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DNA methylation is a chromatin modification that plays an essential role in regulating
gene expression and genome stability and it is typically associated with gene silencing
and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methyla-
tion have the potential to provide for epigenetic inheritance of traits. Contemporary epige-
nomic technologies provide information beyond sequence variation and could supply
alternative sources of trait variation for improvement in crops such as sorghum. Yet, com-
pared with other species such as maize and rice, the sorghum DNA methylome is far
less well understood. The distribution of CG, CHG, and CHH methylation in the genome
is different compared with other species. CG and CHG methylation levels peak around
centromeric segments in the sorghum genome and are far more depleted in the gene
dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet
to be functionally characterised; better understanding of their identity and functional ana-
lysis of DNA methylation machinery mutants in diverse genotypes will be important to
better characterise the sorghum methylome. Here, we catalogue homologous genes
encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis,
maize, and rice. Discovering variation in the methylome may uncover epialleles that
provide extra information to explain trait variation and has the potential to be applied in
epigenome-wide association studies or genomic prediction. DNA methylation can also
improve genome annotations and discover regulatory elements underlying traits. Thus,
improving our knowledge of the sorghum methylome can enhance our understanding of
the molecular basis of traits and may be useful to improve sorghum performance.

Introduction
In higher plants, cytosine methylation at the 50 carbon in genomic DNA (5mC) is a conserved chro-
matin modification that plays a pivotal role in the regulation of gene expression, transgene silencing,
genomic stability, imprinting and inactivation of transposable elements (TEs) [1–4]. DNA methylation
can be inherited through meiotic and mitotic divisions in plant cells [5] and is thus an epigenetic
factor due to its heritable role in genome maintenance [6] and gene regulation [7,8]. DNA methyla-
tion states are mostly stably inherited in a mendelian fashion. However, methylation variants can
cause variability in phenotypic behaviour due to spontaneous methylation changes that cause unex-
pected non-mendelian inheritance, as is the case in paramutation [9]. Variation in the patterns of
DNA methylation may produce novel epialleles that may contribute to plant improvement and adap-
tation [10]. Profiles of DNA methylation can also be applied to refine genome annotations or identify
putative cis-regulatory elements, as has been demonstrated in Sorghum bicolor (sorghum) [11,12].
Sorghum is an important cereal due to its adaptation to biotic and abiotic stress [13–15], and its

usage in food, alcoholic beverages, animal feed and in biofuel production [16]. Its close relationship to
the other major crops such as maize [17], sugarcane, and pearl millet [18] also makes sorghum an
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attractive focus for cereal genome research. Compared with Arabidopsis or even to other grasses like maize and
rice, in sorghum there is more limited information about the regulation and natural variation for patterns of
DNA methylation. In this review, we highlight what is known about the sorghum methylome, including simi-
larities and differences to its close relative maize. Better elucidating methylation signatures in the sorghum
genome may also be useful for sorghum improvement.

Detection and distribution of DNA methylation in the
sorghum genome
Detection of DNA methylation
In plants, DNA methylation occurs in three sequence forms including CG, CHG and CHH, where H can be A,
C, or T [19]. CG and non-CG contexts both have significant potential to be methylated [20]. Methods for
DNA methylation detection include those based on bisulfite conversion, enzymatic digests that use combina-
tions of methylation sensitive and insensitive restriction enzymes, and affinity-based immunoprecipitation
methods [21–24]. Whole-genome bisulfite DNA sequencing or ‘WGBS’ is the gold-standard approach, which
generates a base-pair resolution DNA methylation map [25]. WGBS based on chemical conversion can damage
DNA and results in DNA degradation, so an enzymatic-based alternative was developed that uses 10–11 trans-
lation (TETs) dioxygenases to oxidise methylated cytosines (5-mCs), and convert unmethylated regions to
uracils by catalytic polypeptide-like 3A (APOBEC3A) treatment [26]. Owing to the high cost of whole-genome
profiling in large genomes, numerous cheaper alternatives have been developed, including sequence-capture
approaches, array-based approaches and reduced-representation strategies analogous to genotype-by-sequence
methods for genotyping [27,28]. However, these methods have significant limitations and progress in this field
would be accelerated by the development of more economical profiling methods.

Distribution of DNA methylation
Plant species show extensive variation in both levels and patterns of 50 cytosine methylation [29] (Figure 1A).
Previous studies have profiled DNA methylation in sorghum [12,29–31], maize [6,32,33], rice [34] and many
other species [35,36]. By profiling DNA methylation levels genome-wide, regions in the genome can be
grouped into different domains based on the types and levels of DNA methylation, including regions with high
CHH, CG, and CHG (‘High CHH’), regions with high CG and CHG only (‘Heterochromatin’), high CG only
(‘CG-only’ or gene body methylation), intermediate, and regions with low methylation in all contexts
(‘Unmethylated’). For maize, sorghum, and rice the relative distribution of methylation domains vary; CG and
CHG methylation occur in heterochromatic regions and are enriched at TEs and intergenic regions but
depleted in genes and comprise 79% of the large genome of maize and 47% in sorghum, and only 26% in the
smaller genome of rice (Figure 1A,B). These species vary in genome size, 389 Mb, 730 Mb, and >2 Gb in rice,
sorghum, and maize, respectively (Figure 1A). Rice maintains ∼10% CHH methylation, the highest of these
species, which is largely due to the RNA directed DNA methylation (RdDM) pathway [8]. The maize genome
is methylated least at CHH sites with <1%. Rice has a higher rate of unmethylated regions at 43% compared
with sorghum (27%) and maize (8%) (Figure 1B); however, in terms of absolute base pairs, the unmethylated
space in each genome is remarkably similar, ∼125–132 Mb (Figure 1A).
Comparing sorghum to maize, rice and Arabidopsis, in each genome, gene density is highest in the chromo-

some arms and lower towards the pericentromeric regions, although relative gene density is much, much
higher in the chromosome arms for sorghum compared with maize, rising to over 100 genes per megabase
(Figure 2A), and higher again for Arabidopsis, with over 300 gene per megabase. For sorghum rice and
Arabidopsis, the relative density of TEs and repeats displays an inverse pattern to gene density (Figure 2B). In
contrast, TE density in maize is the highest of all species and is high throughout the chromosome. Likewise,
the average DNA methylation levels along a chromosome varies between species (Figure 2C). For all, CG has
the highest levels of methylation, followed by CHG, and CHH is the least methylated form. For all species,
CHH has a low-level distribution pattern across the chromosome but is highest in rice, and also high in the
pericentromeric regions of Arabidopsis. For maize, with its high abundance of TEs, CG and CHG are main-
tained at high levels right across the chromosome, while the proportion of CG- and CHG-methylated sites
peaks around centromeric segments in sorghum, rice and Arabidopsis and are far more depleted in the gene
dense chromosome arms (Figure 2C).
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Molecular mechanisms regulating DNA methylation
DNA methylation in plant genomes occurs with the addition of a methyl group (CH3) to cytosine residues,
and is regulated by multiple complementary pathways and enzymes depending on the sequence context [1,37].
The components of the methylation pathways have been extensively studied in the model plant Arabidopsis
[38,39] and also in maize [40] and rice [41,42]. In Arabidopsis, these components have been knocked out indi-
vidually and in combination to reveal many important insights into methylation in each sequence context [39].
However, in larger crop genomes, mutants in many components have not been obtained despite attempts, sug-
gesting these genes are indispensable [40], which has hampered functional analysis. In rice, CRISPR/Cas dis-
ruption of each methyltransferases individually led to viable plants except for MET1 loss of function [42]. Most
homologous genes encoding methylation regulatory enzymes in maize have been identified [43]. Here, we
review the sorghum gene homologues based on genes identified in Arabidopsis, maize, and rice; however, func-
tional studies in sorghum are an important area for future research.

Initiating and maintaining methylation
Cytosine-50 DNA methyltransferases (C50-MTases) catalyse the addition of methyl groups with a complemen-
tary role for ‘de novo’ and ‘maintenance’ in regulating methylation [29]. C50-MTases consist of three main
enzyme groups: (1) DOMAINS REARRANGED METHYLTRANSFERASES (DRMs) that catalyse de novo
methylation in all three methylation contexts through RNA-directed DNA methylation (RdDM) [44]; (2)
METHYLTRANSFERASES (METs) that are responsible for the maintenance of CG methylation at each round

Figure 1. Comparison of DNA methylation domains between genomes.

(A) The total base pairs of each methylation domain in the maize, sorghum, rice genomes. Data sourced from Crisp et al. [11];

(B) the relative abundance of different methylation domains in the maize, sorghum and rice genomes, expressed as a percent

of each genome that can be analysed (excluding unmappable regions and regions with no data).
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of DNA replication [45]; and (3) CHROMOMETHYLASES (CMTs) that catalyse the maintenance of CHG
and CHH methylation [46,47].
De novo DNA methylation is guided by small interfering RNAs (siRNAs) and scaffold RNAs via the RdDM

pathway [19,38]. The siRNA precursors and scaffold RNAs are transcribed by two plant specific RNA polymer-
ase II (Pol II)-related enzymes including Pol IV and Pol V [48,49]. In the ‘canonical’ RdDM pathway, Pol IV
produces a single-stranded RNA (ssRNA). The ssRNA is reverse-transcribed by RNA-DEPENDENT RNA
POLYMERASE 2 (RDR2) to produce a double stranded RNA (dsRNA), which is finally cleaved to 24 nucleo-
tide (nt) siRNAs [41]. During canonical RdDM, Pol IV and Pol V are recruited to target loci by other hetero-
chromatic marks and co-factors, for example SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1) that binds

Figure 2. Distribution of genes, TEs and DNA methylation across maize, sorghum, rice, and Arabidopsis chromosome 1.

(A) Gene density expressed as the total number of genes per megabase across chromosome 1 in each species; (B) distribution

of TEs across chromosome 1 in each species expressed as percent of base pairs annotated as TE; (C) the average level of CG,

CHG and CHH methylation per megabase. Methylation levels were determined per 100 bp tile and then averaged into

megabase tiles across chromosomes for each species. Each chromosome is set to the same scale to illustrate the different

size of maize (B73), sorghum (Btx623), rice (Nipponbare), and Arabidopsis (Col-0) chromosomes. Gene annotations sourced

from Phytozome13, methylation data for maize, sorghum and rice sourced from Crisp et al. [11] and Arabidopsis from Crisp

et al. [129]; TE annotations generated using EDTA [130] and the maize TE annotation generated using EDTA sourced from

Hufford et al. [131].
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histone H3 lysine 9 methylation (H3K9me2) [50,51]. The initiation of RdDM has been more enigmatic;
however, recent findings suggest that the self-reenforcing cycle of RdDM is initiated by an AGO4 clade
ARGONAUTE guided by an siRNA to a locus independent of pre-existing DNA methylation [52].
In plants, the RdDM pathway recruits DRMs for maintenance of CHH methylation [38,53]. In rice,

OsDRM2 plays a major role in CHH methylation [8]. The siRNAs binding to ARGONAUTE 4 (AGO4) or
AGO6 and scaffold RNAs activate the enzyme DOMAINS REARRANGED METHYLTRANSFERASES 2
(DRM2) for DNA methylation at the target loci [53,54]. CMT2 in Arabidopsis also plays a role in the mainten-
ance of CHH methylation [46]; while maize lacks a CMT2 homologue, sorghum does have a homologue,
SbCMT2 (Sobic.009G083900). In the maize genome, DRM-like genes ZMET3 and ZMET7 are homologous to
Arabidopsis DRM1 and DRM2, and ZMET6 that is related to DRM3 [40]. Homologues of DRM1/DRM2, and
DRM3 in sorghum are SbDRM2 (Sobic.003G124000) and SbDRM3 (Sobic.009G032200) (Table 1).
Following DNA replication, the methylation patterns for CG, CHG, and CHH are maintained by different

mechanisms [38]. DNA METHYLTRANSFERASE 1 (MET1) is responsible for maintenance of CG sites in
Arabidopsis [38]. The rice genome encodes two redundant MET1 genes, OsMET1-1 and OsMET1-2 that main-
tain methylation at CG sites, with higher levels of OsMET1-2 expression [55]. The maize genome encodes two
tandemly duplicated MET1-like genes that are both in the monocot MET1b clade [56], including ZmMET1b-1
(Zm00001eb301630) and ZmMET1b-2 (Zm00001eb301620) [43]. In sorghum, there is a homologue of rice
OsMET1a, SbMET1a (Sobic.001G055700) and a homologue of the maize ZmMET1b duplicates, SbMET1b
(Sobic.002G056000) (Table 1).
The methylation of CHG sites is maintained by chromomethylases (CMTs) in a reinforcing loop and

requires the activity of a chromodomain, which recognises specific histone modifications [41]. In this loop,
histone H3 lysine 9 di-methylation (H3K9me2) is catalysed by the H3K9 methyltransferases KRYPTONITE
(KYP)/SUPPRESSOR OF VARIEGATION 3–9 HOMOLOGUE 4/5/6 (SUVH4/5/6) at genomic regions [57,58].
Arabidopsis has three CMT genes: CMT1, CMT2 and CMT3 [4], although CHG methylation relies on the
chromomethylases CMT3 rather than CMT2 [47,57] and CMT1 function is unknown. There are in-paralogs of
CMT3 in maize ZMET2 and ZMET5 that catalyse the maintenance of CHG sites [40,59], that have a close rela-
tionship with CMTs in other monocots but the maize genes are considered a separate subclade and named
ZMETs . Based on the genealogical relationship between CMTs and ZMETs, it is suggested that they have been
derived from an ancestral whole-genome duplication among angiosperms [60]. Maize ZMET2 seems to con-
tribute to the maintenance of CHG as a main functional homologue with CMT3, while its paralog ZMET5 is
expressed to lesser degree [40,59]. ZMETs in sorghum also arose from two independent duplications, which
might have been derived from Poaceae-specific duplication events [61]. However, there are differences between
genes and amino acids of ZMETs in sorghum compared with maize [61]; the sorghum homologues are
SbCMT3a (Sobic.004G197400) and SbCMT3b (Sobic.006G214000) (Table 1). In rice, three CMT genes includ-
ing OsCMT2, OsCMT3a, and OsCMT3b have been identified; however OsCMT3a takes charge of maintaining
CHG sites as the main functional homologue of CMT3 that contributes in the expression of genes and TEs,
while OsCMT3b seems to contribute at minor level [42,62]. The chromomethylase CMT2 recognises
H3K9me2 within deep heterochromatin enriched with TEs to methylate CHH [63]. Rice, unlike maize, does
have a functional CMT2 homologue, OsCMT2 [62], which is also homologous to sorghum SbCMT2
(Sobic.009G083900) (Table 1).
The maintenance of DNA methylation is also regulated by chromatin remodellers [41]. DECREASE IN

DNA METHYLATION1 (DDM1) is a nucleosome remodeller, and is required to maintain DNA methylation
in Arabidopsis especially at TEs [46]. The two homologues of DDM1 in maize (ZmDDM1a and ZmDDM1b),
are highly expressed with similar patterns including in the embryo [40,64] and play a critical role for CHG
methylation, and to a lesser extent for CGs in heterochromatic regions. DDM1 also contributes to methylation
of CHH islands, located in euchromatic regions in interaction with ZmAGO4 [65,66]. In sorghum, DDM
homologues are SbDDM1a (Sobic.002G021200) and SbDDM1b (Sobic.001G109700) (Table 1).

Demethylation
In addition to de novo methylation and maintenance, demethylation can play a critical role in plants, for
example, controlling fruit ripening, in gametophytes, and in plant aging and senescence [67,68]. In plants,
demethylation events occur through the base excision repair pathway, which itself is an essential defense
pathway for the genome and performs the replacement of 5-methylcytosine with cytosine in an active demethy-
lation process [69]. Passive demethylation also contributes to demethylation, where 5-methylcytosine is diluted
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from the genome during DNA replication [4]. In Arabidopsis, four genes have been identified as 5-
methylcytosine DNA glycosylases (DNGs) belonging to three distinct orthology groups, the REPRESSOR OF
SILENCING 1 (ROS1), DEMETER (DME) and two DEMETER-Likes, DML2 and DML3 [70]. ROS1 plays an

Table 1 Methylation and Demethylation genes in sorghum

Gene
Sorghum
gene

Sorghum
identifier

Homologues

Maize Rice
Arabidopsis
[75]

Methylation MET1b SbMET1b Sobic.002G056000 ZmMET1b-1
(Zm00001eb301630)
and ZmMET1b-2
(Zm00001eb301620)
[43]

OsMET1-2
(LOC_Os07g08500) [55]

AtMET1
(AT5G49160)

MET1a SbMET1a Sobic.001G055700 OsMET1-1
(LOC_Os03g58400) [55]

AtMET1
(AT5G49160)

CMT3/
Zmet

SbCMT3a Sobic.004G197400 ZMET5
(Zm00001d002330 v4
*missing in maize v5)
[40]

OsCMT3a (LOC_Os10
g01570) [41,62]

AtCMT3
(AT1G69770)

CMT3/
Zmet

SbCMT3b Sobic.006G214000 ZMET5
(Zm00001d002330) and
ZMET2
(Zm00001d026291) [40]

OsCMT3b
(LOC_Os03g12570) [41]

AtCMT3
(AT1G69770)

DDM1a SbDDM1a Sobic.002G021200 CHR101 (ZmDDM1A;
Zm00001eb117870)

OsDDM1a
(LOC_Os09g27060) [8]

AtDDM1
(AT5G66750)

DDM1b SbDDM1b Sobic.001G109700 CHR101 ZmDDM1A;
Zm00001eb117870) or
CHR106 (ZmDDM1B;
Zm00001eb055640)
[40,64]

OsDDM1b
(LOC_Os03g51230) [8]

AtDDM1
(AT5G66750)

CMT2 SbCMT2 Sobic.009G083900 OsCMT2
(LOC_Os05g13780) [46]

AtCMT2
(AT4G19020)

DRM1/
DRM2

SbDRM2 Sobic.003G124000 ZMET3 (Dmt103;
Zm00001eb404130),
ZMET7 (Dmt107;
Zm00001eb000820) [40]

OsDRM1a
(LOC_Os11g01810);
OsDRM1b
(LOC_Os12g01800);
OsDRM2
(LOC_Os03g02010) [41]

AtDRM1
(AT5G15380)

DRM3 SbDRM3 Sobic.009G032200 ZMET6 (Dmt106;
Zm00001eb354730) [40]

OsDRM3
(LOC_Os05g04330)
[42,76]

AtDRM1
(AT5G15380)

Demethylation ROS1 SbROS1c Sobic.008G085300 DNG102
(Zm00001eb241240)
[43,74]

OsROS1a
(LOC_Os01g11900)
OsROS1b-d
(LOC_Os05g37410,
LOC_Os05g37350,
LOC_Os02g29230)
[73,77]

AtROS1
(AT2G36490);
AtDML2
(AT3G10010)

ROS1 SbROS1b Sobic.004G149800 DNG101
(Zm00001eb202980)
[43,74]

As above As above

ROS1 SbROS1a Sobic.009G155900 DNG103
(Zm00001eb289030)
[43,74]

As above As above

DML3 SbDML3 Sobic.006G224100 DNG105 ZmDML3
(Zm00001eb241310)
[73]

OsDML3a-b
(LOC_Os04g28860;
LOC_Os02g29380) [41]

AtDML3
(AT4G34060)

To identify putative genes in sorghum associated with methylation and demethylation, the homologous genes previously annotated for Arabidopsis, maize
and rice genomes were identified through literature searches (as cited) and each pairwise aligned to the sorghum genome using the BLAST tool (NCBI).
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essential role in deactivation of methylated cytosines and inhibits transcriptional silencing of both transgenic
and endogenes loci in the Arabidopsis genome [71]. It is also reported that there is a dynamic counteraction
between the RdDM and DNA demethylation for ROS1 expression, so that RdDM targets methylation in the
promoter of ROS1, but in another way, prevents ROS1 hypermethylation by inducing ROS1 transcription that
leads to active DNA demethylation [71,72]. Monocots lack DME orthologs but do have ROS1 and DML ortho-
logs [73]. Two homologues in the maize genome for ROS1; DNG101 and DNG103 have been reported [43].
Sorghum genes of the DNG family include SbROS1a, SbROS1b, and SbROS1c that are homologous to
DNG103 (Zm00001eb289030), DNG101 (Zm00001eb202980), and DNG102 (Zm00001eb241240) in maize
[43,74] (Table 1). The sorghum genome also encodes a homologue to ZmDML3 [73], SbDML3
(Sobic.006G224100), that is a DME-like gene, (Table 1). However, the functional activity of these sorghum
demethylation pathway genes needs to be experimentally explored.

Opportunities and challenges for crop improvement
Variation in DNA can underpin phenotypic traits of agronomic relevance [7,78,79]. In this section, we high-
light areas that require a better understanding in sorghum in order to leverage the methylome for crop
improvement, and discuss avenues for implementation. It is not yet clear if some traits might be more amen-
able to improvement via epigenetic approaches; however, it will be valuable to investigate this for key targets
for agronomic improvement. Example key traits include, yield and yield components such as grain size and
number; abiotic stress tolerance, including cold tolerance at emergence, heat tolerance during flowering and
drought tolerance; and grain quality and digestibility.

Heritability
Patterns of symmetric DNA methylation can be faithfully maintained and inherited through cell divisions and
even CHH methylation can be propagated via the RdDM pathway. This means that patterns of methylation are
highly stable for much of the life cycle of plants, especially during vegetative development. That said, tissue spe-
cific differences in methylation are reported, including in sorghum [30,80]. Epigenetic reprogramming causes
changes in DNA methylation states during gametogenesis [81], and in turn affects reproductive lineages.
Notably, the agronomically valuable cereal endosperm is one tissue where DNA methylation levels are reduced
compared with other tissues, which has been observed in rice [82], maize [83] and sorghum [80].
The heritability of DNA methylation states can be defined by the three classes of epiallele: obligatory, facili-

tated, and pure [84]. Obligatory epialleles are a direct result of cis- and trans-acting sequence variation. As an
example, an insertion of a transposon can be associated with epigenetic silencing of neighbouring coding
sequences. Facilitated epialleles are also linked to genetic variation but can act independently; an example is
where a transposon causes methylation in a nearby gene but then is segregated out [5,84]. Facilitated epigenetic
variation could occur due to either local or cis-acting genetic variants or trans-acting variants [85,86]. Lastly,
pure epialleles are entirely independent of genetic variation, and are generated by the activity (or failure) of the
DNA methylation/demethylation pathways [84]. Changes in methylation for epialleles have a potential to
persist and pass onto the next generations as epigenetic alleles independent of the underlying DNA sequence,
and could influence phenotypic variation in traits making them of interest to applied breeding programs [87].
Importantly, only obligatory and cis-acting facilitated epialleles might be already captured by genetic marker-
based (e.g. SNP) selections schemes, while epialleles generated by trans-acting variants and pure epialleles are
likely to escape genetic marker-based selection [86].
For a particular genomic region, methylation levels can be categorised as non-methylated, low, partial, or

high-methylated, and the heritability of these states range from high stability to entire instability [86,88].
Epigenetic variation derived from trans-acting genetic factors and genetic variants may cause a paramutation,
which is an interaction between alleles for a specific region/locus that potentially alter mendelian inheritance
and lead to a heritably altered gene expression state through mitosis [89]. Epigenetic alleles or ‘epialleles’ can
drive changes in phenotype across generations in the absence of any DNA sequence changes (SNPs) [90].
Spontaneous or random errors in the maintenance of methylation lead to ‘epimutation’ and generate single
methylation polymorphisms (SMPs) including CG-, CHG-, CHH-SMPs [91], or differentially methylated
regions (DMRs) [92]. Spontaneous epimutation rates are estimated to be similar across species [93], with SMPs
in the range 1 × 10−4 to 10−5 sites/haploid/generation, which is far higher than SNPs (1 × 10−8 to 10−9) [86]. In
contrast with SMPs, the level of methylation across larger regions is more stable (1 × 10−5 to 10−6 sites/haploid/
generation) [94,95]. Even in the face of environmental stress, DNA methylation is highly stable over generations
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[94]. DMRs among genotypes are very heritable, although they have lower stability in comparison with SNPs
[86,92], which can be due to spontaneous backward epimutation in CG sites [96].

Natural variation
Comparisons of DNA methylation from different varieties or genotypes within a species have identified exten-
sive natural variation. However, for most species and especially for crop species, profiling large populations is
very limited. Extensive variation has been identified in Arabidopsis [91,97], the only species to have been pro-
filed on a population scale. Consistent with findings in Arabidopsis, smaller-scale studies in maize, soybean,
rice, wheat and brachypodium [86] point to extensive variation, including variants associated with domestica-
tion. Likewise, sequence capture profiling of ∼0.2% of the hexaploid wheat genome [98] identified diversity
associated with agronomic traits among 104 varieties [99]. Profiling of 263 diverse maize varieties found many
epialleles that were associated with gene expression changes and metabolic traits [6]. Importantly, around half
of the trait associated regions with methylation polymorphisms identified in this study would not have been
identified by profiling SNPs. The extent and spectrum of natural variation within sorghum is an exciting area
for future research.

Inducing variation
Future efforts that seek to use epialleles for sorghum improvement could take advantage of several important
sources of induced variation including chemical treatments, tissue culturing and genetic and epigenetic muta-
tion. For example, new epialleles for the gene pericarp color1 (p1) derived from tissue culture in maize, showed
loss of pigmentation [100]. Also, induced epigenetic changes during tissue culture in rice were reported to be
inherited in regenerated plants [101], and can also lead to activation of the Tos17 retrotransposon [102–105].
Tissue culture induced changes in DNA methylation have also been observed in sorghum using MSAP profil-
ing [106]. Mutation in MET1 or DDM1 globally decreases CG methylation [7], which can be used to generate
epigenetic recombinant inbred lines (epiRILs). epiRILs have been very useful in investigating the epigenetic
basis of traits, although populations in large genome crop species are yet to be generated [5]. Chemicals such
as zebularine can also be used to generate populations of epi-mutagenised plants, which has been applied to
wheat to select for variation in flowering time and spike morphology [107]. Going forward, the use of epi-
genome editing will be a powerful alternative means to precisely generate or investigate epialleles [2]. Some
studies have also found that the environment can induce changes in methylation. For example, a study on root
system architecture found methylation variation associated with environmental stresses [108]; other studies
have found that DNA methylome is stable under stresses [94].

Use of epigenetic variation in trait dissection
The most straightforward application of DNA methylation in breeding would be to use methylation marks for
selection of epi-haplotypes associated with phenotypes of interest [109]. The impact of such an approach
would require that epialleles were frequent and explained significant amounts of phenotypic variation and were
stably transmitted [110,111]. Data from a range of crops suggests this may indeed be the case. Epigenetic var-
iants have been shown to contribute to agronomic traits such as dwarf phenotypes in rice [112,113], drought
and salt tolerance in rice [114], increase in protein and decrease in oil contents in Brassica napus [115].
NMR19-4 was reported as a stable environmental-associated epiallele that negatively regulates the expression of
a PHEOPHYTIN PHEOPHORBIDE HYDROLASE (PPH), which may result in variations in leaf senescence
[116]. Thus, epigenome-wide association studies (EWAS) could complement genome association studies
[117,118]. Several DMRs in Arabidopsis are epiQTLs that control flowering time and root length, and account-
ing for between 60–90% stable inheritance, which could be used as epi-markers for selection trials [119].
EWAS has been used in maize to identify genomic regions with differential methylation associated with traits
that would be missed by SNP based GWAS alone [6].
Genetic mapping and GWAS studies play a crucial role in our ability to understand the genetic architecture

of complex traits and identify markers for major genes that can be used in marker-assisted selection. Yet, some-
times these markers fall outside of genes. Chromatin profiling and the patterns of DNA methylation can be
used to refine genome annotations and identify functional genomic elements [120]. In sorghum, DNA methy-
lation profiles have been used to identify high confidence gene models from draft annotations [121].
Identifying the unmethylated portion of the genome is also a powerful method to identify putative cis-
regulatory elements and expressed genes and has been successfully applied to sorghum [11]. This use of
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methylation in this way can aid in better understanding of the sorghum genome and the molecular basis of
traits including quantitative trait loci (QTLs), which can contribute to crop improvement molecular breeding
strategies.

Use of epigenetic variation to enhance genomic selection
DNA methylation signatures also have potential to be incorporated in genomic selection schemes [122]. For
example, in Arabidopsis DNA methylation data has been used to predict plant height [123]. Inclusion of epial-
leles in genomic selection models would require research to identify the best way to exploit this data and inte-
grate it into genomic selection models, however, it will be very interesting to see if this can improve predictive
power. In addition, prediction for performance of F1 hybrids remains challenging; genetic information is not
sufficient for predicting heterosis perfectly, epigenome profiles may improve genome prediction due to epigen-
etic contributions to heterosis [124,125]. Thus, epigenetic modelling has the potential to fill current gaps and
enhance our ability to predict phenotypic behaviour [126].

Use of epigenetic variation to modify meiotic recombination
Meiotic recombination has a critical influence on genetic gain in plant breeding programs. In some situations,
high recombination can be favourable, such as when it is necessary to reduce the impact of linkage drag while
in other situations lower recombination may be helpful in retaining favourable linkage blocks. Changes in
methylation in both CG [127] and non-CG [128] contexts in pericentromeric heterochromatin in Arabidopsis
has been shown to increase meiotic recombination. It is conceivable that if methylation can be manipulated in
sorghum, that could be used to favourably change recombination rate to enhance progress in breeding pro-
grams, for example by enabling access to variation in regions of low recombination.

Perspectives
• DNA methylation is a chromatin modification that may provide an untapped layer of informa-

tion on top of DNA sequence.

• This information is heritable, therefore, DNA methylation may provide a mechanism of epigen-
etic inheritance of trait variation that could be helpful in sorghum crop improvement. The
sorghum DNA methylome and the genes regulating DNA methylation are understudied.

• It will be critical to determine the extent of variation for DNA methylation and the heritability of
these epialleles in sorghum because this information could be very useful in selection,
genomic prediction, pre-breeding and research, and complement current genetic approaches.
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