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In the tumor microenvironment, immune checkpoint ligands 
(ICLs) must be expressed in order to trigger the inhibitory signal 
via immune checkpoint receptors (ICRs). Although ICL expres-
sion frequently occurs in a manner intrinsic to tumor cells, 
extrinsic factors derived from the tumor microenvironment can 
fine-tune ICL expression by tumor cells or prompt non-tumor 
cells, including immune cells. Considering the extensive inter-
action between T cells and other immune cells within the tumor 
microenvironment, ICL expression on immune cells can be as 
significant as that of ICLs on tumor cells in promoting anti- 
tumor immune responses. Here, we introduce various regulators 
known to induce or suppress ICL expression in either tumor 
cells or immune cells, and concise mechanisms relevant to 
their induction. Finally, we focus on the clinical significance of 
understanding the mechanisms of ICLs for an optimized immuno-
therapy for individual cancer patients. [BMB Reports 2021; 
54(8): 403-412]

INTRODUCTION

In cancer, it is the cytolytic action of cytotoxic lymphocytes 
that the immune system mainly elicits to restrain disease pro-
gression. However, CD8 T cells in the tumor microenvironment 
frequently undergo ‘exhaustion’, which is a distinct developmental 
process, because they are faced with sustained antigenic sti-
mulation. Exhausted CD8 T cells persist but gradually lose their 
effector function, cytotoxicity, and proliferative capacity, leading 
to incompetent immunosurveillance.

Exhausted CD8 T cells typically express a panoply of inhibi-
tory immune checkpoint receptors (ICRs), which are triggered 

by cognate ligands to regulate T-cell response via a downstream 
signaling pathway. For instance, programmed cell death 1 (PD-1, 
CD279), one of the notable ICRs, is expressed on exhausted 
CD8 T cells. Upon being bound with programmed cell death- 
ligand 1 (PD-L1, B7-H1, CD274), PD-1 counters either CD28 
signaling or a T-cell receptor (TCR) by activating SH2 domain- 
containing protein tyrosine phosphatase-2 (SHP-2) and renders 
the T cells hypofunctional in many ways (1). Therefore, in ex-
hausted CD8 T cells, blocking the interactions between ICRs 
and immune checkpoint ligands (ICLs) is a plausible strategy 
for de-repressing CD8 T cells. Indeed, immune checkpoint 
blockade therapy has demonstrated clinical efficacy against 
various types of tumors (2). Multiple immune checkpoint path-
ways other than PD-1/PD-L1 have been investigated (3), and 
the pathways vary from patient to patient because of the hetero-
geneity of the tumor microenvironment. Since most ICRs were 
co-expressed as part of a larger co-inhibitory gene program (4), 
the ‘functional’ inhibitory pathways are determined by the ex-
pression of ICLs. Therefore, it is essential to understand which 
factors contribute to the inter-patient differences in ICL express-
ions. In this review, we summarize various factors that modulate 
the expression of ICLs within the tumor microenvironment 
(Table 1).

PD-1 LIGANDS

The promising outcome of therapies targeting the PD-1 axis 
has highlighted the need to elucidate the molecular regulation 
of its ligands. PD-1-mediated T-cell inhibition can be attributed 
to both of two well-known ligands of PD-1, which are PD-L1 
and programmed cell death-ligand 2 (PD-L2, B7-DC, CD273) 
(Figs. 1 and 2).

PD-L1
Given that antibodies against PD-L1 have shown an efficacy 
similar to that of the antibodies against PD-1, which can block 
interactions with both PD-L1 and PD-L2, PD-L1 is a more 
dominant ligand of PD-1 than is PD-L2. PD-L1 expression by 
tumor cells often occurs during malignant transformation and 
without ongoing immune response (5). However, apart from 
intrinsic factors, which give rise to constitutive expression of 
PD-L1 in tumor cells, extrinsic factors within the tumor micro-
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Table 1. Overview of multiple immune check point ligand regulators

Receptor Ligand Regulator
Expression

Tumor cell Immune cell

PD-1 PD-L1 IFNγ Multiple tumor cell (10, 11) Dendritic cell (24, 25), neutrophil (27), 
monocyte/macrophage (24, 26)

IFNβ H melanoma (11) Dendritic cell (28), neutrophil (27)
TNFα H breast cancer (12), H prostate/

colon cancer (13), H renal cell carcinoma (14)
Dendritic cell (29), monocyte/macrophage (30, 31) 

IL-6 H prostate cancer (15), H lung cancer (16) Dendritic cell (29), monocyte/macrophage (32)
TLR3 H neuroblastoma (21) Dendritic cell (40)
TLR4 H bladder cancer (20) Dendritic cell (43), monocyte/macrophage (41, 42) 
IL-4 H renal cell carcinoma (14) -
IL-27 H ovarian cancer (18) -
TGFβ H lung cancer (19) -
IL-10 - Monocyte (33, 35, 36)
IL-17 - Monocyte/macrophage (33)
IL-1β - Dendritic cell (29) 
PGE2 - Monocyte/macrophage (44)
Nutrient deprivation Multiple tumor cell (6, 7) -
Metabolite accumulation H lung cancer (8) -
Hypoxia Multiple tumor cell (9) -
Oncogenic signaling Multiple tumor cell (5) -
microRNA Multiple tumor cell (5) -

PD-L2 IL-4 H esophageal adenocarcinoma (49) Dendritic cell (51), 
monocyte/macrophage (42, 51, 52)

IFNγ H melanoma (11), H lung cancer (19), 
H colorectal cancer (47), H brain tumor (48)

Monocyte/macrophage (24, 36, 50)

IFNβ H melanoma (11)
IL-13 H esophageal adenocarcinoma (49)
IL-2/IL-15/IL-21 - Monocyte/macrophage (54)
GM-CSF - Dendritic cell/macrophage (53)

TIGIT PVR RAS/RAF/MEK/ERK Fibroblast (60) -
DNA damage H melanoma (63, 64) -
IKZF-1/3 H melanoma (65) -
ER stress H hepatoma (66) -
SUMO-conjugating 

enzyme UBC9
H melanoma (67) -

TLR1/2/3/4/7/8/9 - Dendritic cell/macrophage (69)
TIM3 Galectin-9 IFNγ - Monocytes/gMDSCs (74, 79)

IFNβ H leukemia/M colon cancer (73) -
microRNA H chondrosarcoma (80), liver cancer (81) -
DNMT3A H cervical cancer (82) -

LAG3 MHCII IFNγ H osteosarcoma/H melanoma (84) -
Galectin-3 NF-kB H leukemia (89) Macrophage (90)
LSECtin IL-6/IL-10 H/M melanoma (86) -

IL-4 - Dendritic cell (91)
FGL-1 IL-6 H hepatocellular carcinoma (93) -

M, mouse; H, human.

environment can contribute to PD-L1 expression. Many of the 
factors in the tumor vicinity, such as nutrient deprivation (6, 
7), metabolite accumulation (8), and hypoxia (9), are observed 

in common in different types of tumors, concomitantly causing 
PD-L1 upregulation. Further, an inflammatory tumor microen-
vironment provides the assorted factors that adjust PD-L1 
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Fig. 1. Multiple immune checkpoint receptor-ligand interactions between T cells and APCs or tumor cells. The regulators of each immune 
checkpoint ligand are indicated on the right side (Up, positive regulator; Down, negative regulator).

expression. IFN-γ, primarily secreted by effector T cells and 
NK cells, is the most potent inducer of PD-L1 for various 
tumor-cell lines (10); hence PD-L1 expression in tumor cells 
may reflect concurrent T-cell responses. Mechanistically, in 
human melanoma cell lines, IFN-γ-induced upregulation of 
PD-L1 is mediated by JAK1/2 – STAT1 activation and, eventually, 
direct binding of Interferon Regulatory Factor 1 (IRF1) to PD-L1 
promoter (11). Garcia-Diaz et al. also clarify that IFN-α and 
IFN-β induce PD-L1 expression, but to a lesser extent than 
does IFN-γ (11). Besides IFN, other inflammatory mediators 
regulate PD-L1 expression as well. For example, TNF-α increases 
PD-L1 expression in human breast cancer cells by promoting 
deubiquitination mediated by COP9 signalosome complex 
subunit 5 (CSN5) (12). When treated alone or in combination 
with IL-17, TNF-α upregulates PD-L1 expression in both human 
prostate cancer and colon cancer cells, mediated by the Akt/NF-κB 
and ERK/NF-κB pathways, respectively (13). In human renal cell 
carcinoma, TNF-α or IL-4 increases PD-L1 expression, accom-
panied by NF-κB or STAT6 activation, respectively. Combined 
treatment of the two has additive effects (14). IL-6 has been 
reported to increase transcription of the PD-L1 gene by means 
of either JAK/STAT3 signaling in human prostate cancer cells 
(15) or MEK/ERK signaling in human lung cancer cells (16). 
IL-6 also increases PD-L1 expression at the post-transcriptional 
level by JAK1-mediated phosphorylation, which promotes glyco-

sylation and stabilization of the PD-L1 protein in hepatocell-
ular carcinoma cells (17). IL-27 can upregulate PD-L1 by means 
of STAT3 signaling in human ovarian cancer cell lines (18). 
Among anti-inflammatory cytokines, TGFβ was reported to increase 
PD-L1 expression in an Smad2-dependent manner in human 
lung cancer cells (19). Other than cytokines, stimulation of 
Toll-Like Receptor 4 (TLR4) by a lipopolysaccharide (LPS) induces 
PD-L1 expression in human bladder cancer cells via the ERK/ 
JNK pathway (20). In human neuroblastoma cells, PD-L1 can 
be upregulated in response to TLR3 stimulation, with simul-
taneous TLR9 ligation mitigating TLR3-mediated upregulation 
of PD-L1 (21).

Though PD-L1 expression is often represented by a tumor 
proportion score, which quantifies PD-L1 expression solely from 
viable tumor cells, accumulating evidence supports that a 
combined positive score, which integrates PD-L1 expression of 
tumor and non-tumor cells, is a more predictive biomarker 
(22), implying the significance of PD-L1 expressed by non-tumor 
cells in PD-1 blockade. Indeed, PD-L1 expressed by tumor- 
infiltrating immune cells promotes immune escape via diverse 
mechanisms (23). PD-L1 expressed on antigen-presenting cells 
(APCs), including dendritic cells and macrophages, delivers in-
hibitory signals during crosstalk with PD-1-expressing T cells 
or sequesters co-stimulatory molecule, CD80, in cis. Also, 
PD-L1 from activated T cells engages with PD-1 expressed on 
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Fig. 2. Schematic overview of PD-L1 and PD-L2 positive-expression regulators in APCs (Up) or Tumor cells (Down). Molecules colored in orange 
or green regulate PD-L1 or PD-L2 expression, respectively. Molecules colored in orange and green regulate PD-L1 and PD-L2 expression at 
the same time.

other T cells or macrophages, the latter promoting M2 polari-
zation. By the way, PD-L1 expressed on T cells can lead to an 
anergic state or apoptosis in activated T cells by acting as a 
receptor per se.

As in tumor cells, IFN-γ induces PD-L1 in multiple types of 
immune cells, including monocytes (24, 25), monocytes-derived 
dendritic cells (24, 26), macrophages (26), and neutrophils 
(27). Although marginal, IFN-β also increases PD-L1 express-
ion in neutrophils (27) and dendritic cells (28). Among other 
pro-inflammatory cytokines, TNF-α, IL-1β, or IL-6 upregulates 
PD-L1 expressed on monocyte-derived dendritic cells (29), 
whereas PD-L1 expressed on monocytes/macrophages is upre-
gulated by TNF-α (30, 31), IL-6 (32), or IL-17 (33). However, 
IL-17-induced upregulation of PD-L1 is indirectly mediated by 
several cytokines, particularly IL-10, produced by IL-17-activated 
monocytes. Another inflammatory cytokine, IL-12, regulates 
PD-L1 expressed on macrophages (34). Though IL-12 upregulates 
PD-L1 expression in monocyte-derived macrophages by means 

of increased IFN-γ production, it also can downregulate PD-L1 
expression in THP-1, a human monocytic cell line, presumably 
by decreased IL-10 production with inability to produce IFN-γ. 

The role of anti-inflammatory cytokines in regulation of PD-L1 
expression has also been investigated. As briefly mentioned 
above, IL-10 upregulates PD-L1 expression in monocytes (33, 
35, 36) and dendritic cells (37). Yet, IL-10-induced upregula-
tion of PD-L1 is observed only in immature, monocyte-derived 
dendritic cells, not in LPS-matured one. The contradictory role 
of TGFβ in determining PD-L1 expression was observed, in 
that it upregulates PD-L1 expression in dendritic cells (38, 39), 
but downregulates it in monocytes (30). Also, TLR3 signaling 
induces PD-L1 expression in dendritic cells (40), and TLR4 
signaling induces PD-L1 expression in monocytes (41), macro-
phages (42), and dendritic cells (43). Prostaglandin E2 (PGE2), 
which is a bioactive lipid that is closely connected with in-
flammation, is also involved in the induction of PD-L1 expres-
sion in myeloid cells, including macrophages and myeloid-de-
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rived suppressor cells (MDSCs) (44).

PD-L2
As a second ligand for PD-1, PD-L2 also endows PD-1 with an 
inhibitory function, although its mechanisms are not fully 
understood. Given that PD-L2 binds to PD-1 with a higher 
affinity than that of PD-L1 (45) and that its expression has been 
reported in many human malignancies, it is worth speculating 
about how its expression is regulated within the tumor 
microenvironment. PD-L2 expression was initially thought to 
be restricted to dendritic cells or macrophages, but recent 
studies reveal that PD-L2 expression is less restricted than 
previously thought. For example, a considerable proportion of 
peritoneal B1 B cells constitutively express PD-L2, which posi-
tivity enriches Phosphatidylcholine-specific B1 cells, as is crucial 
for innate defense against invading pathogens (46).

Like PD-L1, PD-L2 is upregulated by IFN-γ treatment in 
tumor cells (11, 19, 47, 48). In line with how IFN-γ orche-
strates PD-L2 upregulation in tumor cells, IFN-β has a similar 
effect via promoting STAT3 interaction with PD-L2 promoter 
(11). IL-4 and IL-13, Th2-type cytokines produced during Barrett’s 
metaplasia, have been reported to induce PD-L2 expression in 
esophageal adenocarcinoma (49).

In immune cells, IFN-γ and Th2 cytokines are involved in 
PD-L2 expression. IFN-γ induces PD-L2 expression in human 
monocytes (24, 36, 50), and IL-4 induces in murine macro-
phages (42, 51, 52) and dendritic cells (51) in a STAT6-de-
pendent manner. Yamazaki et al. also identified the granulocyte- 
macrophage colony stimulating factor (GM-CSF) as an inducer 
of PD-L2 in both macrophages and dendritic cells, but its 
regulatory mechanism, which encompasses a transactivation 
effect of PU.1/ IRF4 and histone modification by PU.1/ p300, 
has been demonstrated recently (53). Additionally, common γ 
chain cytokines, such as IL-2, IL-15, and IL-21, can induce 
PD-L2 expression in monocytes or macrophages (54). IL-10 
also upregulates PD-L2 in monocytes (36), but downregulates 
PD-L2 in mature dendritic cells (24).

T-CELL IMMUNORECEPTOR WITH IG AND ITIM 
DOMAINS (TIGIT) LIGANDS

TIGIT is an inhibitory receptor, mainly expressed by NK cells, 
regulatory T cells, memory T cells, and exhausted CD8 T cells. 
When TIGIT was identified for the first time, it was also 
reported that human TIGIT can bind to three ligands, Polio-
virus receptor (PVR, NECL5, CD155), PVR-related 2 (PVRL2, 
Nectin2, CD112), and PVR-related 3 (PVRL3, Nectin3, CD113), 
among which PVR has the highest affinity for TIGIT (55). PVR/ 
TIGIT engagement suppresses T-cell responses by phosphory-
lating immunoreceptor tyrosine-based inhibitory motif (ITIM) 
in the cytoplasmic tail of TIGIT or disturbing PVR/DNAX- 
associated molecule 1 (DNAM-1, CD226) engagement, which 
bolsters T-cell response. 

PVR is an adhesion molecule frequently overexpressed in 

many types of solid and hematological malignancies, and its 
overexpression is associated with poor prognosis (56-59). 
Since PVR is a member of the Nectins and Nectin-like (Necl) 
family of molecules and is involved in various physiological 
processes, including cell-cell adhesion, movement, prolifera-
tion, and differentiation, its overexpression can have a pro- 
tumorigenic effect in a manner intrinsic to tumor cells. In pa-
rallel, the oncogenic RAS/RAF/MEK/ERK signaling pathway 
upregulates PVR expression by means of direct binding of 
activator protein-1 (AP-1) to PVR promoter in mouse 
fibroblasts (60), a fact that is expected to be applicable to 
murine tumor cells. Despite the presence of the AP-1 binding 
sequence within the PVR promoter/enhancer in some human 
tumor cell lines (61), it is unclear if the RAS/RAF/MEK/ERK 
signaling increases PVR expression in human tumor cells as 
well. However, in terms of anti-tumor immune responses, whe-
ther PVR overexpression has a pro-tumorigenic or anti-tumor-
igenic role remains uncertain. In regulating the anti-tumor im-
mune response, PVR can bind to three different receptors— 
DNAM-1, TIGIT, and CD96—and contradictory effects can 
occur depending on the receptor that it binds to (62). Never-
theless, many previous studies present PVR as a stimulator of 
NK-cell function, emphasizing its interaction with activating 
receptor DNAM-1. For example, PVR can be induced as a part 
of an ATM/ATR-dependent DNA damage response ignited by 
either inherent genotoxic stress or genotoxic drug treatment in 
human multiple myeloma (MM). Particularly, when genotoxic 
stress imposed by nitric oxide and the related reactive nitrogen 
species induces PVR, the effect depends on transcriptional 
regulation by E2F1. Subsequently, induced PVR makes these 
tumors eliminable by means of DNAM-1 ligation in vitro (63, 
64). Also, immuno-modulatory drugs targeting Cereblon, which 
breaks down transcriptional repressors of PVR, such as Ikaros 
family zinc finger protein-1 and -3 (IKZF1/3), also upregulate 
PVR expression and provoke NK-cell-mediated cytolysis in 
vitro (65). In terms of post-transcriptional regulation, when there 
is Endoplasmic reticulum (ER) stress, ER-associated degradation- 
related molecule HRD1 increases and promotes PVR degrada-
tion in human hepatoma cell lines (66). In parallel, dysregu-
lated small ubiquitin-like modifier (SUMO) conjugation, which 
results from SUMO-conjugating enzyme overexpression, also 
facilitates PVR degradation in human MM cell lines (67). Both 
studies demonstrated that diminished PVR expression caused 
tumor cells to evade recognition and elimination by NK cells. 
However, given that TIGIT binds to PVR with higher affinity 
than that of DNAM-1 (55, 68) and that TIGIT is highly expressed 
on tumor-infiltrating lymphocytes, how PVR expression on 
tumor cells affects effector cells in vivo needs further investi-
gations.

Regarding tumor-infiltrating immune cells, it was reported 
that tumor-associated APCs represent a higher level of PVR 
than do circulating APCs, although factors responsible for upre-
gulated PVR were not addressed in the study (69). However, 
since NF-kB signaling increases PVR expression on APCs upon 
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TLR stimulation (70), an inflammatory microenvironment within 
tumor tissue may contribute to PVR upregulation in APCs (Fig. 
1).

T-CELL IMMUNOGLOBULIN DOMAIN AND MUCIN 
DOMAIN 3 (TIM-3) LIGANDS

Tim-3, known as a hallmark of exhausted T cells, is one of the 
most commonly targeted checkpoints for immunotherapy. Four 
ligands have been described for Tim-3: Galectin-9 (Gal-9), 
Phosphatidylserine (PtdSer), High-mobility group box 1 (HMGB1), 
and Carcinoembryonic antigen-related cell adhesion molecule 
1 (CEACAM1). Among them, Gal-9 and CEACAM1 have been 
reported to attenuate TCR signaling by dissociating HLA B-asso-
ciated transcript 3 (BAT3) from Tim-3 (71, 72). Specifically, in 
the absence of the two ligands, Tim-3 is bound to BAT3, which 
interacts with Lymphocyte-specific protein tyrosine kinase (Lck). 
Since Lck-mediated phosphorylation of the TCR complex is 
critical for TCR downstream signaling, dissociation of BAT3 
and subsequently, Lck upon Tim-3 ligation, impairs adjacent 
TCR downstream signaling and ultimately leads to apoptotic 
cell death. Furthermore, the intracellular interaction between 
Tim-3 and CEACAM1 supports maturation and surface traffic-
king of Tim-3. Therefore, the absence of CEACAM1 within T 
cells leads to intracellular accumulation of Tim-3 and its ina-
bility to interact with ligands, unleashing T cells from Tim-3- 
mediated inhibition. On the other hand, PtdSer, which is 
exposed on the outer leaflet of apoptotic cells, triggers Tim-3 
expressed on CD8+ dendritic cells or a subset of macrophages 
and induces phagocytosis; or extracellular HMGB1, a kind of 
alarmin, can be released into the tumor microenvironment and 
form a complex with free DNA. Since the formation of the 
complex assists internalization of DNA into dendritic cells to 
activate endosomal TLRs, sequestration of HMGB1 by Tim-3 
can curtail the formation of the complex and the following 
dendritic cell activation. Until now, interaction between Tim-3 
and PtdSer or HMGB1 has been known to affect T-cell func-
tion indirectly, but whether PtdSer or HMGB1 directly affects 
Tim-3-expressing T cells has to be evaluated. 

Although expression of Gal-9 (73-75) or CEACAM1 (72, 
76-78) in tumor cells and/or immune cells has been addressed, 
the factors implicated in their regulation have not been well 
explored. It has been reported that expression of Gal-9, the 
first ligand for Tim-3, is regulated by IFN (73, 74, 79). Unlike 
PD-1 ligands, IFN-β is a more robust regulator of Gal-9 express-
ion in various cell lines than is IFN-γ. Moreover, Gal-9 has to 
be released extracellularly to serve as a ligand for Tim-3, and 
IFN-β or IFN-γ also enhances Gal-9 secretion even in some of 
the tumor cells in which IFN-β or IFN-γ fails to increase Gal-9 
expression or macrophages that possess constitutive Gal-9 
expression (73). However, the other two studies delineated 
IFN-γ-mediated upregulation of Gal-9 in monocytes and granu-
locytic MDSCs, respectively, without covering the effect of 
IFN-β. Also, microRNA-dependent post-transcriptional regulation 

(80, 81) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A)- 
mediated epigenetic modulation (82) of Gal-9 in tumor cells 
have been reported (Fig. 1).

LYMPHOCYTE ACTIVATION GENE-3 (LAG-3, CD223) 
LIGANDS

LAG-3 inhibits the anti-tumor immune response by synergizing 
with PD-1; a combination of anti-PD-1 and anti-LAG-3 is 
undergoing clinical trials. Notwithstanding the incomplete 
picture of molecular mechanisms, five ligands for LAG-3 have 
been discovered so far: MHC II, Galectin-3 (Gal-3), Liver sinu-
soidal endothelial cell lectin (LSECtin), α-synuclein fibrils (α-syn), 
and Fibrinogen-like protein 1 (FGL1). Unlike other ligands, LAG-3 
bound to α-syn is associated with intercellular delivery of 
pathological α-syn fibrils in the nervous system, which is 
irrelevant to immune response. Although it had been reported 
that LAG-3 can bind to MHC II with high affinity and regulate 
CD4 T cells by impeding interaction between MHC II and CD4, 
more recent studies have shown that discriminatory binding of 
LAG-3 to a stable MHC II/peptide complex (pMHC II) sup-
presses CD4 T cells by transducing inhibitory signals (83). 
Moreover, Maruhashi et al. also found that APCs that abun-
dantly express stable pMHC II inhibit activation of CD8 T cells 
via LAG-3-dependent mechanism. In this regard, since MHC II 
transactivator (CIITA) can induce expression of MHC II access-
ory molecules, which are involved in pMHC II formation, as 
well as that of MHC II, IFN-γ-mediated upregulation of CIITA 
expression may increase pMHC II in various types of cells, 
including certain tumor cells (84). Alternatively, other ligands, 
Gal-3 (85), LSECtin (86), and FGL1 (87), have been reported to 
engage with LAG-3 to negatively regulate CD8 T cells in the 
tumor microenvironment. Even though Kouo et al. demonstrated 
that intratumoral CD8 T cells and stromal cells are major 
sources of Gal-3 (85), Gal-3 is also secreted by many types of 
tumor cells (88). It is reported that Gal-3 is exocytosed from 
stromal cells and endocytosed by tumor cells in pre-B cell 
lymphoma. Afterwards, internalized Gal-3 auto-activates Gal-3 
transcription accompanied by NK-κB signaling in tumor cells 
(89). Though the study rarely provides direct evidence for causal-
ity between NF-κB and Gal-3, it is conceivable that increased 
Gal-3 transcription is a result of NF-κB activation, taking into 
account the NF-κB-mediated Gal-3 expression in other types of 
cells (90, 91). LSECtin or FGL1 is expressed in the liver under 
normal physiological conditions and is highly upregulated in 
some tumor cells (86). Although LSECtin is induced by IL-6 or 
IL-10 treatment in tumor cells, it can also be induced in 
human monocyte-derived dendritic cells by IL-4 treatment 
(92). IL-6 also increases FGL1 in human hepatoma cells (93). 
Future studies are required to verify the precise molecular 
mechanisms of these ligands and the possibility of their 
cooperation in LAG-3-mediated T cell inhibition (Fig. 1).
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Fig. 3. ICRs are co-regulated and simultaneously expressed by common factors. In contrast, Individual difference in TME-derived factors or signal-
ing network induce diverse patterns of ICLs. Heterogeneity in expression of ICLs can afford patient stratification for customized ICB therapy.

CONCLUSIONS

In the tumor microenvironment, tumor cells build a permissive 
environment for growth, executing distinct strategies. As a 
tumor progresses, ICRs are simultaneously induced by common 
factors, whereas the expression of the corresponding ICLs has 
overlapping but independent regulation. Further, there are 
diverse regulators in the tumor microenvironment, each of 
which may have inconsistent effects on ICL expression depend-
ing on the cellular context, creating individually different 
expressions of ICLs. Because ICL expression patterns could be 
of relevance to indicate the activity of immune checkpoint 
pathways, differential expression profiles of ICLs among 
individuals can be used to predict the treatment response of 
the immune checkpoint blockade. For instance, many studies 
have shown that PD-L1 expression is associated with superior 
response to PD-1 blockade (94). Our previous study demon-
strated that the complementary expression patterns of PVR and 
PD-L1 are key determinants for PD-1 blockade (95). Another 
study revealed that CD276, which is an incompletely eluci-
dated ICL, could be used as potential biomarker for PD-1 

blockade (96). By querying a set of verified ICLs and identi-
fying robust ICL-based biomarkers, it is possible to achieve a 
higher responder rate and tailor precision immunotherapies. 
(Fig. 3).
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