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Alterations in the composition and function of the gut microbiota have been reported in
patients with type 2 diabetes mellitus (T2DM). Emerging studies show that prescribed
antidiabetic drugs distort the gut microbiota signature associated with T2DM. Even more
importantly, accumulated evidence provides support for the notion that gut microbiota, in
turn, mediates the efficacy and safety of antidiabetic drugs. In this review, we highlight the
current state-of-the-art knowledge on the crosstalk and interactions between gut
microbiota and antidiabetic drugs, including metformin, a-glucosidase inhibitors,
glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-
glucose cotransporter 2 inhibitors, traditional Chinese medicines and other antidiabetic
drugs, as well as address corresponding microbial-based therapeutics, aiming to provide
novel preventative strategies and personalized therapeutic targets in T2DM.

Keywords: gut microbiota, antidiabetic drugs, type 2 diabetes mellitus, efficacy and safety, personalized
therapeutic targets
INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder characterized by elevated
blood glucose levels, primarily caused by insulin secretion disturbance, insulin resistance, or both
(Cersosimo et al., 2000). In recent years, gut microbiota, which refers to a complicated assembly of
trillions of microbes, is reported to be involved in the pathogenesis and treatment responses of
T2DM (Bouter et al., 2017; Koropatkin and Martens, 2017; Vázquez-Baeza et al., 2018).
Additionally, emerging evidence has indicated that the gut microbiota affects the pharmacology
of antidiabetic drugs, and drug-induced metabolites transform the structure of gut microbiota in
turn (Gu et al., 2017; Koropatkin and Martens, 2017).

Gut microbiota is predominated by bacterial phyla Firmicutes and Bacteroidetes, followed by
other phyla such as Actinobacteria, Proteobacteria and Verrucomicrobia (Woting and Blaut, 2016).
Abbreviations: T2DM, Type 2 diabetes mellitus; GLP-1, glucagon-like peptide-1; DPP4, dipeptidyl peptidase-4; SGLT2,
sodium-glucose cotransporter 2; TCMs, traditional Chinese medicines; SCFAs, short-chain fatty acids; PPARG, peroxisome
proliferative activated receptor; MGAM, maltase-glucoamylase, SI, sucrase-isomaltase; Treg, regulatory T; ILC1, innate
lymphoid cell 1; HFD, high fat diet; TLR, Toll-like receptor; AMPs, antimicrobial peptides; DCA, deoxycholic acid; PBAs,
primary bile acids; FXR, farnesoid X receptor; GUDCA, glycoursodeoxycholic acid; FMT, fecal microbiota transplantation;
PPGR, postprandial glycemic response.
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With the growing recognition of gut microbiome as the second
human genome, pharmacomicrobiomics has been introduced as
the expansion of pharmacogenomics, which facilitates the
investigation of the interaction between microbiome variation
and drugs response (Doestzada et al., 2018). On the one hand,
various studies have shown that antidiabetic drugs can affect the
composition and function of gut microbiota (Forslund et al.,
2015; Wu et al., 2017). On the other hand, the gut microbiota can
influence an individual’s response to a specific drug by altering
the drug’s bioactivity, bioavailability or toxicity (Koppel et al.,
2017). A recent study showed that two-thirds of 271 tested drugs
were subject to gut microbiota metabolism (Zimmermann et al.,
2019), in which microbial enzymes transformed them into
inactive or even toxic drug metabolites (Spanogiannopoulos
et al., 2016). Despite the fact that interaction between gut
microbiota and antidiabetic agents is increasingly being
understood, the role of gut microbiota in the drug efficacy and
safety is not fully clarified.

In the present review, we clarify the interaction between gut
microbiota and antidiabetic agents, such as metformin, a-
glucosidase inhibitors, glucagon-like peptide-1 (GLP-1)
receptor agonists, dipeptidyl peptidase-4 (DPP4) inhibitors,
sodium-glucose cotransporter 2 (SGLT2) inhibitors, traditional
Chinese medicines (TCMs) and other antidiabetic drugs, as well
as address the therapeutics based on gut microbiota, aiming to
develop personalized treatments and potential individualized
preventative and therapeutic strategies.
INTERACTION BETWEEN GUT
MICROBIOTA AND ANTIDIABETIC DRUGS

Lines of evidence have suggested that gut microbiota can not
only be influenced by antidiabetic drugs (Table 1), but also in
turn affect an individual’s response to those drugs. Furthermore,
the interaction between gut microbiota and antidiabetic drugs is
complex and bidirectional (Figure 1).

Antidiabetic Drugs Influencing
the Gut Microbiota
Metformin is the most commonly used glucose-lowering drug for
the treatment of T2DM, especially T2DM associated with obesity.
Previous studies indicated that intravenous administration of
metformin did not lower glucose in contrast to oral metformin
(Bonora et al., 1984), and the bioactivity ofmetformin originated in
the intestine (Bailey et al., 2008). There is evidence to suggest that
metformin changes microbiota composition in not only T2DM
patients (Forslund et al., 2015; Wu et al., 2017; Nakajima et al.,
2020), but also in healthy people (Bryrup et al., 2019; Ejtahed et al.,
2019). Metagenomic analysis of microbiota suggested that
metformin influenced antidiabetic effect through short-chain fatty
acids (SCFAs) production, as well as potential microbial genes and
pathways (Lee and Ko, 2014; Forslund et al., 2015; de la Cuesta-
Zuluaga et al., 2017;Wu et al., 2017; Bauer et al., 2018). In addition,
increase in the production of SCFAs, especially butyrate and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
propionate, activated intestinal gluconeogenesis, which improved
glycemic control and reduced hepatic glucose production, appetite
and bodyweight (Ejtahed et al., 2016). To elucidate themechanism
by which gut microbiota mediated the antidiabetic effects of
metformin, a further study investigated metformin-microbiota
interactions and showed that metformin affected pathways with
biological functions in species from mucin-degradation bacteria
and SCFA production, and related genes in these species encoded
metalloproteins or metal transporters (Wu et al., 2017). A
systematic review stressed that the changes of gut microbiota
were associated with metformin, and T2DM patients receiving
metformin showed increases inEnterobacteriales andAkkermansia
muciniphila, a mucin-degrading bacteria that has been shown to
reverse metabolic disorders (Cao et al., 2020). On the other hand, a
randomized trial reported that metformin shifted long-term gut
microbiota composition, increasing E. coli and R. torques and
decreasing I. bartlettii and R. intestinalis at 6th and 12nd month
in overweight and obese cancer survivors, respectively (Mueller
et al., 2021). Furthermore, in healthy subjects without changes in
glycemic control, metformin led to an increased abundance of
Escherichia/Shigella spp. and Bilophila wadsworthia, as well as a
reduced abundance of Clostridium spp. and Intestinibacter spp.
(Bryrup et al., 2019). These results suggest that the changes in
microbiota were caused by metformin itself, rather than simply
reflecting improved glycemic control.

To figure out the association between diabetes and gut
microbiota modified by metformin, Cuesta-Zuluaga et al.
performed a retrospective study and found that patients with
diabetes taking metformin had higher relative abundance of
mucin-degradation Akkermansia muciniphila and several sorts of
SCFA-producing microbiota compared with participants without
diabetes (de laCuesta-Zuluaga et al., 2017). Conversely, for diabetic
patients not taking metformin, relative abundance was higher in
Clostridiaceae 02d06 and lower in Enterococcus casseliflavus (de la
Cuesta-Zuluaga et al., 2017).

a-glucosidase inhibitors, including acarbose, voglibose and
miglitol, are the first-line drugs in noninsulin-dependent T2DM
characterized by their high efficacy in postponing the digestion of
carbohydrates and reducing postprandial hyperglycemia
(Montandon and Jornayvaz, 2017), those medications inhibit
carbohydrate hydrolysis by binding to human intestinal maltase-
glucoamylase (MGAM) and sucrase-isomaltase (SI), and
consequently delay and reduce the absorption of glucose.
Furthermore, there is growing evidence that a-glucosidase
inhibitors impact microbiota composition. For instance, T2DM
patients treated with acarbose showed increased abundance of
Bifidobacterium longum and decreased concentration of
lipopolysaccharides (Su et al., 2015). Another clinical trial suggested
that Butyricicoccus, Phascolarctobacterium, and Ruminococcus
decreased while Lactobacillus, Faecalibacterium, and Dialister
increased in patients with prediabetes after acarbose treatment
(Zhang X. et al., 2017). Interestingly, Smith et al. observed that there
were notable changes in microbial communities and the
concentrations of SCFAs in the mice treated with acarbose
compared with those of control mice, and microbial
communities and fecal SCFAs increased the lifespan of the
May 2022 | Volume 12 | Article 853771
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mice treated with acarbose (Smith et al., 2019). Recently, a study
fromChinese population provided thata-glucosidase inhibitors
contributed to the plentitude of Bifidobacterium and
Lactobacillus, as well as promoted several amino acid pathways
(Zhang F. et al., 2019). Also, 12-week voglibose administration
decreased the ratio of Firmicutes to Bacteroidetes and improved
metabolic profiles including those of blood glucose and lipid
metabolism (Do et al., 2016). Therefore, it has been suggested
that a-glucosidase inhibitors may have beneficial effects on
glycemic control partly through gut microbiota in T2DM.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
GLP-1 is an incretin hormone secreted by intestinal
endocrine cells (L cells) in response to food ingestion (Drucker
and Nauck, 2006). It can enhance glucose-induced insulin from
pancreatic b-cells and suppress glucagon secretion; in addition, it
also contributes to the inhibition of appetite and gastric
emptying (Drucker and Nauck, 2006; Baggio and Drucker,
2014). Numbers of studies have shown that gut microbiota
modulates satiety and glucose homoeostasis by inducing the
secretion of GLP-1 in mice (Tolhurst et al., 2012; Kimura et al.,
2013; Vettorazzi et al., 2016; Aoki et al., 2017). Meanwhile, GLP-
TABLE 1 | Effect of antidiabetic drugs on gut microbiota in T2DM.

Antidiabetic
drugs

Changes in gut microbiota Mechanisms References

Metformin Increased Escherichia and lowered Intestinibacter abundance NA Forslund et al.,
2015

Increased Escherichia and Bifidobacterium, as well as lowered Intestinibacter
abundance

Affected pathways and regulated genes
encoding metalloproteins or metal transporters

Wu et al., 2017

Enriched the abundance of Akkermansia muciniphila and SCFA-producing
microbiota

NA de la Cuesta-
Zuluaga et al., 2017

Increased Enterobacteriales and Akkermansia muciniphila NA Cao et al., 2020
Increased E. coli and R. torques and decreased I. bartlettii and R. intestinalis at
6 and 12 months

NA Mueller et al., 2021

a-glucosidase
inhibitors

Increased abundance of Bifidobacterium longum and decreased concentration
of lipopolysaccharides

Decreased levels of related cytokines and
alleviated the inflammatory status

Su et al., 2015

Increased Lactobacillus, Faecalibacterium, and Dialister and decreased
Butyricicoccus, Phascolarctobacterium and Ruminococcus

NA Zhang X. et al.,
2017

Contributed to the plentitude of Bifidobacterium and Lactobacillus Promoted amino acid pathways Zhang F. et al.,
2019

Decreased the ratio of Firmicutes to Bacteroidetes Downregulated expression levels of CYP8B1
and HNF4a genes and upregulated PGC1a

Do et al., 2016

GLP-1
receptor
agonists

Increased the ratio of Firmicutes-to-Bacteroides NA Wang et al., 2016;
Zhao et al., 2018

Elevated SCFA-producing bacteria and Bifidobacterium NA Zhang et al., 2018
Increased the frequency of the Bacteroidetes to Firmicutes phyla
ratio

Reduced the frequency of Th1 lymphocytes,
as well as increased TReg and ILC1 and 3
cells

Charpentier et al.,
2021

DPP4
inhibitors

Increased the abundance of Bacteroidetes NA Liao et al., 2019
Increased Firmicutes and Tenericutes, as well as decreased Bacteroidetes NA Yan et al., 2016;

Zhang Q. et al.,
2017

Increased Lactobacilli spp. and propionate production along with decreased
Oscillibacter spp.

Restored the expression of AMPs and the
depth of the crypts in the ileum

Olivares et al.,
2018a

SGLT2
inhibitors

Decreased Firmicutes-to-Bacteroidetes ratio and Oscillospira, as well as
increased Akkermansia muciniphila

NA Lee et al., 2018

Increased the relative abundance of Proteobacteria and did not influence the
abundance of the Firmicutes-to-Bacteroidetes ratio

NA Yang et al., 2020

Almost did not change NA Du et al., 2018; van
Bommel et al., 2020

TCMs Increased the relative abundance of Bacteroidetes and decreased
Proteobacteria

NA Yao et al., 2020; Xu
et al., 2021

Inhibited Ruminococcus bromii Attenuated DCA transformation Zhang Y. et al.,
2020

Enriched butyrate-producing bacteria Induced ileal gene expression and relieved
systemic and local inflammation

Xu et al., 2020

Increased SCFAs-producing and anti-inflammatory bacteria NA Chen et al., 2018;
Wei et al., 2018

Enriched Akkermansia muciniphila and SCFAs level Strengthened gut barrier function and reduced
the host inflammatory reaction

Cao et al., 2019; Su
et al., 2020

Up-regulated Firmicutes and Lactobacillus Up-regulated PBA-FXR-GLP-1 pathway Chen et al., 2021
Insulin Increased the abundance of Fusobacterium Up-regulated the genes involved in triglyceride

and arachidonic acid metabolism
Zhang F. et al.,
2019
May 2022 | Volume
T2DM, type 2 diabetes mellitus; NA, not available; SCFA, short-chain fatty acid; AMP, antimicrobial peptide; GLP-1, glucagon-like peptide-1; DPP4, dipeptidyl peptidase-4; SGLT2,
sodium-glucose cotransporter 2; TCMs, traditional Chinese medicines; DCA, deoxycholic acid; PBA, primary bile acid; FXR, farnesoid X receptor.
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1 receptor agonists, a new class of antidiabetic drugs, were also
reported to affect the intestinal environment and, indeed,
changes in the gut microbiota had been linked to GLP-1
receptor agonists (Wang et al., 2016; Zhang et al., 2018; Zhao
et al., 2018; Charpentier et al., 2021; Shang et al., 2021).
Generally, the Firmicutes to Bacteroidetes ratio is regarded to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
be of significant relevance in human gut microbiota composition.
Wang et al. demonstrated that liraglutide could modulate the gut
microbiota to a more lean-related composition in diabetic mice
with normal weight, and they also found a higher Firmicutes-to-
Bacteroides ratio after liraglutide treatment (Wang et al., 2016).
Inconsistently, another study argued that liraglutide increased
FIGURE 1 | Bidirectional interaction between gut microbiota and antidiabetic drugs. On the one hand, antidiabetic drugs, including metformin, a-glucosidase
inhibitors, GLP-1 receptor agonists, DPP4 inhibitors, SGLT2 inhibitors and TCMs, can affect the composition of gut microbiota (the second outermost circle). On the
other hand, the gut microbiota can reduce the inflammatory reaction and alter the drug’s bioactivity, bioavailability or toxicity, thus influencing drug’s efficacy and
safety, as well as improving metabolic dysfunction (the outermost circle). In the outermost ring, white fonts represent negative impacts of the antidiabetic drugs, while
black fonts represent positive impacts. SCFA, short-chain fatty acid; GLP-1, glucagon-like peptide-1; DPP4, dipeptidyl peptidase-4; SGLT2, sodium-glucose
cotransporter 2; TCMs, traditional Chinese medicines.
May 2022 | Volume 12 | Article 853771
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the Bacteroides-to-Firmicutes ratio to lower weight significantly
regardless of the glycemic status in both simple obese and
diabetic obese subjects (Zhao et al., 2018). This discrepancy
may be attributed to the different level of hyperglycemia and
model systems used. By constructing diabetic animal model,
researches showed that administration of GLP-1 receptor
agonists profoundly changed the composition of gut
microbiota in diabetic male rats (Yuan et al., 2018; Zhang
et al., 2018). In particular, several SCFAs-producing bacteria,
including Bacteroides, Lachnospiraceae, and probiotic bacteria,
including Bifidobacterium, were selectively enhanced in
liraglutide-treated diabetic male rats (Zhang et al., 2018). In
parallel, liraglutide increased the Bacteroidetes-to-Firmicutes
ratio by reducing the Th1 cell frequency and enhancing certain
immune cells, such as regulatory T (Treg) cell, innate lymphoid
cell 1 (ILC1) and ILC3, which was linked to the nitrogen or the
purine metabolism pathways, thus improving glucose-induced
insulin secretion (Charpentier et al., 2021). Crucially, GLP-1
receptor agonists could at least partially restore the balance of gut
microbiota (Yuan et al., 2018).

DPP4 inhibitors have been proposed to lower blood glucose
primarily through inhibiting the degradation of GLP-1 and are
recommended as a first-line hypoglycemic treatment in T2DM
by the American Association of Clinical Endocrinologists
(Drucker and Nauck, 2006; Handelsman et al., 2015). A
previous study proposed the DPP-4-like activity of the gut
microbiota as a target of DPP-4 inhibition, which could open
new therapeutics uses of DPP4 inhibitors to regulate gut
microbiota dysbiosis (Olivares et al., 2018b). Liao et al.
demonstrated that DDP4 inhibitors improved glucose
metabolism by increasing the abundance of Bacteroidetes, and
substantially reversing the changes in the gut microbiota induced
by high fat diet (HFD) (Liao et al., 2019). An investigation into
the effect of sitagliptin on gut microbiota indicated that the phyla
Bacteroidetes decreased, while Firmicutes and Tenericutes
increased; in addition, sitagliptin partially corrected the
dysbiosis of microbiota and altered the population of SCFA-
producing bacteria in HFD-fed rats with T2DM (Yan et al.,
2016). Similarly, another experiment showed that vildagliptin
treatment was associated with increased Bacteroidetes and
decreased Firmicutes along with decreased Firmicutes/
Bacteroidetes ratio in the diabetic rats (Zhang Q. et al., 2017).
In parallel, vildagliptin was proposed to exert beneficial effects
through the modulation of gut microbiota, and was linked with
increased Lactobacilli spp. and propionate production along with
decreased Oscillibacter spp. (Olivares et al., 2018a). To explain
these changes, Olivares and his colleagues performed
experiments and found that vildagliptin reduced Toll-like
receptor (TLR) ligands in caecal content, as well as restored
the expression of antimicrobial peptides (AMPs) and the depth
of the crypts in the ileum (Olivares et al., 2018a). Furthermore,
they also explored that vildagliptin indirectly reduced gene
expression of proinflammatory cytokines in liver. These
findings demonstrate an important effect of DPP4 inhibitors
on the gut microbiota, revealing a potential strategy for
improving glucose homeostasis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
SGLT2 inhibitors, a novel class of anti-diabetic substances,
are used to achieve the glucose-lowering effect by increasing
urinary glucose excretion (Tahrani et al., 2013). After 8 weeks of
treatment with dapagliflozin, diabetic mice displayed lower
arterial stiffness and blood glucose level, and even more
importantly, decreased Firmicutes-to-Bacteroidetes ratio and
Oscillospira, as well as increased Akkermansia muciniphila (Lee
et al., 2018). Notably, another study demonstrated that
dapagliflozin and metformin have similar glucose-lowering
effect, but they differentially affected the composition of fecal
microbiota in type 2 diabetic rats (Yang et al., 2020). The
dapagliflozin group mainly increased the relative abundance of
Proteobacteria (especially Desulfovibrionaceae) and did not
influence the Firmicutes-to-Bacteroidetes ratio. Conversely,
several studies considered that SGLT2 inhibitors had almost no
effect on gut bacteria (Du et al., 2018; van Bommel et al., 2020).
Nevertheless, it was essential to emphasize that all the study
participants had been treated with metformin, which could have
overshadowed the potential effects of dapagliflozin on the gut
microbiota (van Bommel et al., 2020). In short, further research
is needed to figure out the influence of SGLT2 inhibitors on
gut microbiota.

TCMs, generally also known as botanical medicine or
phytomedicine, have been shown to effectively reduce blood
glucose for many years (Lian et al., 2015; Hu et al., 2016).
Although TCMs have significant effects on the treatment of
T2DM, the mechanisms underlying the therapeutics effects
remain elusive. In recent decades, accumulating evidence
confirmed that TCMs could improve T2DM by modulation of
gut microbiota (Xu et al., 2015; Nie et al., 2019; Zhang B. et al.,
2019; Zheng et al., 2020a; Zheng et al., 2020b). Yao et al. observed
that Berberine reduced the blood glucose levels and improved
glucose tolerance and serum lipid parameters in type 2 diabetic
rats (Yao et al., 2020). Further analysis found that the relative
abundance was increased for Bacteroidetes and decreased for
Proteobacteria and Verrucomicrobia after Berberine treatment
(Yao et al., 2020). Likewise, after 30 days of administration,
Bereris kansuensis extract increased the abundance of phyla
Bacteroidetes and Akkermansia, while reduced the abundance
of Proteobacteria and several harmful bacteria (e.g., Enterococcus
and Fusobacterium), which was related to its antidiabetic effect in
T2DM rats (Xu et al., 2021). To investigate the potential
microbial-related mechanism underlying the hypoglycemic
effect of Berberine, Zhang et al. found that the inhibition of
deoxycholic acid (DCA) biotransformation by Ruminococcus
bromii might be involved in the hypoglycemic effect of
Berberine (Zhang Y. et al., 2020). Moreover, a recent study
demonstrated that the glucose-lowering effect of Gegen Qinlian
Decoction could be attributed to Berberine, and both of them
significantly modulated the overall gut microbiota structure and
enr i ched bu ty r a t e -p roduc ing bac t e r i a , in c lud ing
Faecalibacterium and Roseburia (Xu et al., 2020). Additionally,
two TCM prescriptions, Xiexin Tang and Huang-Lian-Jie-Du-
Decoction were reported to increase SCFAs-producing and anti-
inflammatory bacteria (e.g., Parabacteroides , Blautia ,
Akkermansia, and Adlercreutzia) in T2DM rats (Chen et al.,
May 2022 | Volume 12 | Article 853771
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2018; Wei et al., 2018), providing novel insights into the
mechanism and clinical treatment for T2DM from the
perspective of gut microbiota. Another two TCMs, JinQi
Jiangtang tablets and Andrographolide ameliorated glucose
intolerance and insulin resistance in T2DM mice by enriching
microbial species of Akkermansia muciniphila and increasing
SCFAs level (Cao et al., 2019; Su et al., 2020). The mechanism
was related to regulating the gut barrier integrity and reducing
the host inflammation. Consistent with the abovementioned
results, Chen et al. found that Ge-Gen-Jiao-Tai-Wan formula
could reduce blood glucose levels and improve glucose tolerance
by regulating the composition of the gut microbiota (Chen et al.,
2021). Correspondingly, Ge-Gen-Jiao-Tai-Wan formula up-
regulated the beneficial phylum Firmicutes and bile-acid-
related genus Lactobacillus, promoting the production of
primary bile acids (PBAs) and activating the PBA- farnesoid X
receptor (FXR)-GLP-1 pathway (Chen et al., 2021).

In addition to the above-mentioned antidiabetic drugs, the
influence of sulfonylurea, peroxisome proliferative activated
receptor (PPARG) agonists and insulin on microbiota
composition and the consequent metabolic benefits has also been
emphasized (Huo et al., 2015; Zhang F. et al., 2019; Madsen et al.,
2021). Insulin increased the abundance of Fusobacterium, which
up-regulated the genes involved in triglyceride andarachidonic acid
metabolism (Zhang F. et al., 2019). Previous studies reported that
hippuratewas a component of urine andmainly generated fromthe
breakdown of plant phenols and aromatic amino acids by gut
microbiota (Williams et al., 2002; Mulder et al., 2005).
Metabonomic analysis investigated that levels of those aromatic
amino acids (phenylalanine and tryptophan) were decreased, and
hippurate was increased in the urine of T2DM patients after the
treatment of sulfonylurea, which might be mediated via gut
microbiota (Huo et al., 2015). Recently, Madsen et al. revealed
that rosiglitazone, a PPARGagonist, improved glucosehomeostasis
without influencing local gutmicrobiome in diabetic db/dbmice by
using full-length bacterial 16S rRNA sequencing (Madsen
et al., 2021).

The Impact of Gut Microbiota on
Antidiabetic Drug’s Efficacy and Safety
Although the changes in gut microbiota caused by antidiabetic
drugs were not simply reflecting improved glycemic control, the
antidiabetic effect and safety of antidiabetic agents depended partly
on certain groups of gut microbiota (Table 2). Wu et al. transferred
the fecal samples from metformin-treated donors (treated with
metformin for 4 months) to germ-free mice and indicated that
glucose tolerance was improved mainly through increasing the
production of SCFAs or altering plasma bile acid composition,
suggesting that increased growth of SCFA-producing bacterial
species could potentially contribute to the antidiabetic effect of
metformin (Wu et al., 2017). Another study revealed that the level
of bile acid glycoursodeoxycholic acid (GUDCA) was increased
and Bacteroides fragilis was decreased in newly diagnosed T2DM
treated with metformin for 3 days (Sun et al., 2018). Further
experiments confirmed that B. fragilis–GUDCA–intestinal FXR
axis mediated the glucose-lowering effect of metformin.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
a-glucosidase inhibitors, which were not absorbed in the
small intestine or not metabolized before excretion, created a
chance for unintended cross-interaction with gut microbiota.
Previous studies identified that the sequence and structural active
sites of human intestinal a-glucosidases (MGAM and SI) and
microbial a-glucosidases (from Blaubia obeum) were highly
homologous, and microbial a-glucosidases could process
dietary carbohydrates as well as be inhibited by a-glucosidase
inhibitors with comparable strengths (Kuriyama et al., 2008;
Natori et al., 2011). Thus, the location and any changes of these
active sites might affect the access and specificity of these a-
glucosidases to a-glucosidase inhibitors (Tan et al., 2018),
mediating their therapeutic effect.

GLP-1 resistance has been reported to seriously impair the
effect of GLP-1 receptor agonists (Knop et al., 2012). Grasset
et al. identified a specific set of ileum bacteria impairing the GLP-
1-activated gut brain axis for the control of insulin secretion and
gastric emptying, hence inducing GLP-1 resistance (Grasset
et al., 2017). Intriguingly, fecal samples from DDP4 inhibitors-
treated T2DM patients transferred to HFD-fed mice improved
the glucose intolerance of the recipients, suggesting that the
altered gut microbiota contributed to hypoglycemic effects of
DDP4 inhibitors even in the absence of additional treatments
(Liao et al., 2019). In addition, the gut microbiota might improve
the therapeutic efficacy and bioavailability of TCMs by affecting
their transformation and absorption (Wang et al., 2017).

In addition to the impact on drug efficacy, gut microbiota can
also contribute to the side effects of antidiabetic drugs. It is well
known that gastrointestinal side effects are reported in up to one-
third of patients taking metformin, and these side effects can be
attributed to the identified metabolism genes (mainly derived from
an increase of E. coli species) and the increase of virulence factors
(Forslund et al., 2015). Because of the high homology of the active
sites of human a-glucosidases and gut bacterial a-glucosidases, one
proposed theory was that a-glucosidase inhibitors could affect the
bacterial a-glucosidases in human gut and exert beneficial effects or
create adverse gastrointestinal symptoms (Tan et al., 2018).
NEW INSIGHTS FOR DEVELOPING
PERSONALIZED TREATMENTS

Given the interplaybetweengutmicrobiota andantidiabeticdrugs, there
is increasing awareness that altering microbiota can impact metabolic
phenotype and provide a rational basis for targeting gut microbiota to
develop personalized treatments in T2DM (Aron-Wisnewsky et al.,
2019; Ghorbani et al., 2021; Huda et al., 2021). Several new insights
including fecal microbiota transplantation (FMT), probiotics or
prebiotics, and intermittent-fasting could contribute to the desired
drug response and personalized medicine (Table 3 and Figure 2).

FMT
FMT is a process of transferring stool from a healthy donor to
another patient’s intestinal tract, which can not only reverse gut
microbiota dysbiosis (Heet al., 2015), but also rebuild the recipient’s
intestinalmicrobial ecosystem (Groen andNieuwdorp, 2017).Over
the past few years, T2DM has been suggested responsive to FMT
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(Khoruts and Sadowsky, 2016), which also has attracted
increased attention.

In the FMT-treated mice with diabetes, Desulfovibrio and
Clostridium coccoides levels were significantly decreased, and the
fecal levels of Akkermansia muciniphila were increased (Zhang
P.P. et al., 2020). Moreover, Akkermansia muciniphila led to
increased expression of HDAC3, which remarkably improved
glycolipid metabolism. Likewise, glucose tolerance was improved
by transfer of fecal samples from patients treated with metformin
to germ-free mice (Wu et al., 2017). Metagenomics analysis
indicated that metformin promoted functional shifts in gut
microbiota of fecal samples, including lipopolysaccharide
biosynthesis and SCFA metabolism. Notably, another study
investigated the effects of lean donor-FMT versus self-FMT on
patients with metabolic syndrome and found that insulin
sensitivity was not changed at 18 weeks after self-FMT, but
was significantly improved at 6 weeks after lean donor-FMT
(Kootte et al., 2017). Moreover, a recent review considered that
whether FMT was a future therapeutic option needed further
evaluation (Aron-Wisnewsky et al., 2019). Collectively, FMT
may be an interesting option to modify certain gut microbiota
and a potential target for developing personalized treatments.

Probiotics
Probiotics are live microorganisms, which have a beneficial effect
on human health when administered in adequate amounts (Hill
et al., 2014; Kesika et al., 2019). A number of studies revealed that
multi-strain probiotic supplement, including Lactobacillus
plantarum HAC01 and Probioglu™, lowered blood glucose and
HbA1c levels, as well as improved glucose tolerance by protecting
b-cells and restoring the gut microbiota and SCFAs in
streptozotocin-induced diabetic rat models with HFD (Hsieh
et al., 2021; Lee et al., 2021). Furthermore, a randomized clinical
trial performed by Toejing et al. demonstrated that probiotic
supplementation L. paracasei HII01 significantly decreased
fasting blood glucose level by increasing beneficial bacteria and
decreasing pathogenic bacteria, thus suggesting a potential role of
this probiotic as an adjuvant treatment in T2DM (Toejing et al.,
2021). Another randomized controlled pilot study showed that
participants taking metformin in combination with probiotics had
higher concentration of plasma butyrate and SCFA-producing
bacteria after the 12-week intervention, lower fasting plasma
glucose and weaker insulin resistance, which suggested that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
probiotic might act as an adjunctive to metformin and thus
enhanced glucose management at the individual level (Palacios
et al., 2020). Consistent with this result, a recent study showed that
the probiotic supplementation improved the glycemic parameters
in T2DM patients and thus could be recommended as a potential
adjuvant treatment alongside medicine for T2DM therapy (Bock
et al., 2021). Mechanistically, these probiotics exerted antidiabetic
effect and ameliorated the symptom of T2DM, as well as restored
gut barrier function via reducing pro-inflammatory cytokines and
intestinal permeability, and activating antioxidant enzymes
(Sharma et al., 2016; Kim et al., 2018; Wang et al., 2020).

Dietary Interventions and Prebiotics
Dietary interventions and prebiotics are the ingredients that
beneficially affect the host by selectively promoting the growth
and the activity of certain bacterial species (Gibson and Roberfroid,
1995; Wu et al., 2011). Although gut microbiota played an
important role in human by interacting with host diet, there was
large inter-individual variation in the response to diet (Lampe et al.,
2013), and studies displayed that the gut microbial composition
could be used to identify those participants who would benefit from
dietary interventions or prebiotics (Korpela et al., 2014; Salonen
et al., 2014; Kovatcheva-Datchary et al., 2015). A meta-analysis of
randomized controlled trials concluded that dietary interventions
supplemented with either prebiotics or synbiotics resulted in
improvements in glucose homeostasis in patients with T2DM
(Mahboobi et al., 2018). Moreover, Yu et al. argued that different
dietary supplements might exert synergistic protective effects against
T2DM via reducing the blood glucose levels and effectively
improving some beneficial bacterium (Yu et al., 2021).

Additionally, prebiotic inulin was conducive to alleviate
T2DM by modulating gut microbiota (Li et al., 2019; Birkeland
et al., 2020). Further analysis found that dietary inulin increased
the relative abundance of Cyanobacteria and Bacteroides, as well
as reduced the relative abundance of Ruminiclostridium,
Deferribacteres, and Tenericutes via suppressing inflammation
(Li et al., 2019). Noteworthily, a symbiotic mixture of prebiotics
and probiotics supplementation could be more beneficial
compared to prebiotic or probiotic alone (Morshedi et al.,
2020). A recent randomized trial also demonstrated that
administration of berberine with probiotics improved blood
glucose levels compared to the group treated with berberine
alone (Zhang Y. et al., 2020). Therefore, there will be a promising
TABLE 2 | Impact of gut microbiota on antidiabetic drug’s efficacy and safety in T2DM.

Related changes in gut microbiota Antidiabetic drugs Impact of efficacy or safety References

Increased abundance of Escherichia species Metformin Contributed to intestinal discomfort Forslund et al.,
2015

Increased SCFAs or bile acid composition Metformin Contributed to the beneficial effects Wu et al., 2017
Decreased Bacteroides fragilis and increased the bile acid
GUDCA

Metformin Improved metabolic dysfunction Sun et al., 2018

Enriched Blaubia obeum a-glucosidase
inhibitors

Reduced their efficacy Tan et al., 2018

Increased abundance of the phylum Firmicutes and
Bacteroidetes

DPP4 inhibitors Improved glucose tolerance and contributed to hypoglycemic
effect

Liao et al., 2019

Increased NR-producing bacteria TCMs Improved the therapeutic efficacy and bioavailability Wang et al., 2017
May 2022 | Volume 1
T2DM, type 2 diabetes mellitus; SCFA, short-chain fatty acid; GUDCA, glycoursodeoxycholic acid; DPP4, dipeptidyl peptidase-4; TCMs, traditional Chinese medicines; NR, nitroreductase.
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TABLE 3 | Potential microbial-based therapeutics for developing personalized treatments in T2DM.

Microbial-based
therapeutics

Subjects Results References

FMT Mice with diabetes Increased the fecal levels of Akkermansia muciniphila, decreased Desulfovibrio and Clostridium
coccoides levels and lowered fasting blood glucose concentrations

Zhang P.P.
et al., 2020

Germ-free mice Increased SCFAs and bile acid composition, as well as improved glucose tolerance Wu et al.,
2017

Metabolic syndrome
patients

Increased fecal acetate or butyrate at 6 weeks Kootte et al.,
2017

Probiotics (STZ+HFD)-induced
T2DM mice

Increased the Akkermansiaceae family and SCFAs, as well as protected b-cells and alleviated
hyperglycemia

Lee et al.,
2021

(STZ+HFD)-induced
T2DM rats

Protected b-cells, stabilized glycemic levels and reduced inflammation Hsieh et al.,
2021

T2DM patients Increased the level of SCFAs Toejing et al.,
2021

T2DM patients Decreased fasting plasma glucose and insulin resistance Palacios et al.,
2020

Dietary interventions
and prebiotics

T2DM patients Improved lipid metabolism and glucose homeostasis Mahboobi
et al., 2018

T2DM mice Reduced the blood glucose level and oral glucose tolerance level, as well as increased the level of
SCFAs and improved biochemical parameters

Yu et al., 2021

T2DM patients Increased concentrations of faecal SCFAs with six weeks supplementation of inulin-type fructans Birkeland
et al., 2020

T2DM mice Reduced abundance of Deferribacteres and Tenericutes, and suppressed inflammation Li et al., 2019
Frontiers in Cellular and
 Infection Microbiology
 | www.frontiersin.org May 2022 | Volume 12 |8
FMT, fecal microbiota transplantation; STZ, streptozotocin; HFD, high fat diet; T2DM, type 2 diabetes mellitus; SCFA, short-chain fatty acid.
FIGURE 2 | Potential mechanisms of microbial-based therapeutics for developing personalized treatments in T2DM. There are several relevant mechanisms through
which antidiabetic drugs treat T2DM by regulating the gut microbiota. Microbial-based therapeutics, including FMT, probiotics and dietary interventions and
prebiotics, could directly target gut microbiota or act as an adjunctive to antidiabetic drugs to restore the balance of several certain dysbiotic gut microbiota, which
contributed to reducing pro-inflammatory cytokines, restoring gut barrier function, as well as protecting b cells, therefore improving glycemic control and glucose
tolerance. FMT, fecal microbiota transplantation; T2DM, type 2 diabetes mellitus.
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synergistic approach in the future involving both diet and
prebiotics in the personalized prevention and treatment of
T2DM. Currently, a prominent study integrated clinical and
microbial data and devised machine learning algorithms for
postprandial glycemic response (PPGR) prediction (Shilo et al.,
2022), which implied that personally tailored treatments could be
customized for individuals in the future.
CONCLUSIONS AND FUTURE
PERSPECTIVES

With the bidirectional interaction between gut microbiota and
antidiabetic agents is increasingly being understood, targeting
gut microbiota can contribute to increasing drug efficacy and
safety, and thus enable a personalized medicine approach for the
treatment and management of T2DM.

It is noteworthy that pharmacomicrobiomics play an essential
role in combing personal microbiome and genetic profiles to
better predict individual’s drug response and efficacy at the
individual level. Mapping and modeling human microbiome
drug metabolism with genome-scale and meta-omics analyses
could improve our understanding of the roles of drugs and
microbial communities in personalized medicine (Zimmermann
et al., 2019; Javdan et al., 2020; Heinken et al., 2021). With the
advance of multi-omics in gut microbiota research, microbiota-
based personalized treatment is expected to be achieved by
integration of multi-omics data with microbiome data in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
T2DM patients. Excitingly, thanks to current technologies,
around 80% of gut microbes are readily available using
bacterial culture (Lagier et al., 2016), which helps to mimic the
intestinal environment and makes it possible to conduct
individual-based drug testing on cultured bacteria, thus
developing novel preventative strategies and personalized
therapeutic targets.

Finally, applying the abovementioned novel approaches may
contribute to a better understanding of the interactions between gut
microbiota and antidiabetic drugs in T2DM, ultimately leading to
future potential major advances in personalized medicine.
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