
Draft Genome Sequence of Aestuariibacter halophilus Type
Strain JC2043

Sarah A. Emsley,a Kaysa M. Pfannmuller,a Blake Ushijima,b Jimmy H. Saw,c Michael O. Gaylor,d Patrick Videaua*

aDepartment of Biology, Southern Oregon University, Ashland, Oregon, USA
bDepartment of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
cDepartment of Biological Sciences, The George Washington University, Washington, DC, USA
dDepartment of Chemistry, Dakota State University, Madison, South Dakota, USA

ABSTRACT Aestuariibacter halophilus strain JC2043, a Gram-negative gammaproteo-
bacterium, is often used as a reference organism for assigning taxonomy within the family
Alteromonadaceae. Isolates of this species have also been investigated for compound degra-
dation (e.g., phthalates and oil) and biofilm association. Presented here is the draft genome
sequence of A. halophilus strain JC2043.

A estuariibacter halophilus strain JC2043, isolated from tidal flat sediment from Ganghwa
Island, South Korea, is a Gram-negative, aerobic gammaproteobacterium of the family

Alteromonadaceae (1). First proposed by Yi et al. (1), the genus Aestuariibacter consists of two
validly published species at the time of writing: Aestuariibacter salexigens and A. halophilus,
with “A. aggregatus” (2) and “A. litoralis” (3) having been recently reclassified into the novel
genera Marisediminitalea (4) and Aliiglaciecola (5), respectively. Aestuariibacter features promi-
nently in analyses resolving the taxonomy of the Alteromonadaceae, with A. halophilus func-
tioning as a reference taxon in the valid publication of multiple species and 10 genera (4–13).
The Alteromonadaceae family is recognized for its biosynthetic potential, and the genus
Aestuariibacter has been studied for its potential involvement in the degradation of various
compounds [e.g., di-(2-ethylhexyl) phthalate, oil, and xylan] (14–16), symbiotic interactions in
aquatic environments (17, 18), and the relationship between microbial community structure,
biofilms, and water quality (19–21). In the genomic era, prokaryotic taxonomies and natural
product identification rely on the public availability of whole-genome sequences (22–25). As
such, the whole-genome sequence for the A. halophilus type strain JC2043 will bolster future
analyses assessing the phylogenetic relationships, biodiversity, and metabolic potential of the
Alteromonadaceae.

Aestuariibacter halophilus strain JC2043 (DSM 15266), acquired from Leibniz Institute
DSMZ (German Collection of Microorganisms and Cell Cultures; Braunschweig, Germany),
was routinely cultured on plates of glycerol artificial seawater medium solidified with 1.5%
agar and incubated overnight at 35°C (26). Genomic DNA isolation was conducted on a
plate culture derived from a single colony by the Microbial Genome Sequencing Center,
LLC (MiGS; Pittsburgh, PA, USA), using the Qiagen DNeasy blood and tissue kit according
to the manufacturer’s instructions (Hilden, Germany). Paired-end libraries (151 bp) were
prepared by MiGS using the Illumina Nextera kit and run on the Illumina NextSeq 550 plat-
form as previously described (27), producing 5,749,109 pairs of raw reads. FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc) was used to assess the read quality; trimming
and adapter sequence removal (parameters: ktrim = r, ordered, minlen = 50, mink = 11,
comp = f, k = 21, ow = t, ftm = 5, zl = 4, qtrim = rl, and trimq = 20) were performed using
BBDuk within the BBMap package (http://sourceforge.net/projects/bbmap) as previously
described (28). The draft genome sequence was assembled using SPAdes v. 3.14.0 using the
“--careful” option and specifying kmers of 21, 33, 55, 77, 99, and 121 (29). The genome was
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analyzed for completeness using BUSCO v. 5.2.2 with default parameters and the bacter-
ia_odb10 and alteromonadales_odb10 databases (30, 31).

This assembly produced 14 scaffolds with a mean coverage of 69.7� and an N50 value of
596,101 bp. The complete A. halophilus strain JC2043 draft genome sequence consists of
4,032,098 bp with an average G1C content of 52.90%. BUSCO scores for the genome were
99.2% and 99.9% for the bacterial (123/124 genes) and Alteromonadales (819/820 genes)
gene sets, respectively. Genome annotation was conducted using the Prokaryotic Genome
Annotation Pipeline (PGAP) (32), which annotated a total of 3,810 genes and 56 RNAs, 47 of
which are tRNAs and 5 of which are rRNA sequences.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under accession number JAJEWP000000000.1. The version described in
this paper is version JAJEWP010000000. The raw sequence reads were deposited in the SRA
under accession number SRR16643417 and are associated with BioSample accession number
SAMN22563708.
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