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Abstract

Abnormal protein–membrane attachment is involved in deregulated cellular pathways and in disease. Therefore, the possibility to
modulate protein–membrane interactions represents a new promising therapeutic strategy for peripheral membrane proteins that
have been considered so far undruggable. A major obstacle in this drug design strategy is that the membrane-binding domains
of peripheral membrane proteins are usually unknown. The development of fast and efficient algorithms predicting the protein–
membrane interface would shed light into the accessibility of membrane–protein interfaces by drug-like molecules. Herein, we
describe an ensemble machine learning methodology and algorithm for predicting membrane-penetrating amino acids. We utilize
available experimental data from the literature for training 21 machine learning classifiers and meta-classifiers. Evaluation of the
best ensemble classifier model accuracy yields a macro-averaged F1 score = 0.92 and a Matthews correlation coefficient = 0.84 for
predicting correctly membrane-penetrating amino acids on unknown proteins of a validation set. The python code for predicting
protein–membrane interfaces of peripheral membrane proteins is available at https://github.com/zoecournia/DREAMM.
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Introduction
Membrane proteins are topologically divided into trans-
membrane proteins that are permanently incorporated
to the interior of the membrane, peripheral membrane
proteins that associate non-covalently with the surface
of the membrane and lipid-anchored proteins that attach
to the membrane with a covalent bond [1]. Peripheral
membrane proteins are essential in cellular processes,
such as transporting substances across the cell mem-
brane, activating proteins and enzymes and regulating
signal transduction, and other functions [1, 2]. Abnor-
mal protein–membrane attachment-due to membrane-
binding domain mutations and peripheral membrane
protein overactivation or underactivation-is involved in
deregulated cellular pathways and in disease [1, 3–8].
Hence, the possibility to modulate protein–membrane
interactions represents a promising therapeutic strategy
for many disease indications and in particular for tar-
geting membrane proteins that have been considered
undruggable such as the membrane-anchored KRAS pro-
tein, which is implicated in over 30% of cancer types [9,
10]; α-synuclein, which is a main pathological hallmark
of Parkinson’s disease [11, 12]; and lipid kinases such as
PI3Kα, which is the most frequently mutated kinase and

present in a variety of tumors [13] with one of its hotspot
mutations, H1047R, acting on altering the protein’s asso-
ciation with the cell membrane [14–17].

The feasibility of targeting protein–membrane inter-
faces is supported by the fact that peripheral membrane
proteins contain a membrane-binding domain with cavi-
ties that could be potentially targeted by small molecules
[18, 19]. The literature reports the feasibility of targeting
the protein–membrane interface, indicating that thera-
peutic targets binding transiently to the membrane can
be targeted with small molecules and that inhibitors of
protein–membrane interactions may be identified [18,
20–25]. However, these examples are only limited com-
pared to the overall drug design efforts of the community,
indicating that the accessibility of protein–membrane
interfaces by small molecules has been so far unexplored
possibly due to the complexity of the interface, the lim-
ited protein–membrane structural information and the
absence of tools and workflows to automate the drug
design process at the protein–membrane interface. More-
over, protein–membrane interaction sites of peripheral
membrane proteins are usually undiscovered; hence, the
first step into modulating the protein–membrane inter-
face is their identification.
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Several efforts towards the design of tools that detect
protein–membrane regions, domains, and lipid-binding
sites have appeared [26–29]; however, these are mainly
applied directly to 1D protein sequences without con-
sidering the protein structural information, and in many
cases, the web links are outdated [26–28]. To our knowl-
edge, only two methodologies, which predict these inter-
action sites from the 3D protein structure, are currently
publically available: the Positioning of Proteins in Mem-
brane (PPM) [30, 31] and the Membrane Optimal Docking
Area (MODA) [32]. PPM combines an anisotropic solvent
representation of the lipid bilayer, an all atom represen-
tation of a solute, and a universal solvation model, cal-
culating rotational and translational positions of trans-
membrane and peripheral membrane proteins in mem-
branes [30, 31]. MODA is based on the protein–protein
interface predictor PIER [33], which builds a set of evenly
distributed points at 5 Å from one another and from
the protein surface, defining each patch as the set of
all protein surface atoms. Then, it calculates a score
based on atom solvent-accessible surface area and atom
type-specific weights and transfers the patch membrane
propensity scores to surface amino acids, thereby pre-
dicting which amino acids contact the cell membranes.

Herein, we present an automated prediction algo-
rithm using ensemble machine learning, which iden-
tifies membrane-binding interfaces with high accu-
racy [macro-averaged F1 score = 0.92 and Matthews
correlation coefficient (MCC) = 0.84], taking as input
the 3D peripheral membrane protein coordinates, and
demonstrating improved accuracy compared to existing
methods.

Methods
Data preparation
To construct the dataset, we used 54 peripheral mem-
brane proteins with known 3D structures and experi-
mentally known membrane-penetrating amino acids,
retrieved from extensive literature search. For the
dataset generation, protein structures were prepared
by deleting unwanted chains and non-protein atoms,
adding missing side chain atoms and converting non-
standard amino acids to their standard equivalents using
the software High-Throughput Molecular Dynamics
(HTMD) [34]. In case of NMR-resolved structures, the
first model of the NMR ensemble was kept. Then, the
dataset was split into a training set (∼85% of the dataset,
Supplementary Table S1 available online at http://bib.
oxfordjournals.org/) and a validation set (∼15% of the
dataset, Supplementary Table S2 available online at
http://bib.oxfordjournals.org/. Finally, a training set of
12.805 amino acids and a validation set of 2.177 amino
acids were assembled. These samples were labeled in
two classes, the membrane-penetrating and the non-
penetrating amino acids, leading to a highly imbalanced
binary classification problem (supervised learning),
where the membrane-penetrating amino acids comprise

∼1.3% of the total samples in the training set. Before
balancing the two classes, feature extraction, and feature
and data selection were performed utilizing a variety of
techniques. Data selection was performed in both the
training and validation sets. For more details, refer to the
“Methods” section in the Supporting Information.

Using tree-based methods, the most important fea-
tures were determined such as hydrophobicity and
solvent exposure, but also the evolutionary conservation,
secondary structure (coil loop or not), flexibility (squared
fluctuations calculated with the Gaussian network
model, probably associated with the flexible coil loops),
dihedral angles (which again might be associated
with the secondary structure) and Transferable Atom
Equivalent (TAE) descriptors [35] (which are molecular
properties related to electron density distribution). These
features are critical for the accuracy of the results
(more information in the Supporting Information, in
Supplementary Figure S1 available online at http://
bib.oxfordjournals.org/ and in Supplementary Table S3
available online at http://bib.oxfordjournals.org/).

Next, the initial training set was split in five stratified
randomized folds, in order to later perform hyper-
parameter optimization using 5-fold cross-validation
(see below), and class balancing was performed in each
fold with different techniques. The reason for applying
class balancing in these five folds separately is to prevent
information leak in the validation fold during the 5-
fold cross-validation procedure. To balance the two
classes, several over- and under-sampling techniques
were utilized leading to six different balanced training
sets (see Supporting Information for more information
and Supplementary Figure S2 available online at http://
bib.oxfordjournals.org/).

Furthermore, a test set of 11 peripheral membrane
proteins with known 3D structures and experimentally
known membrane-penetrating regions (not amino acids)
was assembled. As no specific amino acids were exper-
imentally tested, these proteins were assessed qualita-
tively.

Finally, to ensure that the predictions are unbiased,
the percentage of identical amino acids of the pairwise
sequence alignment was calculated for all sequence
pairs of the dataset. This revealed high percentage
identity values (more than 40%) for proteins in the
training set, but not in the validation or test sets,
ensuring that the predictions in the validation and test
sets are unbiased (more information in the Supporting
Information and Supplementary Tables S4 and S5
available online at http://bib.oxfordjournals.org/).

Ensemble machine learning methodology
For each one of the six training sets, 21 machine
learning classifiers were trained: 19 from the scikit-
learn Python package [36], the LightGBM classifier [37]
and the XGBoost classifier [38]. The hyperparameters
of each classifier were optimized to discover the
best hyperparameters that separate the two classes

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/


Predicting protein–membrane interfaces | 3

(Supplementary Table S6 available online at http://
bib.oxfordjournals.org/) [39, 40]. Specifically, for every
training set and every classifier, the randomized search
cross-validation technique was performed using 5-fold
in a wide range of hyperparameter values, training
hundreds of thousands models (Supplementary Table
S6 available online at http://bib.oxfordjournals.org/).
Subsequently, iteratively exhaustive searches were
performed (grid search cross-validation with 5-fold) in
a small range of hyperparameter values in the vicinity
of the best hyperparameter space determined from the
randomized search cross-validation, which led to a set of
optimal hyperparameters.

To assess the performance of the classifier models for
both the randomized and grid search cross-validation
procedures, the macro-averaged harmonic mean of
the precision and recall, F1 score, was calculated.
Recall expresses the amount of correctly predicted true
positives (Equation 1), while precision expresses the
predicted positives that are actually true (Equation
2). The general formula of F score is derived based
on a positive real variable β, where β determines the
importance of recall over precision (Equation 3). When
β = 1 (F1 score), recall and precision are weighted equally
(Equation 4), when β < 1 more weight is given in precision
and when β > 1 recall is favored.

Recall = True positives
True positives + false negatives

(1)

Precision = True positives
True positives + false positives

(2)

Fβ = (
1 + β2) Precision ∗ recall

(
β2 ∗ precision

) + recall
(3)

F1 = 2 ∗ Precision ∗ recall
Precision + recall

(4)

For more information about the hyperparameter tun-
ing process and the performance metrics, please refer to
the Supporting Information.

The resulting predictions of the aforementioned
classifiers were input to meta-classifiers (ensemble
classifier). The voting classifier, which classifies a sample
based on the majority voting of the first-level classifiers
[41], and the stacking classifier, which trains a classifier
based on the output of the first-level classifiers in order
to compute the final prediction [42], were employed
using the Python library mlxtend [43]. In both meta-
classifiers, all possible combinations of the first-level
classifiers were examined to discover the best classifier
combination. Every classifier combination was tested
using the validation set with known protein–membrane
amino acids (Supplementary Table S2 available online at
http://bib.oxfordjournals.org/) to find the combination
with the best performance. Subsequently, considering
that not every amino acid in the protein sequence of
the datasets was experimentally tested, resulting in

membrane-penetrating amino acids marked as non-
penetrating, the best models were manually inspected in
order to assess their false positives, and the final model
was chosen based on F2 score (see Results). A schematic
representation of the above procedure is illustrated in
Figure 1.

Results
The first-level classifiers providing the most accurate
classification were those trained in the initial dataset
using weights (See “Class imbalance problem” section
available online at http://bib.oxfordjournals.org/). For
these classifiers and initial dataset, several ensemble
classifier models exhibited better performance than the
first-level classifiers in terms of F1 score, precision/recall
area under the curve (PR AUC), MCC and other scoring
metrics. The receiver operating characteristic area under
the curve (ROC AUC), which is regularly used in the
literature was not considered as it may be misleading for
highly imbalanced classification problems such as our
case [44, 45]. Then, results from the top ensemble clas-
sifier models were subject to manual inspection and the
best was selected according to the F2 score to emphasize
on recall. Although, seemingly, it is natural to prioritize
on precision because in our case false positives are more
critical than false negatives, manual inspection of the
false positive results of the top meta-classifiers indicated
that these could actually be true positive membrane-
penetrating amino acids as in many cases they are
adjacent to amino acids that are membrane-penetrating
or aligned with them in a putative membrane plane (see
validation set predictions in Figure 2). Finally, the best
performing ensemble classifier was the voting classifier
for a combination consisting of five classifiers: the linear
discriminant analysis, the logistic regression, the linear
support vector classifier, the decision tree classifier and
the light gradient boosting machine. Various scoring
metrics of the 21 first-level classifiers and the ensemble
classifier model for the initial dataset using weights are
reported in Supplementary Table S7 available online at
http://bib.oxfordjournals.org/.

The validation set predictions can be viewed in Figure 2
and Supplementary Table S8 available online at http://
bib.oxfordjournals.org/, where ∼2/3 of the false-positive
amino acids are in fact correct predictions as they are
located in the protein–membrane interface adjacent to
true positives or on adjacent loops defining the mem-
brane plane. For example, in retinoid isomerohydrolase,
amino acid F262 lies within 4 Å from the experimentally
confirmed membrane-penetrating amino acids; for
the glycolipid transfer protein, amino acids I143 and
Y153 are next to and aligned with W142. In other
examples, i.e. the cholesterol-regulated START protein
4, amino acid M196 although located in a different
loop, it is aligned with L124; for the phosphatidylinositol
transfer protein beta isoform, M74 resides in a different
loop but is aligned with the experimentally confirmed
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Figure 1. For each of the six datasets, we optimized the hyperparameter space of 21 classifiers using 5-fold cross-validation on the training set. The
predictions of the models with the best F1 score from these classifiers were provided as input to meta-classifiers. Given the F2 score on the validation
set, the best meta-classifier was kept as the final predictor.

Figure 2. Proteins of the validation set. The experimental membrane-penetrating amino acids predicted from the ensemble classifier model are depicted
in red, the experimental membrane-penetrating amino acids not predicted from the classifier model are depicted in green and the amino acids predicted
from the classifier model that have not been experimentally verified are depicted in purple. The putative membrane plane is depicted as a red dotted
line.

membrane-penetrating amino acids W202 and W203;
for the PH domain of the ceramide transfer protein, I37
and W40 are next to W33 and Y36, and F81 is aligned
with them in an adjacent loop. Considering that these
predicted membrane-penetrating amino acids are in fact
located in the plane of the protein–membrane interface,
they can be considered as true positives and the macro-
averaged F1 score increases from 0.86 to 0.92 and MCC
from 0.71 to 0.84.

To compare the protein-membrane interface predic-
tions of our ensemble classifier model with those of
other computational tools, we applied the ensemble
model to the proteins of the validation set, this time
retaining all amino acid types (without data selection).
Results showed that several non-hydrophobic amino
acids were predicted as membrane penetrating both in
the actual protein-membrane interface but also in the
solvent exposed regions of the protein (false positives). To
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restrict such false positive predictions, we incorporated
in the algorithm the condition that non-hydrophobic
amino acids with center of mass distance of 14 Å from
at least one of the predicted hydrophobic amino acids
are kept and the rest of the non-hydrophobic amino acid
predictions are discarded.

Finally, we compared the protein-membrane inter-
face prediction of our final model with those of two
computational tools that predict protein–membrane
interfaces from 3D structures: the PPM web-server
[46], which also predicts the orientation of proteins
in membranes and the MODA web-server [32], using
the validation set without performing data selection
(Supplementary Table S9 available online at http://
bib.oxfordjournals.org/). Specifically, for the retinoid
isomerohydrolase homodimer, PPM falsely predicted the
membrane orientation (probably affected by missing
chains in the PDB structure) and placed the protein in
an orientation in which only one monomer is in contact
with the membrane instead of the dimer, while our
ensemble classifier model and MODA correctly predicted
the protein–membrane regions in both chains, but with
false-positive predictions for MODA (Supplementary
Figure S3 available online at http://bib.oxfordjournals.
org/). For the VSTx1 toxin, all three tools predicted the
protein–membrane interface. Our ensemble classifier
model falsely predicted as membrane-penetrating amino
acids near the N- and C-termini and MODA falsely
predicted the beta sheet V20–S23, which lies on the
opposite side of the protein–membrane interface and
the C-terminal region to be membrane-penetrating
(Supplementary Figure S4 available online at http://bib.
oxfordjournals.org/). For cytotoxin 2, all tools identify the
protein-membrane interface with false positives for our
model and MODA in the 41-46 region (Supplementary
Figure S5 available online at http://bib.oxfordjournals.
org/). For sphingomyelinase C, all tools recognized the
experimentally verified membrane-penetrating amino
acids W284 and F285, with PPM and MODA recognizing
amino acids in distant loops that are aligned with the
experimentally verified protein–membrane region sug-
gesting a multiregional interaction with the membrane,
in accordance with the proposed membrane binding
model (Supplementary Figure S6 available online at
http://bib.oxfordjournals.org/). For the glycolipid transfer
protein, our model and MODA provided similar results
correctly identifying the membrane-penetrating α-helix
G141–Y153, with MODA falsely predicting the C-terminus
and our model amino acid Y81 to be membrane-
penetrating amino acids. PPM also suggested the inser-
tion of the membrane-penetrating α-helix G141–Y153
with the addition of the P40-P44 region (Supplementary
Figure S7 available online at http://bib.oxfordjournals.
org/). For the cholesterol-regulated START protein 4,
all tools predicted correctly the experimentally verified
amino acid L124. Our ensemble classifier model and
PPM additionally predicted the 196-200 region to be
membrane penetrating, MODA falsely predicted the

C-terminus. Our model also predicted amino acid W91
as membrane penetrating (Supplementary Figure S8
available online at http://bib.oxfordjournals.org/). Finally,
for the PH domain of the ceramide transfer protein and
the phosphatidylinositol transfer protein beta isoform,
the outcome was similar and correct for all tools
(Supplementary Figures S9 and S10 available online at
http://bib.oxfordjournals.org/).

The performance of the ensemble classifier model was
tested with additional protein use cases with known
membrane-penetrating regions (test set, Figure 3),
and the results were compared with PPM and MODA
(Supplementary Table S10 available online at http://
bib.oxfordjournals.org/). For the cases of cholesterol
oxidase, cytochrome P450 3A4, monoglyceride lipase
MGLL, L-amino acid deaminase and intestinal fatty
acid binding protein, all tools correctly identified the
protein–membrane regions (Supplementary Figures S11,
S12, S14, S19 and S20 available online at http://bib.
oxfordjournals.org/). For 9-cis-epoxycarotenoid dioxy-
genase 1, chloroplastic, all tools predicted the protein–
membrane regions. Our model predicted the insertion
of one of the two parallel amphipathic helices, instead
of both (Supplementary Figure S13 available online
at http://bib.oxfordjournals.org/). For the dihydrooro-
tate dehydrogenase, all tools predicted the protein–
membrane regions, with our model additionally iden-
tifying amino acid W362 and MODA falsely identifying
the region 245-247 (Supplementary Figure S15 available
online at http://bib.oxfordjournals.org/). For phosphatase
PTEN, our model successfully identified the protein–
membrane region 263-269 of the C2 domain and the
L42 amino acid of phosphatase domain in the same
membrane plane. MODA also identified the same
phosphatase region; however, it falsely identified the
opposite side of the C2 domain as a protein–membrane
region. PPM also falsely identified the opposite side of the
C2 domain suggesting an orientation, which is opposite
to the proposed membrane orientation (Supplementary
Figure S16 available online at http://bib.oxfordjournals.
org/). For (S)-mandelate dehydrogenase, the protein–
membrane region was correctly identified by all tools, but
our model and MODA also identified amino acids 53–56
to be membrane-penetrating (Supplementary Figure S17
available online at http://bib.oxfordjournals.org/); these
amino acids lie actually at the protein–protein inter-
action interface in the homotetramer of (S)-mandelate
dehydrogenase, and are not misclassified if we perform
the predictions in the homotetramer biological assembly
(Supplementary Figure S18 available online at http://
bib.oxfordjournals.org/). For phosphatidylinositol 4,5-
bisphosphate 3-kinase alpha (PI3Kα), all tools predicted
amino acids 232–233 as a protein–membrane interface,
which is not in agreement with experimental results, but
belong in fact to the region, where PI3Kα binds to RAS
(Ras binding domain). Additionally, our model and MODA
successfully identified the p110α 863-872 and the iSH2
512-525 regions, but falsely identified the 498-508 region,
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Figure 3. The predictions of the ensemble classifier model for proteins with known protein–membrane interface regions (test set). The membrane-
penetrating amino acids predicted from our model are depicted in red and the experimental membrane-penetrating regions are denoted with red
circles. The red dotted lines represent the protein-membrane plane as proposed in the literature.

which links the C2 domain with the helical domain
(Supplementary Figure S21 available online at http://
bib.oxfordjournals.org/). The membrane orientation
resulting from PPM is different from the proposed one
[14]. Finally, for the phosphatidylcholine transfer protein,
all three tools provided the same results identifying
the experimentally proven membrane-interacting region
184-193 and an adjacent loop, while MODA additionally
predicted loop 147-148 to be membrane binding, which is
in the same plane with the other two membrane binding
regions (Supplementary Figure S22 available online at
http://bib.oxfordjournals.org/).

Furthermore, the ensemble classifier model was
applied to the full structure of prothrombin (PDB: 5EDM
[47]) and the results of identified membrane–protein
interfaces were compared with those of PPM and MODA
(Figure 4). All tools predicted the GLA domain 3-5 region
as a membrane contacting region, which is obvious for
our model because the GLA domain of prothrombin
was included in the training set. Additionally, our
model predicted amino acids Y93, W398, and V458
and MODA predicted amino acids Y93, Y377, R379 and
R484, suggesting an orientation parallel to a putative
membrane plane with a different orientation suggested
by PPM. Y93 is a key prothrombin amino acid, which is
essential for stabilizing the closed form and shields the
active site pocket of the protease domain [48]. In the
prothrombin closed form (PDB: 6BJR [48]), Y93 inserts its
aromatic side chain into the active site of the protease
domain engaging W547 (W533 of 5EDM) and forms pi-pi
interactions (Supplementary Figure S23 available online

at http://bib.oxfordjournals.org/). The results provided
by our model and MODA suggest that Y93 may penetrate
into the membrane; we thus hypothesize that when
prothrombin engages the membrane, the open form is
favored with Y93 anchoring the membrane and opening
the active site.

Finally, the ensemble classifier model was also
assessed for the prediction of the protein–membrane
regions of nine transmembrane enzymes described in
Ref. [49], which include a soluble domain performing
extracellular catalysis. In agreement with experimental
results, our model predicted amino acids that lie in the
hydrophobic lipid bilayer core, along with membrane-
interacting extracellular amino acids (93% precision)
(Supplementary Figure S24 available online at http://
bib.oxfordjournals.org/).

Discussion and Conclusions
Drugging the protein-membrane interface is relatively
underexplored due to the complexity of the interface and
the lack of a suitable workflows and simulation technol-
ogy capable of implementing such a drug design strategy.
Furthermore, protein-membrane interaction regions of
peripheral membrane proteins are commonly unknown,
and only a few rational methodologies exist that predict
these regions from the 3D protein structure. To assist in
protein–membrane interface recognition, a novel ensem-
ble machine learning classifier model is trained using
experimental data retrieved from extensive literature
search.
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 4. Comparison of the predictions provided by our model, PPM and MODA for the open form of the prothrombin protein. Our model and MODA
suggest an orientation parallel to a putative membrane plane, where Y93 inserts in the membrane which in turn opens the active site of the protease
domain (Supplementary Figure S23 available online at http://bib.oxfordjournals.org/). In our model the membrane-penetrating predictions are depicted
with red, in PPM the non-protein residues are depicted in CPK representation, and in MODA the membrane-penetrating predictions are depicted with
red secondary structure.

The ensemble classifier model results predict correctly
the membrane-penetrating amino acids in the validation
set, delivering a macro-averaged F1 score = 0.92 and an
MCC = 0.84. Additionally, using an independent test set
with experimentally known protein–membrane regions,
our model correctly identified membrane-penetrating
amino acids in these regions with only five false-positive
predictions out of 51 (91% precision). In addition, com-
parative results demonstrated that our model performed
similarly, and in some cases better, than the only two
available web-servers that predict protein–membrane
interaction sites from the 3D protein structure: PPM and
MODA. Moreover, our model successfully predicted the
membrane-interacting amino acids as well as amino
acids that lie in the hydrophobic core of the lipid
bilayer in transmembrane proteins containing a soluble
catalytic domain.

The features used in this study have a significant
impact on the performance of the ensemble classifier
model. The fact that apart from hydrophobicity and
solvent exposure, other features—such as evolutionary
conservation, secondary structure, flexibility, dihedral
angles and TAE descriptors—are important in our model
decision-making process, offers novel physicochemical
insights for the mechanisms with which peripheral
membrane proteins contact and attach to the mem-
brane.

During the development of computational tools,
several obstacles may emerge. Here, the first obstacle
was the low number of peripheral membrane proteins
with experimentally known membrane-penetrating
amino acids described in the literature. The second
and more crucial constraint was the small number of
amino acids that were tested experimentally resulting
in membrane-penetrating amino acids being marked as
non-penetrating, which in turn resulted in misinforming
the classifiers during the training process and rendering
the selection of the best ensemble classifier strenuous.
Moreover, based on the fact that membrane-penetrating

amino acids that are not experimentally confirmed are
labeled as non-penetrating, the performance metrics
(e.g. F scores) do not reflect the actual accuracy of the
ensemble classifier, which is higher, and therefore, a
direct numerical comparison of our model, PPM and
MODA results is not meaningful.

Manual inspection of false-positive results revealed
that several amino acids were located near the N- or
C-termini, or near missing loops, probably because the
area is more solvent exposed. Intriguingly, other amino
acids falsely predicted as membrane-penetrating are
found to be implicated in protein–protein interactions.
For example, in the case of (S)-mandelate dehydrogenase
homodimer our classifier model predicts as membrane-
penetrating amino acids the amino acids that are located
at the homodimer interface forming the tetramer of
the protein; when applied to the homotetramer form
of the protein all our predictions are correct. Hence, for
predicting the protein-membrane interface it is advisable
to use the complex protein structure if it is available.
The assumption that protein–membrane interactions are
similar to protein–protein interactions was also deduced
by Kufareva et al. [32], who adapted their protein–protein
interaction interface prediction PIER algorithm [33]
for MODA.

Also, it should be noted that the predictions depend
on structural information; therefore, in case a con-
formational change is necessary to place membrane-
penetrating amino acids towards the membrane, or if the
protein is intrinsically disordered, the ensemble classifier
model would not be able to predict them. Furthermore,
it should be noted that neither our model, nor PPM or
MODA are suitable tools for classifying if a protein is
a peripheral membrane protein or not. A sequence-/
evolutionary-based deep learning classifier would be
more appropriate for this purpose [50]. Also, with the
recent advancements in protein structure predictions, i.e.
AlphaFold2 [51] and RoseTTAFold [52], the structure of
unresolved proteins can be predicted with high accuracy;

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab518#supplementary-data
http://bib.oxfordjournals.org/
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however, in many cases, these models fail to fold the
N- or C-terminus or various protein segments. It is
thus recommended to remove these regions, i.e. amino
acids with confidence score (pLDDT) less than 70, before
applying our model, because these unfolded regions are
going to affect the prediction accuracy.

Our tool does not currently predict the protein-
membrane orientation; henceforth we plan to devise
methods that orient peripheral membrane proteins in
the membrane according to the predicted membrane-
penetrating amino acids. Such an approach could
involve the following steps: (i) placing the protein in
a model membrane in all possible orientations based
on the ensemble classifier predictions, (ii) measuring
the protein–membrane interface energy with an energy
function specific for this purpose, and (iii) retaining the
protein–membrane orientation with the lowest energy.
After the appropriate method to define the membrane–
protein orientation is devised, designing a web-database
with our model predictions, similar to PPM and OPM [46],
could also be envisaged. Moreover, modifying the labeling
system by partitioning the structures with a well-defined
plane into membrane penetrating and not penetrating
parts, or by labeling any amino acid within a specific
distance from the experimentally known membrane
penetrating amino acids as a true label, warrants further
investigation. Such a consideration would improve the
class imbalance problem, although the definition of a
plane and distance may be subjective to generate. Also,
incorporating the model for hydrophobic protrusions in
our model might improve the predictions, eliminating
false positives [53].

Membrane-penetrating amino acids might exert sig-
nificant allosteric control in enzymes [18, 20–25]. For
example, lipid binding is a mechanism that activates
PI3Kα, and a hotspot cancer mutation on this enzyme
acts by altering the interaction between PI3Kα and the
membrane by allosterically enhancing its activity [17].
We strongly believe that allosteric binding pockets at the
protein-membrane interface could modulate the activ-
ity of protein function representing a novel therapeutic
strategy by disrupting the protein-membrane interac-
tions [17, 54].

Key Points

• A dataset of peripheral membrane proteins with exper-
imentally known membrane-penetrating amino acids
was assembled.

• An ensemble machine learning classifier model was
trained utilizing thermodynamic, topographic and
property-based features.

• The ensemble machine learning classifier model yielded
a macro-averaged F1 score = 0.92 and an MCC = 0.84 in
identifying membrane-penetrating amino acids.

• The python code is publically available at https://github.
com/zoecournia/DREAMM.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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