammatory effects via

TLR4 and as such they discovered reduced OxPL levels

and substantially diminished lung inflammation in mice

that were treated with Eritoran after influenza virus infec-

tion. In addition to TLR4, the authors were able to show

that the protective effects of Eritoran also required CD14,

as Eritoran failed to rescue not only TLR4-, but also CD14-

knockout mice from influenza-associated mortality [93].

Another group corroborated our earlier findings of

OxPL-induced inhibition of bacterial phagocytosis [7, 50]

in a setting of bacterial pneumonia [101]. They discovered

that cigarette smoke induced the generation of OxPL in the

broncho-alveolar lavage fluid of mice, and that these OxPL

impaired the clearance of Pseudomonas aeruginosa via

inhibition of phagocytosis by alveolar macrophages. Of

note, in this study different PC moieties were used

(POVPC, PGPC, and PaZPC), all of which showed the

same overall inhibition of bacterial uptake as the mixture

OxPAPC [101].

While the aforementioned studies discovered detrimen-

tal effects of OxPL in lung injury, other reports found

protective effects. In a rat model of LPS-induced pneu-

monitis, intravenous administration of OxPL attenuated

neutrophil influx into the bronchoalveolar space, edema

formation, and pro-inflammatory cytokine production

[102]. In vitro, endothelial barrier disruption, and mono-

layer integrity of HPAECs was found preserved upon

OxPL treatment, via OxPL-induced cytoskeletal rear-

rangements that involved Cdc42 and Rac [52]. This study

is in accordance with data demonstrating that barrier dis-

ruption caused by IL-6 or thrombin was prevented by

OxPL [103]. Furthermore, intravenous administration of

OxPL dampened ventilation-induced lung injury in mice

[104]. Accordingly, co-administration of LPS or CpG DNA

together with OxPL (but not unoxidized phospholipids)

intratracheally lowered bronchoalveolar TNF-a levels [43].

These barrier-protective effects were more recently shown

to require binding of OxPL to the chaperone protein

GRP78 on the surface of endothelial cells [105].

Together, OxPL substantially contribute to lung

pathology during infectious and inflammatory lung dis-

eases. The precise nature of OxPL’s contribution remains

ambiguous and perhaps depends on the context. It seems

that OxPL can protect endothelial barriers in models of

mild lung inflammation, whereas during more pronounced

inflammatory conditions such as during acute lung injury

and ventilation or various viral infections, OxPL impor-

tantly contribute and even mediate inflammation and tissue

injury (Fig. 1).

The role of OxPL during bacterial peritonitis

At a time when OxPL were still considered to mainly

contribute to chronic inflammation via their pro-inflam-

matory properties [106], Bochkov et al. [6] published a
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study where they demonstrated that OxPAPC dampen

acute inflammation by blocking the interaction of LPS with

LPS-binding protein and CD14 (Fig. 1). In this report, the

authors revealed that OxPL prevented the activation of

MAP kinases and NF-jB in endothelial cells and that this

ultimately resulted in reduced leukocyte recruitment in an

air pouch model of inflammation and upon peritoneal LPS

injection. Ultimately, these inhibitory effects of OxPL led

to an improved outcome in a murine LPS-induced shock

model [6]. These striking findings prompted us to investi-

gate the impact of OxPL during E. coli peritonitis, i.e., a

model with viable bacteria instead of LPS. We thereby

discovered that OxPL-treated animals showed an impaired

survival, paralleled by an increased inflammatory response

and enhanced bacterial outgrowth and dissemination,

which we found to be independent of CD14 [50]. Mecha-

nistically, we discovered that OxPAPC inhibited

phagocytosis of E. coli by macrophages and neutrophils.

Moreover, OxPL inhibited a broad spectrum of different

ingestion mechanisms by macrophages, including macr-

opinocytosis or fluid-phase pinocytosis, thus pointing

toward a more generalized interference with uptake

mechanisms [50]. In subsequent studies, we delineated that

OxPL-induced actin polymerization via activation of PKA

and that inhibitors of PKA were able to reverse the

inhibitory effects of OxPL on macrophage phagocytosis

(Fig. 1) [7]. In-depth studies enabled us to reveal that the

A-kinase anchoring protein WAVE1 was required for the

specific inhibitory effects of OxPL both in vitro and upon

infection with E. coli in vivo. Importantly, we not only

discovered increased levels of OxPL epitopes in peritoneal

lavage fluid of mice infected with E. coli compared to

uninfected mice, but also in the peritoneal dialysis fluid of

patients undergoing continuous ambulatory peritoneal

dialysis, as assessed by ELISA using the EO6 antibody

(Table 1). Of potential clinical importance, peritoneal

dialysis fluid (once immunoglobulins were depleted) also

inhibited phagocytosis of bacteria in a PKA/WAVE1-

dependent manner. Importantly, inhibition of phagocytosis

was reversed by adding EO6, confirming that the PC

moiety is responsible for the described effects.

Lepra

Mycobacterium leprae can cause two distinct clinical

syndromes: lepromatous leprae (l-leprae), and tuberculous

leprae (t-leprae). Whereas in t-leprae, mycobacteria evoke

a potent immune response and thus can be contained

locally, in l-leprae the pathogen disseminates [107]. Con-

comitantly, in l-leprae a Th2-immune response dominates,

as compared to t-leprae, where Th1-cytokines are prevail-

ing [108]. In an elegant study, Cruz et al. [109] found that

in lesions of patients suffering from l-leprae, host genes

regulating lipid metabolism were significantly upregulated

as compared to t-leprae patients. Underscoring the impor-

tance of OxPL, immunohistochemical staining of l-leprae

lesions with EO6 revealed the presence of OxPL in mac-

rophages, similar to that observed in atherosclerosis [109].

In vitro, infection of human macrophages with Mycobac-

terium bovis led to the generation of OxPL, most notably

PEIPC, as assessed by mass spectrometry. Functionally,

PEIPC impaired CD1-expression, and resulted in reduced

IFN-c secretion by M. leprae antigen challenged T-lym-

phocytes. Moreover, PEIPC inhibited IL-12 and enhanced

IL-10 production, thereby giving a potential explanation

how l-leprae leads to a Th2-immune response. Further-

more, PEIPC inhibited the TLR2/1 triggered induction of

cathelicidin via vitamin D maturation and, therefore, pre-

vented the induction of an important antimicrobial

molecule [109, 110]. HDL, that has the ability to neutralize

OxPL, partly via its enzymatic activity, was tested for its

ability to restore the functional properties of DCs in the

presence of OxPL. While HDL from healthy volunteers

indeed restored CD1b expression during differentiation of

DC, HDL from l-leprae patients inhibited CD1b-mediated

antigen presentation to T cells. Overall, M. leprae infection

triggered the generation of host-derived OxPL, which not

only provided an essential substrate for M. leprae, but also

attracted monocytes that served as host cells for myco-

bacteria, and dampened the innate immune response.

Concluding remarks

In atherosclerosis, a role for OxPL as modulators of the

inflammatory process is well established. Accumulating

evidence for a role of OxPL in infectious diseases has

emerged over the last decade. The generation of OxPL was

subsequently discovered at sites of infections caused by a

variety of bacterial and viral pathogens across different

host species. It is tempting to speculate that, due to the

omnipresent production of ROS upon inflammation, OxPL

derivatives might be ubiquitously present in infectious

processes.

Considering the functions OxPL exert during various

infectious diseases, the data available so far report both

anti- and pro-inflammatory properties of OxPL. Research-

ers in favor of the anti-inflammatory properties of OxPL

argue that these effects serve as negative feedback mech-

anism to induce resolution and to prevent tissue damage.

However, it has to be noticed, that most of the reports about

beneficial anti-inflammatory properties are based on mod-

els of sterile inflammation such as that induced by LPS.

Data on the role of OxPL during bacterial infections are

still limited, and the major finding thus far was the
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observation that OxPL inhibit bacterial phagocytosis by

macrophages. At the same time, a body of evidence illus-

trates the profound pro-inflammatory properties of OxPL,

such as in severe acute lung injury or during acute influ-

enza infections. The evolutionary conserved presence of

molecules that counteract potential effects of OxPL, which

include scavenger receptors, complement factor H,

C-reactive protein or natural antibodies support the

potentially harmful function of OxPL. One challenge of

future research in this field will be to find clinical settings

where these counteracting mechanisms are overwhelmed.

As mentioned above, there is epidemiological evidence

that infections trigger cardiovascular events such as myo-

cardial infarction and stroke [97, 98, 111]. It is tempting to

speculate that OxPL generated during respiratory infec-

tions like influenza contribute to this higher risk.

Current knowledge is limited in several aspects (1) only

few reports studied the role of OxPL in ‘‘true’’ infections

with live microorganisms, instead sterile PAMPs such as

LPS or Poly(I:C) serve as imitations of bacterial or viral

infections, (2) real levels of OxPL in general and infectious

diseases in particular are not known, as quantification is

technically difficult as huge spatial and temporal variations

exist, and (3) little is known about the function of specific

OxPL compounds, as in most studies a mixture of OxPLs is

used.

We are confident that future research will shed addi-

tional light on the biological role of OxPL during infectious

diseases and that these studies will provide further insight

in the interplay of pathogens and OxPL that might even

disclose novel therapeutic targets.
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