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Abstract

With the great advancements in experimental data, computational power and learning algo-

rithms, artificial intelligence (AI) based drug design has begun to gain momentum recently.

AI-based drug design has great promise to revolutionize pharmaceutical industries by signif-

icantly reducing the time and cost in drug discovery processes. However, a major issue

remains for all AI-based learning model that is efficient molecular representations. Here we

propose Dowker complex (DC) based molecular interaction representations and Riemann

Zeta function based molecular featurization, for the first time. Molecular interactions

between proteins and ligands (or others) are modeled as Dowker complexes. A multiscale

representation is generated by using a filtration process, during which a series of DCs are

generated at different scales. Combinatorial (Hodge) Laplacian matrices are constructed

from these DCs, and the Riemann zeta functions from their spectral information can be

used as molecular descriptors. To validate our models, we consider protein-ligand binding

affinity prediction. Our DC-based machine learning (DCML) models, in particular, DC-based

gradient boosting tree (DC-GBT), are tested on three most-commonly used datasets, i.e.,

including PDBbind-2007, PDBbind-2013 and PDBbind-2016, and extensively compared

with other existing state-of-the-art models. It has been found that our DC-based descriptors

can achieve the state-of-the-art results and have better performance than all machine learn-

ing models with traditional molecular descriptors. Our Dowker complex based machine

learning models can be used in other tasks in AI-based drug design and molecular data

analysis.

Author summary

With the ever-increasing accumulation of chemical and biomolecular data, data-driven

artificial intelligence (AI) models will usher in an era of faster, cheaper and more-efficient

drug design and drug discovery. However, unlike image, text, video, audio data, molecular
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data from chemistry and biology, have much complicated three-dimensional structures,

as well as physical and chemical properties. Efficient molecular representations and

descriptors are key to the success of machine learning models in drug design. Here, we

propose Dowker complex based molecular representation and Riemann Zeta function

based molecular featurization, for the first time. To characterize the complicated molecu-

lar structures and interactions at the atomic level, Dowker complexes are constructed.

Based on them, intrinsic mathematical invariants are derived and used as molecular

descriptors, which can be further combined with machine learning and deep learning

models. Our model has achieved state-of-the-art results in protein-ligand binding affinity

prediction, demonstrating its great potential for other drug design and discovery

problems.

Introduction

Featurization (or feature engineering) is of essential importance for AI-based drug design. The

performance of quantitative structure activity/property relationship (QSAR/QSPR) models

and machine learning models for biomolecular data analysis is largely determined by the

design of proper molecular descriptors/fingerprints. Currently, more than 5000 types of

molecular descriptors, which are based on molecular structural, chemical, physical and biolog-

ical properties, have been proposed [1, 2]. Among these molecular features, structural descrip-

tors are the most-widely used ones and can be classified into one-dimensional (1D), two-

dimensional (2D), three-dimensional (3D), and four-dimensional (4D) [1, 2]. In general, 1D

molecular descriptors are atom counts, bond counts, molecular weight, fragment counts, func-

tional group counts, and other summarized general properties. The 2D molecular descriptors

are topological indices, graph properties, combinatorial properties, molecular profiles, auto-

correlation coefficients, and other topological/graphic/combintorial properties. The 3D molec-

ular descriptors are molecular surface properties, volume properties, autocorrelation

descriptors, substituent constants, quantum chemical descriptors, and other geometric or den-

sity-function related properties. The 4D chemical descriptors are usually generated from a

dynamic process that covers various molecular configurations. Further, various molecular fin-

gerprints are proposed, including substructure key based fingerprints [3], path-based finger-

prints [4, 5], circular fingerprints [6], pharmacophore fingerprints [7, 8], and autoencoded

fingerprints. Different from molecular descriptors, molecular fingerprint is large-sized vector

of molecular features that are systematically generated based on molecular properties, in par-

ticular, structural properties. Deep learning models, such as antoencoder, CNN, and GNN,

have also been used in molecular fingerprint generation [9–13].

The generalizability and transferability of QSAR/QSPR and machine learning models are

highly related to molecular descriptors or fingerprints. Features that characterize more intrin-

sic and fundamental properties can be better shared between data and “understood” by

machine learning models. Mathematical invariants, from geometry, topology, algebra, combi-

natorics and number theory, are highly abstract quantities that describe the most intrinsic and

fundamental rules and properties in nature sciences. In particular, topological and geometric

invariants based molecular descriptors have achieved great successes in various steps of drug

design, including protein-ligand binding affinity prediction [14–18], protein stability change

upon mutation prediction [19, 20], toxicity prediction [21], solvation free energy prediction

[22, 23], partition coefficient and aqueous solubility [24], binding pocket detection [25], and

drug discovery [26]. These models have also demonstrated great advantages over traditional
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molecular representations in D3R Grand challenge [27–29]. Recently, persistent models,

including hypergraph-based persistent homology [30, 31], persistent spectral [32], and persis-

tent Ricci curvature [33–36], have been developed for molecular characterization and deliv-

ered great performance in protein-ligand binding affinity prediction.

Dowker complex (DC) is developed for the characterization of relations between two sets

[37–39]. Mathematically, Dowker complex (DC) is defined on two sets X and Y with a relation

R, which is a subset of the product set X × Y. The elements in the same set can form a simplex

in DC if they all have relation with a common element from the other set. Note that only ele-

ments in the same set, i.e., either X or Y, can form simplexes. Stated differently, a simplex in

DC can never be formed among elements from both sets. In this way, a DC can be separated

into two disjoint simplicial complexes, i.e., one with elements all from X and the other with ele-

ments all from Y. These two simplicial complexes share the same homology groups, homotopy

groups, and homotopy types [37, 38]. Moreover, DCs are equivalent to Neighborhood com-

plex (NC) for all bipartite graphs. In fact, if the relations between two sets are represented by a

bipartite graph, its associated DC is exact the same as NC. Further, Riemann Zeta function or

Euler Riemann Zeta function, is a mathematical function of a complex variable. The Riemann

Zeta function plays a pivotal role in analytic number theory and has applications in physics,

probability theory, and applied statistics. Mathematically, Riemann Zeta function can be used

in the characterization of intrinsic information of the system.

Here we propose Dowker complex based molecular interaction representations and Rie-

mann Zeta function based molecular featurization, for the first time. More specifically, a bipar-

tite graph can be used to model the interactions between two molecules, such as a protein and

a ligand. Mathematically, a bipartite graph can be viewed as a relation between two sets, and a

Dowker complex can be generated naturally from it. Further, a DC has two disjoint compo-

nents, which share the same homology groups. For a protein-ligand complex, protein-based

DC and ligand-based DC have the same Betti number. Further, DC-based persistent spectral

models can be constructed from a filtration process, and persistent Riemann Zeta functions

are used as molecular descriptors or fingerprints. Our DC-based machine learning models, in

particular, DC-based gradient boosting tree (DC-GBT), are extensively tested on the three

most-commonly used datasets from the well-established protein-ligand binding databank of

PDBbind. It is found that our DC-GBT model has achieved state-of-the-art results and are bet-

ter than all machine learning models with traditional molecular descriptors.

Results

DC-based biomolecular interaction analysis

Molecular representation and featurization are of essential importance for the analysis of

molecular data from materials, chemistry and biology. Mathematical invariant based molecu-

lar descriptors are of greater transferability thus have achieved better performance in AI-based

drug design [20, 40–42]. Here we propose the first DC-based representations for molecular

interaction analysis.

Bipartite graph-based molecular interaction characterization. Graph theory is widely

used for the description and characterization of molecular structures and interactions. A

molecular graph G = (V, E) is composed of a set of vertices V, with each vertex representing

molecular atom, residue, motif, or even the entire molecule, and a set of edges E, representing

interactions of various kinds including covalent bonds, van der Walls, electrostatic, and other

non-covalent forces. Both intra- and inter- molecular interactions, i.e., interactions within and

between molecules, can be represented as bipartite graphs (also known as bigraphs or 2-mode

networks). Mathematically, a bipartite graph G(V1, V2, E) has two vertex sets V1 and V2, and
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all its edges are formed only between the two vertex sets. Recently, bipartite-graph based inter-

active matrixes have been used for machine learning models in drug design and achieved great

success [20, 30–34, 40]. Mathematically, these interactive matrixes, which are based on atomic

distances and electrostatic interactions, can be transformed into a weighted biadjacency

matrixes between protein and ligand atoms. More specifically, if we let VP = {vi|i = 0, 1, . . .,

NP} and VL = {vj|j = 0, 1, . . ., NL} represent the coordinate sets of protein and ligand atoms

respectively, the biadjacency matrix B with a size NP × NL is defined as follows,

Bðvi; vjÞ ¼ wij; vi 2 VP and vj 2 VL: ð1Þ

The weights wij can be chosen as the Euclidean distances or electrostatic interactions [20].

Essentially, inter-molecular interactions between protein and ligand atoms are characterized

in the above biadjacency matrix.

Two individual unipartite graphs G1 and G2 can be constructed from a bipartite graph G
(V1, V2, E) through a projection process [43, 44]. More specifically, the unipartite graph G1 is

generated from vertex set V1, and its edges are defined between any two vertices that have a

common neighborhood vertex in V2. Similarly, the unipartite graph G2 is based on vertex set

V2, and any two vertices that have a common neighborhood vertex in V1 will form an edge in

G2. Mathematically, the connection matrixes for the unipartite graphs can be generated from

the adjacency matrix as in Eq (1). The connection matrixes for protein and ligand are BBT and

BTB, respectively. Note that the two matrixes are of different sizes. Further, based on the uni-

partite graphs G1 and G2, two flag complexes (or clique complexes), KF,1(G) and KF,2(G) can be

constructed respectively. More specifically, in the two flag complexes, a k-complex is formed

among k + 1 vertices when any two vertices are connected by an edge.

Bipartite graph-based DC models. Mathematically, a bipartite graph can be seen as a

relation. Two Dowker complexs KD,1(G) and KD,2(G) can be naturally constructed from a

bipartite graph G(V1, V2, E). The DC KD,1(G) is defined on V1, and its k-simplex is formed

among k + 1 vertices which have “relations”, i.e., forming edges, with a common vertex in V2.

Similarly, the DC KD,2(G) is based on V2, and its k-simplex is formed among k + 1 vertices

which are “related to” a common vertex in V1. Note that when vertices are related to a com-

mon vertex, that means they share the same common neighborhood vertex and a DC-based

simplex will be formed among them.

Further, the Dowker theorem states that the homology of KD,1(G) and KD,2(G) are isomor-

phic, which means Hp(KD,1(G))ffiHp(KD,1(G))(p> 0), and 0-th homology is isomorphic if the

bipartite graph G is connected [38, 39]. It is worth mentioning that the flag complexes, i.e.,

KF,1(G) and KF,2(G), from the unipartite graphs are usually different from the DCs. Fig 1 illus-

trates the bipartite graph-based DCs and their persistent barcodes. The bipartite graph is gen-

erated from the phosphorus-phosphorus (P-P) interactions between two chains from DNA

1D77. The corresponding DC has two disjoint components, one from chain A and the other

from chain B. The distance-based filtration process is considered and two persistent barcodes

for chain A and chain B are generated. It can be observed that β1 persistent barcodes are

exactly the same. Note that β0 persistent barcodes are not the same as the bipartite graphs are

not always connected during the filtration process.

DC-based persistent spectral models

For all the persistent models, including persistent homology/cohomology, persistent spectral

and persistent function, the key point is the filtration process. There are various ways to define

the filtration parameter, leading to different filtration processes. For topology-based protein-

ligand interaction models, we can define the filtration parameter f as the weight value of the
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biadjacency matrix in Eq (1). With the increase of filtration value, a series of nested bipartite

graphs can be generated,

Gf0
� Gf1

� . . . � Gfn
: ð2Þ

Here (f0 ⩽ f1 ⩽ . . . ⩽ fn) are filtration values. The corresponding DCs can be constructed

accordingly as follows,

KDðGf0
Þ � KDðGf1

Þ � . . . � KDðGfn
Þ: ð3Þ

In fact, we have two disjointed series of nested DCs as follows,

KD;1ðGf0
Þ � KD;1ðGf1

Þ � . . . � KD;1ðGfn
Þ: ð4Þ

KD;2ðGf0
Þ � KD;2ðGf1

Þ � . . . � KD;2ðGfn
Þ: ð5Þ

Note that the first DC series fKN;1ðGfi
Þg are for protein part, all of their vertices are protein

atoms. In contrast, the second DC series fKN;2ðGfi
Þg are fully based on ligand atoms. From

Dowker’s theorem, these two DC series share the same homology groups, i.e., HpðKD;1ðGfi
ÞÞ ffi

HpðKD;2ðGfi
ÞÞ (p> 0, i = 1, 2, . . ., n).

Persistent spectral (PerSpect) models are proposed to study the persistence and variation of

spectral information of the topological representations during a filtration process [32]. These

spectral information can be used as molecular descriptors or fingerprints and combined with

machine learning models for drug design. Here we study DC-bases persistent spectral models.

From the Eqs (4) and (5), two sequences of Hodge Laplacian matrixes can be generated respec-

tively (see Materials and methods). These matrixes characterize the interactions between pro-

tein and ligand atoms at various different scales. The spectral information derived from these

Hodge Laplacian matrixes are used for the characterization of protein-ligand interactions. Fig

2 illustrates DC-based filtration process and the corresponding Hodge Laplacian matrixes for

the protein-ligand complex 2POG. From the bipartite sequence, two separated series of DCs

Fig 1. Dowker complex based representation for the atomic interactions between two chains of DNA 1D77. Only

the Phosphor (P) atoms of the DNA are considered. A bipartite graph is constructed between the two DNA chains, i.e.,

chain A and chain B, using a cutoff distance of 16.5 Å. The corresponding Dowker complex is generated and consists

of two disjoint components, one from chain A and the other from chain B. The cutoff distance can be used a filtration

parameter and two persistent barcodes are obtained. It can be seen that the β1 persistent barcodes are exactly the same

for the two types of DCs from chain A and chain B. The β0 persistent barcodes are different because the bipartite graph

are not always connected during the filtration process.

https://doi.org/10.1371/journal.pcbi.1009943.g001
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are generated based on protein atoms and ligand atoms respectively. We consider the

0-dimensional (0-D) and 1-dimensional (1-D) Hodge Laplacian matrices. Note that 0-D

Hodge Laplacian matrices represent topological connections between vertices, while 1-D

matrixes characterize topological connections between edges. Similarly, other-higher dimen-

sional Hodge Laplacian matrixes can be generated for higher-dimensional simplexes. Further,

the multiplicity of zero-eigenvalues for the k-th dimensional Hodge Laplacian matrices is βk,

i.e., the k-th Betti number. Additionally, information from non-zero-eigenvalues indicates

“geometric” properties of the simplicial complexes [32].

Spectral information, i.e., eigenvalues and eigenvectors, from our PerSpect models can not

be directed used in machine learning models. This is due to the reason that their sizes vary dra-

matically during the filtration process. As seen in Fig 2, the number of 1-simplexes (edges)

increases greatly during the filtration. In this way, the size of 1-D Hodge Laplacian matrices

and the number of related eigenvalues and eigenvectors will increase with the filtration. In our

PerSpect models, a series of persistent attributes are considered [32]. The persistent attributes

Fig 2. Persistent combinatorial Laplacian matrixes for Dowker complex from C-C pair of PDBID 2POG. As in the

picture, based on the filtration process of bipartite graphes, a filtration of Dowker complexes can be generated and

further divided into two disjoint filtration processes in protein and ligand. Then for each filtration process, two

sequence of laplacian matrixes in dimension 0 and 1 are depicted. The cutoff extracting the binding core region is 5Å,

filtration values are 3.5Å, 4Å, 4.2Å, 4.5Å and 5Å. For 0-D laplacian matrixes, with the increase of filtration value, the

matrix size is always same, off-diagonal entries decrease from 0 to -1 until all become -1 and diagonal entries increase

until all up to the number of 0-simplexes minus 1. For 1-D laplacian matrixes, the matrix size increase consistently

until up to a constant, and off-diagonal entries have nonzero values 1 and -1 due to their oriention and the number of

off-diagonal nonzero entries increase at early stage and then decrease until all go to zero, and diagonal entries increase

until all up to the number of 0-simplexes.

https://doi.org/10.1371/journal.pcbi.1009943.g002
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are statistic and combinatorial properties of eigenvalues from the sequences of Hodge Lapla-

cian matrices. They characterize the persistence and variation of spectral information during

the filtration.

Here we can use eigenvalue-based Riemann Zeta functions. More specifically, for a set of

eigenvalues {λ1, λ2, . . ., λn}, the Riemann Zeta functions are defined as,

zðsÞ ¼
Xn

i¼1

1

l
s
i

:

They can be used as molecular features for machine learning. In our model, we consider 11

types of different Riemann Zeta functions, i.e., z(s) with s = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5. Note

that Riemann Zeta functions are related to different persistent spectral moments.

DC-based machine learning models for protein-ligand binding affinity

prediction

The prediction of protein-ligand binding affinity is arguably the most important step in virtual

screening and AI-based drug design. Here we consider DC-based machine learning models.

To characterize the detailed interactions between protein and ligand atoms, we consider ele-

ment-specific bipartite graph representations. More specifically, we decompose the protein

atoms at binding core regions into four groups according to their atoms types, including C, N,

O, and S. Ligand atoms at binding core regions are decomposed into nine groups according to

their atoms types, including C, N, O, S, P, F, Cl, Br, and I. In this way, there are totally

36 = 4 × 9 groups of atom combinations, and protein-ligand interactions can be represented

by 36 types of bipartite graphs from these atom combinations.

The bipartite graphs can be generated based on atom distances and electrostatic interac-

tions. As stated above, the bipartite biadjacency matrix is represented as Eq (1). There are two

different ways to define the weights. One is based on the Euclidian distance between atoms,

that is wij = d(vi, vj) with d(vi, vj) the distance between atoms vi and vj. The other is based on

atomic electrostatic interactions, that is wij ¼
1

1þexp �
cqiqj

dðvi ;vjÞ

� � with qi and qj the partial charges of

atoms vi and vj and parameter c a constant value (usually taken as 100). With the importance

of hydrogen atom for electrostatic interactions, H atoms are usually taken into consideration

and a total number of 50 types of atom combinations are considered for electrostatic interac-

tions. The software “PDB2PQR” [45] is used to generate partial charge for protein while the

partial charge of ligand can be found in PDBBind database.

We consider three most commonly-used datasets from PDBbind databank, including PDB-

v2007, PDB-v2013 and PDB-v2016, as benchmark for our DC-based machine learning models.

The detailed training and testing information are listed in Table 1. The binding core region is

considered by using a cutoff distance of 10Å, that is all protein atoms within 10Å of any ligand

atom. For distance-based DC models, the filtration goes from 2Å to 10Å with step 0.1Å, and

for electrostatic-based DC models, the filtration goes from 0 to 1 with step 0.02. We only

Table 1. Detailed information of the three PDBbind databases, i.e., PDBbind-v2007, PDBbind-v2013 and

PDBbind-v2016.

Dataset Refined set Training set Test set (Core set)

PDBbind-v2007 1300 1105 195

PDBbind-v2013 2959 2764 195

PDBbind-v2016 4057 3772 285

https://doi.org/10.1371/journal.pcbi.1009943.t001
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consider 0-D persistent spectral information. In this way, the size of feature vectors are

63360 = 36(atom combinations) × 80(filtration values) × 11(Riemann Zeta functions) × 2(two

DCs), 55000 = 50(atom combinations) × 50(filtration values) × 11(Riemann Zeta functions) ×
2(two DCs) and 118360 = 63360 + 55000 for distance-based model, electrostatic-based model

and combined model respectively. Gradient boosting tree is considered to alleviate the overfit-

ting problem. The GBT setting is listed in Table 2.

Scoring power. The results for our DC-GBT models are listed in Table 3. Note that 10

independent regressions are performed and the median values of Pearson correlation coeffi-

cient (PCC) and root mean square error(RMSE) are taken as the final performance of our

model. Further, we systematically compare our model with existing models with traditional

learning descriptors [46–54]. Detailed comparison results can be found in Fig 3. It can be seen

that our model outperforms all the other machine learning models with traditional molecular

descriptors, for all three datasets.

Further, we compare our DC-GBT model with advanced-mathematical based machine

learning models [14, 18, 20, 30]. The results are presented in Table 4. Our DC-GBT model is

ranked as second for PDBbind-v2016 dataset and PDBbind-v2013 datasets (after TopBP).

Note that the accuracy of our DC-based models can be further improved if convolutional neu-

ral network models, such as the one used in TopBP models, are designed and employed.

More recently, some deep learning models for protein-ligand binding affinity prediction

are proposed, such as the graphDelta model [55], ECIF model [56], OnionNet-2 model [57],

DeepAtom model [58] and others [54, 59–64]. Note that these new models usually employ a

large training set with extra data from general sets from PDBbind. Details of the training sets,

testing sets, and performance (PCC) of these models are listed in Table 5.

Docking power. We test the docking power, which is to identify the native poses from the

ones generated by docking softwares [65], of our model on benchmark CASF-2013. There are

totally 195 testing ligands in CASF-2013, each ligand has 100 poses generated from three dock-

ing programs, GOLD v5.1, Surflex-Dock in SYBYL v8.1 and MOE v2011. A pose is considered

to be a native one if its RMSD value with respect to the true binding pose is less than 2 Å.

Detailed RMSD information of all the ligands can be found in CASF-2013. If the pose with the

highest predicted binding energy is a native one, it is regarded as a successful prediction. Once

Table 2. The parameters for our DC-based gradient boosting tree (GBT) models.

No. of Estimators Learning rate Max depth Subsample

40000 0.001 6 0.7

Min_samples_split Loss function Max features Repetitions

2 Least square SQRT 10

https://doi.org/10.1371/journal.pcbi.1009943.t002

Table 3. The PCCs and RMSEs (pKd/pKi) for our DC-GBT models in three test cases, i.e., PDBbind-v2007,

PDBbind-v2013 and PDBbind-v2016. Three DC-GBT models are considered with features from different types of

bipartite graphs. The DC-GBT(Dist) model uses features from distance-based bipartite graphs; The DC-GBT(Chrg)

model uses features from electrostatic-based bipartite graphs; The DC-GBT(Dist+Chrg) model uses features from both

distance-based bipartite graphs and electrostatic-based bipartite graphs.

Dataset Dist Chrg Dist+Chrg

PDBbind-v2007 0.816(1.416) 0.811(1.437) 0.824(1.402)

PDBbind-v2013 0.789(1.457) 0.790(1.456) 0.799(1.432)

PDBbind-v2016 0.836(1.270) 0.834(1.284) 0.843(1.255)

Average 0.813(1.377) 0.812(1.385) 0.822(1.357)

https://doi.org/10.1371/journal.pcbi.1009943.t003
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this process is performed for the whole 195 testing ligands, an overall success rate can be com-

puted for the given scoring function.

For each ligand, an individual training and testing process is needed. We repeat our

DC-GBT(Dist) model for each of the 195 ligands, following the procedure in the work [18].

Fig 3. Preformance comparison between our models and other models. The comparison of PCCs between our model and

other molecular descriptor based models, for the prediction of protein-ligand binding affinity. The PCCs are calculated based on

the core set (test set) of PDBbind-v2007, PDBbind-v2013 and PDBbind-v2016.

https://doi.org/10.1371/journal.pcbi.1009943.g003
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Note that GOLD v5.6.3 [66] is used to generate 1000 training poses for each ligand. These

poses and their scores are available at https://weilab.math.msu.edu/AGL-Score.

In our implementation, ten independent regressions are performed for each ligand. The

ligand is regarded as a successful one if at least three regressions successfully identify the native

poses. In this case, our success rate can reach 88%. If we use at least six successful regressions

as standard, our success rate drops slightly to 86%.

Screening power. The screening power of a scoring function is its ability to identify the

true binders for a given target protein from decoy structures. We test our model on benchmark

CASF-2013. There are totally 65 different proteins in CASF-2013. For each protein, there are

at least three true binders while the rest of the 195 ligands are regarded as decoys. There are

two kinds of screening power measurements. One is to find out the enrichment factors (EF)

among the x% top-ranked molecules.

EFx% ¼
number of true binders among x% top ranked molecules
ðtotal number of true binders for the given proteinÞ � x%

where top-ranked molecules means the predicted candidates with high binding energies. And

the average EF value among all 65 proteins is used to assess the screening power of a scoring

function. The other is the success rate to identify the best true binders. For each target protein,

if the the best binders are found in x% top-ranked molecules, this protein is taken as a success-

ful one. Then the overall success rate is given by the total number of successful proteins over

65.

For each protein, an individual training and testing process is considered. Our DC-GBT

(Dist) model is used for each of 65 proteins, following the works [18]. More specifically, for a

Table 4. The comparison of our DC-GBT model with advanced-mathematical based machine learning models [14, 18, 20, 30, 32, 33]. Note that values marked with �

uses PDBbind-v2016 core set (N = 290).

Model PDBbind-v2007 PDBbind-v2013 PDBbind-v2016 Average

AGL-Score 0.830 0.792 0.833 0.818

HPC-GBT 0.829 0.784 0.831 0.815

TNet-BP 0.826 N/A 0.810� N/A

TopBP 0.827 0.808 0.861� 0.832

PerSpect 0.836 0.793 0.840 0.823

OPRC 0.821 0.789 0.838 0.816

DC-GBT 0.824 0.799 0.843 0.822

https://doi.org/10.1371/journal.pcbi.1009943.t004

Table 5. The performance in terms of PCCs and RMSEs (pKd/pKi) for recently-proposed models using different

training sets [54–64]. Note that values marked with � uses PDBbind-v2016 core set (N = 290), and the values marked

with + uses PDBbind-v2013 core set(N = 180) and PDBbind-v2016 core set(N = 276).

Model Training set Testing set1 core(PDB-v2013) Testing set2 core(PDB-v2016)

graphDelta PDB-v2018(8766) 0.87(1.05)

ECIF PDB-v2019(9299) 0.866(1.169)

OnionNet-2 PDB-v2019(>9000) 0.821(1.357) 0.864(1.164)

DeepAtom PDB-v2018(9383) 0.831(1.232)�

Ligand-based PDB-v2018(11663) 0.780(N/A)+ 0.821(N/A)+

SE-OnionNet PDB-v2018(11663) 0.812(1.692) 0.83(N/A)

DeepDTAF PDB-v2016(11906) N/A(1.443)�

Deep Fusion PDB-v2016(9226) 0.803(1.327�)

https://doi.org/10.1371/journal.pcbi.1009943.t005
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given target protein, AutoDock Vina is used to dock all the ligands in PDBbind-v2015 refined

set, excluding the core set and the true binders of this protein. This procedure gives rise to a

few thousand of training poses and associated energy labels for each target protein. The bind-

ing scores (kcal/mol) generated by AutoDock Vina is converted to binding energy (pKd) by

multiplying a constant -0.7335. Those binders in the refined set that do not bind to the target

protein are regarded as decoys, and their binding energies should be smaller than the true

binders. Therefore, if the energy of a decoy generated by AutoDock Vina is higher than the

lower bound of the true binders’ energies, the decoy is relabeled by the lower bound of the true

binders’ energies. Note that this procedure may cause many different decoys sharing same

labels. The binding energy of a protein-ligand complex is usually a positive value, so we

exclude the entries with negative binding energies from the training sets for all the 65 protein

cases. The poses and associated scores can be found at https://weilab.math.msu.edu/

AGL-Score.

In our implementatoin, for each protein, ten independent regressions are performed. As in

PDBBind dataset, two decimal places are kept for the predicted binding energies of 195 testing

ligands. For each regression, an EF value can be obtained and whether this protein is a success-

ful one can be judged. The average EF value of ten regressions is taken as the final EF value for

this protein in our model. Note that there are many different entries in the training set sharing

the same labels, which results in that our model may predict same binding energies for differ-

ent ligands. In this case, we take the first and second ranked ligands as the 1% top-ranked can-

didates. Hence the number of 1% top-ranked candidates maybe larger than 2. In this case, we

set the EF to be 66.6. For the overall success rate, if at least two cases among the ten regressions

assert that the given protein is a successful one, this protein is regarded as a successful one. In

this case, our success rate can reach to 68%. If at least six successful regressions are used as

standard, our success rate drops to about 58%.

Note that in our DC-GBT model, we consider target-specific scoring models and train

them separatively for scoring, docking and screening power tests. Previously, general scoring

function models were developed. That is for all the tasks, the same general scoring function is

used. Recently, data-driven learning models make use of the different types of training datasets

to improve the performance of scoring functions. In particular, the incorporation of decoy

data in the training set can significantly improve the docking and screening power [67–72]. In

our DC-GBT models, different training sets are used, which results in different state-of-the-art

scoring models in scoring, docking and screening power tests.

Discussion

Machine learning models have made tremendous progresses in text, video, audio and image

data analysis. In particular, convolutional neural network (CNN) models have achieved revo-

lutionary advancements in the analysis of image data. However, molecular data from material,

chemical and biological systems are fundamentally different from text and image data, as their

properties are usually directly determined by their topological structures. Persistent models,

including persistent homology/cohomology, persistent functions, and persistent spectral, pro-

vide a series of highly effective molecular descriptors that not only preserve intrinsic structural

information, but also maintain molecular multiscale properties. Here we propose Dowker

complex based machine learning models for drug design. Dowker complex is used for molecu-

lar interaction representation. Riemann Zeta functions are defined on persistent spectral mod-

els and further used as molecular descriptors. Our Dowker complex based machine learning

models have achieved state-of-the-art results for protein-ligand binding affinity. They can be

also be used in AI-based drug design and other molecular data analysis.

PLOS COMPUTATIONAL BIOLOGY DCML for protein-ligand binding affinity prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009943 April 6, 2022 11 / 17

https://weilab.math.msu.edu/AGL-Score
https://weilab.math.msu.edu/AGL-Score
https://doi.org/10.1371/journal.pcbi.1009943


Materials and methods

Our model contains two essential components, i.e., DC-based molecular representation and

DC-based PerSpect models. For a molecular interaction-based bipartite graph, its associated

DCs can be decomposed into two disjointed DCs which have the same homology groups. The

DC-based Hodge-Laplacian matrices and Riemann Zeta function can be constructed and fur-

ther used in the generation of molecular features for machine learning models.

DC-based persistent homology

Dowker complex is based on the “relations” of two sets and is originally developed to explore

the homology of relations [38]. Mathematically, a relation is equivalent to a bipartite graph. So

for each bipartite graph, a Dowker complex can be naturally constructed. More specifically, let

G be a bipartite graph, the DC KD(G) will have two disjoint components KD,1(G) and KD,2(G).

Assume G = (V1, V2, E) is a connected bipartite graph where V1 and V2 are two vertex sets and

E is the edge set that form only between V1 and V2. KD(G) = KD,1(G) [ KD,2(G) where KD,1(G)

and KD,2(G) are the two disjoint components of KD(G), KD,1(G) and KD,2(G) are defined as

follows:

• KD,1(G): for a set of vertices fxi0
; xi1

; . . . ; xip
g in V1, a p-simplex is formed among these verti-

ces in KD,1(G), if there exists a vertex y 2 V2 such that fðxim
; yÞj0 ⩽ m ⩽ pg � E.

• KD,2(G): for a set of vertices fyi0
; yi1

; . . . ; yip
g in V2, a p-simplex is formed among these verti-

ces in KD,2(G), if there exists a vertex x 2 V1 such that fðx; yim
Þj0 ⩽ m ⩽ qg � E.

An example can be found in Fig 4. It can be seen that the Dowker complex just has two dis-

joint components, one is in black points and the other is in green points, and a simplex is

formed if their vertices have a common neighbor vertex in the bipartite graph. Like the triangle

in black points, its three vertices has a common green point as neighbor vertex in the bipartite

graph. We have Hp(KD,1(G))ffiHp(KD,2(G))(0 ⩽ p). Actually KD,1(G) and KD,2(G) are homoto-

pic equivalent.

Finally, if we construct the bipartite graph filtration process as in Eq (2), and induce the

DC-based filtration as in Eq (3). Two separated DC sequences are generated as Eqs (4) and (5).

The corresponding persistent barcodes of these two DC sequences are exactly same.

Fig 4. A bipartie graph and its associated Dowker complex. It can be seen that there are two disjoint components in

DC, one is from the black points and the other is from the green points. Note that a triangle (2-simplex) is formed

among the black point set in DC, as the corresponding three black vertices have a common neighbor blue vertex in the

bipartite graph.

https://doi.org/10.1371/journal.pcbi.1009943.g004
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DC-based PerSpect models

Persistent spectral theory studies the spectral evolutional information of combinatorial Lapla-

cian matrixes associated with a filtration process. An oriented DC is needed for the construc-

tion of combinatorial Laplacian matrixes, but different orientations share the same eigen

spectral information. In this way, we can define an orientation based on the sequence of atoms

(as in PDB file) for simplicity.

For an oriented DC KD ¼ fd
i
k; k ¼ 0; 1; . . . ; i ¼ 1; 2; . . .g, its k-th boundary matrix Bk can

be defined as follows,

Bkði; jÞ ¼

1; if dk� 1

i � d
k
j and d

k� 1

i � d
k
j

� 1; if dk� 1

i � d
k
j and d

k� 1

i =� d
k
j

0; if dk� 1

i =� d
k
j :

8
>><

>>:

Here d
k� 1

i � d
k
j means that d

k� 1

i is a face of d
k
j and d

k� 1

i =� d
k
j means the opposite. The nota-

tion d
k� 1

i � d
k
j means the two simplexes have the same orientation, i.e., oriented similarly, and

d
k� 1

i =� d
k
j means the opposite.

The k-th laplacian matrix is defined as follows,

Lk ¼ BT
kBk þ Bkþ1B

T
kþ1
:

More specifically, L0 can be expressed explicitly as,

L0ði; jÞ ¼
dðd0

i Þ; if i ¼ j

� 1; if i 6¼ j; d0

i _ d
0

j ;

0; if i 6¼ j; d0

i =_ d
0

j

ð8Þ

8
><

>:

Further, Lk(k> 0) can be expressed as,

Lkði; jÞ ¼

dðdk
i Þ þ kþ 1; if i ¼ j

1; if i 6¼ j; dk
i =_ d

k
j ; d

k
i ^ d

k
j and d

k
i � d

k
j

� 1; if i 6¼ j; dk
i =_ d

k
j ; d

k
i ^ d

k
j and d

k
i =� d

k
j

0; if i 6¼ j; dk
i _ d

k
j or d

k
i =̂ d

k
j :

8
>>>>>>>><

>>>>>>>>:

Here dðdk
i Þ is (upper) degree of k-simplex d

k
i . It is the number of (k + 1)-simplexes, of which

d
k
i is a face. Notation d

k
i _ d

k
j means the two simplexes are upper adjacent, i.e., they are faces

of a common (k + 1)-simplex, and d
k
i =_ d

k
j means the opposite. Notation d

k
i ^ d

k
j means the

two simplexes are lower adjacent, i.e., they share a common (k − 1)-simplex as their face, and

d
k
i =̂ d

k
j means the opposite. Notation d

k
i � d

k
j means the two simplexes have the same orienta-

tion, i.e., oriented similarly, and d
k
i =� d

k
j means the opposite.

In our model, we consider the Riemann Zeta functions on the spectral as our persistent

attributes. More specifically, for a set of eigenvalues {λ1, λ2, . . ., λn}, the spectral moment of the

simplicial complex can be defined as the Zeta function zðsÞ ¼
Pn

i¼1
1

ls
i
. Then we use the persis-

tent spectral moment as the persistent attributes for machine learning.
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