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Abstract: Trace amounts of Co3O4 modified TiO2 nanorod arrays were successfully fabricated
through the photochemical deposition method without adding any nocuous reagents. The Co3O4/TiO2

nanorod arrays fabricated in acid solution had the highest photo-electrochemical activity. We elabo-
rated on the mechanism of Co3O4-TiO2 fabricated in different pH value solutions. The Co3O4-TiO2

had a more remarkable photo-electrochemical performance than the pure TiO2 nanorod arrays owing
to the heterojunction between Co3O4 and TiO2. The degradation of methylene blue and hydro-
quinone was selected as the model reactions to evaluate the photo-electrochemical performance of
Co3O4-TiO2 nanorod arrays. The Co3O4/TiO2 nanorod arrays had great potential in waste water
treatment.

Keywords: photocatalytic degradation; photo-electrocatalysis; Co3O4-TiO2; dyes; organic pollutants

1. Introduction

From the comprehensive point of view, semiconductor metal oxides have been widely
used as stable photo-catalysts for the cosmopolitan energy crisis [1–5]. TiO2 is the most
extensively used semiconductor photo-catalyst owing to its exceptional properties, such
as high photo-catalytic activity, chemical stability, environmental-friendliness, and low
cost [3,4,6–8]. However, because of the large bandgap of TiO2 (3.2 eV), the practical ap-
plications are hampered by its low electrical conductivity, strong reflection, and weak
light-harvesting ability [9,10], as well as the rapid combination of photo-generated elec-
tron and hole pairs. Various strategies have been utilized to improve the photo-catalytic
efficiency of TiO2 materials, such as tuning their crystallite size and structure, sensitizing
them by organic dye and quantum dots [8,11,12], and modifying them with metals (e.g.,
Pt, Ru, Ag, Au, Rh, Pd, Ni, and Co) [3,10,13–17] or transition metal oxides (e.g., Co3O4,
CoO, Cu2O, and Fe2O3) [18–21] with a narrow band gap semiconductor. The formation of
hetero-junctions between metal oxides and semiconductors is a useful strategy to suppress
the recombination of photo-generated electrons and holes in TiO2, and extend photon
absorption into the visible regime, which can enhance the photochemical efficiency of
TiO2 nanomaterials.

Semiconductor-based hetero-junctions are able to facilitate fast charge separation and
enhance the photo-catalytic efficiency of TiO2 nanomaterials. It is an effective strategy to
construct TiO2-based hetero-junction structures with transition metal oxides. Heterojunc-
tion structures have the potential to facilitate electron–hole separation. TiO2 is a n-type
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semiconductor and, combined with a p-type semiconductor in a suitable band gap position
to form a p-n heterojunction, it is an effective tactic to expand light absorption, enhance
the separation effects of electrons and holes, prolong the lifetime of the electron and hole,
and heighten the photocatalytic activity. Transition metal oxides, such as Ag2O, Cu2O,
CuO, and Co3O4, have been used to form a p-n junction to promote an interfacial electron
transfer process and increase the separation effect [18,22–24]. Cobalt oxides have received
attention because of their excellent photo-catalytic activity in carbon dioxide reduction,
oxygen reduction, and environment restoration [25,26]. Based on its properties of out-
standing photocatalytic activity and low cost, cobalt oxide becomes a feasible material to
fabricate the heterojunction structure with other semiconductor photocatalysts. In this
work, the Co3O4-TiO2 nanorod arrays were synthesized by photochemical deposition (a
green method). The performance of Co3O4-TiO2 nanorod arrays could be controlled by
adjusting the pH value and the concentration of the Co precursor.

2. Experimental
2.1. Preparation of TiO2 Nanorod Arrays

The TiO2 nanorod arrays on Fluorine doped tin oxide (FTO) were fabricated through
the modified hydrothermal method [7,8]. Typically, 30 mL HCl (6 mol/L) was mixed with
0.4 mL tertrabutyl titanium by strong stirring for 10 min. Then, the above solution was
transferred into a Teflon pot, in which an FTO glass electrode with the coated layer facing
down was placed against the wall of the Teflon pot. The hydrothermal synthesis was
carried out at 150 ◦C for 6 h in an oven. Then, the TiO2 nanorod arrays was washed with
high pure water, and dried by high pure N2.

2.2. Fabrication of Ultra Small Co3O4 Coated TiO2 Nanorod Arrays

The Co3O4-coated TiO2 nanorod arrays were prepared by photo-chemical deposition
in a 1:1 ethanol/water solution containing different concentrations of Co(NO3)2 under Xe
lamp with a powder intensity of 100 mW/cm2. The driving force of the Co deposition on
the TiO2 nanorod arrays was high energetic photons, which could photo-excite electrons
from the valance band of TiO2 to the conductor band and leave holes on the valance band.
The holes were depleted by the hole receptor of ethanol. The electrons can reduce the
cobalt ions onto the surface of TiO2 nanorod arrays. Nano cobalt metal was stable and
easily oxidized to Co3O4.

2.3. Photo-Electrochemical Studies of the Co3O4 Modified TiO2 Nanorod Arrays

To study the photo-electrochemical response of the Co3O4-modified TiO2 nanorods
and pure TiO2 nanorod arrays (1.0 cm × 1.0 cm), open circuit potential (OCP) and the
ampere-metric method (I–T) were conducted in 0.1 mol/L Na2SO4 solution at room tem-
perature after being deoxidized by high pure N2 for 15 min.

2.4. The Photo-Electrochemical Degradation Research

Methylene blue and hydroquinone were used to test the photo-electrochemical activity
of Co3O4 modified TiO2 nanorod arrays and pure TiO2 nanorod arrays. The Co3O4 modi-
fied TiO2 and pure TiO2 nanorod arrays with a geometric area of 1.0 cm× 1.0 cm were used
as the working electrode, as well as platinum as the counter electrode and saturated calomel
electrode (SCE) as the reference electrode. A 500 W Xe lamp was used to simulate sunlight
with a powder intensity of 100 mW/cm2. A solution containing 10 mg/L methylene blue
or hydroquinone, 0.1 mol/L Na2SO4, and 10 mmol/L H2O2 was used as the investigated
subject. During the photo-electrochemical degradation process, the electrode was added
with 1.0 V bias potential (vs. SCE) and was light-illuminated to degrade methylene blue
or hydroquinone. To avoid the effects of solution temperature, the reaction system was
placed in a constant temperature system with a circulating water device (Beijing LabTech
Instruments Co., Ltd., Beijing, China). The photo-electrochemical degradation process of
methylene blue and hydroquinone was measured by UV/vis spectrum.
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3. Results and Discussions
3.1. XRD Analysis

The Co3O4-TiO2 and TiO2 nanorod arrays were investigated by X-ray diffraction
measurement (XRD) using copper target to identify the phase of all samples. The Co3O4-
TiO2 and TiO2 samples in Figure 1 show the rutile phase of TiO2 (JCPDS No1-1292). No
new XRD peaks of Co3O4 were observed for the Co3O4-TiO2 nanorod arrays, which might
because of the small amount of cobalt oxide in the Co3O4-TiO2 hybrid catalyst.
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3.2. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Measurement

The morphologies and microstructures of the TiO2 nanorod arrays and Co3O4-TiO2
nanorod arrays were characterized by scanning electron microscopy (SEM). Figure 2 shows
the top view SEM images of the TiO2 and Co3O4-TiO2 nanorod arrays. Highly ordered and
large scale TiO2 nanorod arrays are vertically aligned on both pure TiO2 and Co3O4-TiO2
nanorod arrays in Figure 2.
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nanorod arrays.

The average diameter of TiO2 nanorod is about 180 nm with a rectangular cross section.
There are almost no different features between Co3O4-TiO2 nanorod arrays and pure TiO2
nanorod arrays, which might because of the small amount of Co element in the Co3O4-TiO2
nanorod arrays. The small amount of Co element could be confirmed by Energy Dispersive
X-ray (EDX) in Supplementary Materials Figure S1. Compared with the super strong signal
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of Ti and O element, the signal of Co element was very low, which means the cobalt content
was very low.

Figure 3a–d show the TEM images of TiO2 nanorods and Co3O4-TiO2 nanorod arrays,
respectively. It can be clearly seen that the TiO2 nanorod arrays have the dimension of
4 nm with a clearly lattice structure. Figure 3b is the high resolution of TEM image of
TiO2. Compared with the clear lattice structure of pure TiO2 nanorods, the surface of
Co3O4-TiO2 nanorod arrays (Figure 3c) was covered with something similar to fog, which
makes the lattice structure of Co3O4-TiO2 nanorods not obvious. High resolution TEM of
Co3O4-TiO2 nanorod in Figure 3d showed that there were some amorphous Co3O4 on the
surface of TiO2.
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3.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

To confirm the composition of Co3O4-TiO2 nanorod arrays sample, the XPS method
was used to study the chemical composition and valence state of Co3O4-TiO2. The survey
spectra illustrated in Supplementary Materials Figure S2 demonstrates the existence of Co,
Ti, and O elements. Figure 4a shows the XPS spectrum of O 1s. Figure 4b shows the XPS
spectrum of Ti 2p obital of the Co3O4-TiO2 nanorod array. The Ti 2p3/2 and 2p1/2 located
at 458.4 eV and 464.1 eV can be assigned to Ti4+, which coincided with TiO2. The band
energy of 780.50 eV and 797.43 eV in Figure 4c corresponded to Co 2p3/2 and Co 2p1/2,
respectively. The peaks are the typical signature of Co3O4 and are consistent with the
previous literature [27]. Compared with the strong intensity of the Ti and O element, the
XPS spectra strength of cobalt was very weak, which meant the amount of cobalt element
in Co3O4-TiO2 nano-materials was small.
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The experimental data were in accordance with the EDX results in Supplementary
Materials Table S1. The amount of Co was small, because of the high activity of cobalt
metal. Cobalt element is more vivacious than hydrogen element, which means there
is a competitive reaction between cobalt ions and hydrogen ions during photochemical
deposition. The competition between cobalt ions and hydrogen ions decreases the amount
of cobalt deposition on the TiO2 surface. Furthermore, the Co metal easily dissolved into
Co ions under acid circumstance. Therefore, the competitive reaction and the instability of
cobalt lead to the ultra-small amount of Co on the TiO2 nanorod arrays.

3.4. Photocurrent Test

The transient photocurrent was further used to confirm the generation, transfer, and
separation processes of the photo-induced electrons and holes on both Co3O4 modified
TiO2 nanorod arrays and the pure TiO2 nanorod arrays. To illustrate the effect of Co3O4
on photocatalytic activity of Co3O4-TiO2 nanorod array, the photocurrent response of
the TiO2 nanorod arrays and Co3O4-TiO2 nanorod arrays was measured by chopping
light. The curves of both Co3O4-TiO2 and TiO2 samples in Figure 5a had outstanding
responses to chopping light cycles. The current value of Co3O4-TiO2 is five times higher
than pure TiO2 nanorod arrays. This means that the Co3O4-TiO2 nanorod arrays had higher
photoelectrocatalytic activity than the pure TiO2 nanorod arrays.

Compared with pure TiO2 nanorod arrays, the Co3O4-TiO2 nanorod arrays exhibited
an obviously higher photocurrent, which indicated that Co3O4-TiO2 nanorod arrays had
the higher photo-electrochemical activity. Under light illumination, the electron in the
valence band was excited to the conductor band and left a hole in the valence band. The
electrons were accumulated on the conductor band and holes were assembled on the
valence band by persistent light illumination [28]. The relative OCP value of the samples
was measured to compare the performance in a different semiconductor. In comparison,
the relative OCP value of Co3O4-TiO2 was higher than the pure TiO2 nanorod arrays, which



Nanomaterials 2021, 11, 214 6 of 13

demonstrated that separation of e-h+ pairs in the Co3O4-TiO2 heterojunction is significantly
improved by the addition of Co3O4 (Supplementary Materials Figure S3).Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 13 
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3.5. The Formation Mechanisms of Co3O4 Nanoparticles

Further observation found that Co3O4-TiO2 nanorods fabricated in different pH values
had diverse responses to visible light, as shown in Figure 5b. The Co3O4-TiO2 nanorods
fabricated under pH 4.12 had the highest photo-electrochemical response compared with
others fabricated at pH 7.82 and 7.00. The formation mechanisms of Co3O4 nanoparticles
in different pH solutions were different, which led to a different response to visible light.
In neutral solution, the Co3O4 were formed under photochemical deposition.

3Co− 8e−+4H2O = Co3O4+8H+ (1)

Co nanoparticles were easily deposited onto the semiconductor in alkaline solution.
Such as Co-ZnO was fabricated, which had high catalytic activity in oxygen production [29].
And the high catalytic activity of Ni-CdS nanorods was fabricated through photochemical
deposition in NaOH solution containing Ni ions and methanol [30]. Holes have high energy,
which could oxidize methanol adsorbing on the semiconductor. Considering the high
concentration of ethanol, ethanol was oxidized to formaldhyde and holes were decomposed.
It is very difficult to deposit transition metal or metal oxide onto semiconductors in the
acid solution because cobalt metal is more active than the hydron element. There were two
different competitive reactions during the photodeposition reaction. They are listed below:

Co2++2e−= Co (2)

2H++2e− = H2 (3)

Furthermore, the high activity of transition metals meant they easily dissolved in acid
solution. The Co metal was not stable because of oxidization reaction and photocorrosion.
Considering the above reasons, the amount of Co is very small.

Co− 2e− = Co2+ (4)

3Co− 8e− + 4OH− = Co3O4 + 4H+ (5)
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In alkaline solution, the Co ions mainly existed through Co(OH)4
2−, which was

reduced to Co metal by electrons photo-excited on the TiO2 surface. The Co metal was
not stable and could easily be oxidized to Co3O4 by oxygen or OH radical produced in
photochemical deposition.

Co(OH)4
2− + 2e− = Co + 4OH− (6)

The amount of Co3O4 can be controlled through regulating the concentration of Co
ions from 0.1 mmol/L to 1 mmol/L. We found that Co3O4-TiO2 nanorod array fabricated
in 0.5 mmol/L cobalt ions had the highest photocatalytic activity. It can be clearly seen that
the photocurrent increased with the concentration of Co ions increasing from 0.1 mmol/L
to 0.5 mmol/L (in Figure 6). However, the photo-electrochemical currents decreased when
the Co ions’ concentrations were further increased, which may be because of the formation
of a thick Co3O4 layer and increase in the carrier recombination rate.
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3.6. Photo-Electrochemical Activity of Co3O4 Modified TiO2 Nanorod Arrays

Methylene blue was used as the probe to evaluate the photo-electrochemical activity
of pure TiO2 nanorod arrays and Co3O4 modified TiO2 nanorod arrays. As shown in
Figure 7, the TiO2 nanorod array exhibits a moderate catalytic performance for the photo-
electrochemical degradation of methylene blue, which could have contributed to the
ordered arrays effect. The Co3O4 modified TiO2 nanorod arrays exhibit excellent photo-
electrochemical degradation activity to methylene blue. TiO2 nanorod arrays modified with
Co3O4 had good photochemical catalytic activity, which was attributed to the disjunction of
Co3O4-TiO2 and the charge transfer between Co3O4 and TiO2 nanometer rod components.
Furthermore, the isolated Co3O4 islands on the surface of TiO2 nanorod arrays acted as
reactive sites to enhance the photo-electrochemical activity. The degradation of methylene
blue by Co3O4 modified TiO2 was greater than that of pure TiO2 nanorod arrays. Methylene
blue was totally degraded on Co3O4 modified TiO2 nanorod arrays. Compared with Co3O4-
TiO2 nanorod arrays, only 60% methylene blue was degraded on pure TiO2 nanorod arrays.
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The TiO2 nanorod arrays only absorbed ultraviolet photons to generate e-h+ pairs
to degrade the methylene blue molecule, while Co3O4-TiO2 nanorod arrays provide a
p-n junction between Co3O4 nanoparticles and TiO2 nanorod arrays. The enhancement
of photo-electrochemical activity of Co3O4/TiO2 heterojunction samples could have con-
tributed to the formation of the type-II p-n hetero-junction between Co3O4 and TiO2. TiO2
is an n-type wide band gap semiconductor with the conduction band at 0.14 V, and Co3O4
is a p-type narrow band gap with band energy of 2.07 eV [31]. When Co3O4 nanoparticles
are deposited onto the surface of TiO2 nanorod arrays, a p-n heterojunction can be formed
at the surface of TiO2 nanorod arrays, and the electrons can be transferred from the Co3O4
to TiO2 nanorod arrays until their Fermi levels are equal [32]. The equilibrium can be
broken by methylene blue, which acted as a holes receptor. With the photo-electrochemical
reaction going on, methylene blue was degraded. The positive potential was loaded onto
the Co3O4-TiO2 electrode to further increase the efficiency of the separation of hole and
electrons. The Co3O4 has Co2+ and Co3+ valence state. Co2+ and Co3+ can be easily oxi-
dized to Co4+, and Co4+/Co3+ had high activity to oxidize methylene blue to water and
carbon dioxide. Thus, Co3O4-TiO2 had higher photo-electrochemical activity than pure
TiO2 nanorod arrays.

Hydroquinone was used to further study the photo-electrochemical activity of Co3O4
modified TiO2 and pure TiO2 nanorod arrays. It can be seen clearly from Figure 8a,b
that, compared with pure TiO2, the Co3O4 modified TiO2 nanorod arrays had higher photo-
electrochemical activity. Only 30% hydroquinone was degraded on pure TiO2 nanorod arrays,
and hydroquinone displayed total degradation on Co3O4 modified TiO2 nanorod arrays.

In order to clearly measure the photo-electrochemical activity of Co3O4 modified
TiO2 nanorod arrays and pure TiO2 nanorod arrays, the corresponding kinetic constant
was computed through fitting the experimental degradation of hydroquinone by the
following equation.

− ln
(

Ct

C0

)
= kt (7)
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where Ct is the concentration of hydroquinone at a certain reaction time, C0 is the original
concentration, k is the apparent first rate, and t is photo-electrochemical time. The model
was suitable for the photo-electrochemical hydroquinone degradation process. The k-values
for the Co3O4-TiO2 and pure TiO2 nanorod arrays are 0.91745 and 0.1206, respectively. The
k-value of Co3O4-TiO2 is almost eight times that of the pure TiO2 nanorod arrays, which
further confirmed that Co3O4 addition greatly enhanced the photo-electrochemical activity.Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 13 
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3.7. Photo-Electro-Catalytic Degradation Mechanism

The photo-electrochemical activity of the photo-catalyst was mainly determined by
light absorption, charges holes separation, and charge transfer from the inner to the surface
of catalyzer. The band gap of the semiconductor was the key factor, which had a great
influence on the photo-activity of the catalyst. The bandgap of Co3O4-TiO2 nanorod arrays
and pure TiO2 nanorod arrays was determined from UV/vis diffuse reflectance spectra
using the Tauc function, as shown in Figure 9a. The bandgap of TiO2 nanorod arrays is
3.2 eV and is very close to that from the former literature [33]. The bandgap of Co3O4-TiO2
is 2.85 eV, which could have contributed to the intrinsic narrow band gap of Co3O4 hybrid
with TiO2. The addition of Co3O4 reduced the band gap of the nanomaterial and then
enhanced its catalytic activity.

The influence of Co3O4 on the energy level of the photo-catalyst was studied through
the Mott–Schottky electrochemical method in 0.1 mol/L Na2SO4 with 1000 Hz for Co3O4-
TiO2 and pure TiO2 nanorod arrays. Both TiO2 and Co3O4-TiO2 had positive slopes,
meaning that both pure TiO2 and Co3O4-TiO2 are n-type semiconductors and electrons
as the majority carriers. It can be seen that the addition of Co3O4 did not change the
semiconductor type of TiO2, but greatly changed the Fermi level and the flat band potential
of TiO2. This phenomenon is consistent with other reported work that the addition of cobalt
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would change the band energy of the nanomaterial [34]. The flat-band potential (Vb) and the
carrier density of nano-materials can be calculated according to the following equation:

ND =
2

eε0ε

 dE

d
(

1
C2

)
 (8)

where e0 is the dielectronic constant of the material, ε is the permittivity of the vacuum, e is
the element charge, ND is the donor density, and C is the capacitance. From the slope in the
plot of 1/C2 versus V in the Figure 9b, the smaller slope for the Co3O4-TiO2 reflects a higher
electron donor density. The higher ND means lower resistance, faster charge transfer, and
higher electrochemical activity.Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 13 
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The Co3O4-TiO2 nanorod arrays had greatly enhanced photo-electrochemical perfor-
mance, which could be attributed to the synergetic effects of the formation of a p-n junction
between Co3O4 and TiO2. The catalytic performance of semiconductor nanomaterials
depends on the bandgap of the semiconductor nanomaterial, the separation of electrons
and holes, and the lifetime of electrons and holes generated by photo exciting. The hole and
electron can move the surface to react with the adsorbed reactant. However, the electron
and hole could recombine easily in a short time, which greatly abates the activity of the
catalyst. Therefore, the catalyst’s activity can be greatly influenced by the life-time of the
photo-induced electron-holes pairs. The p-n junction could greatly enhance the life-time
of the electron and holes. The longer life-time of holes and electrons greatly enhances the
activity of catalysts. Co3O4 is a p-type semiconductor with a band gap of 2.19 eV [31], while
TiO2 is an n-type semiconductor with a band gap of 3.2 eV [1]. Thus, Co3O4 participating in
the TiO2 nanorod arrays could change the structure of TiO2 in three aspects: (1) broaden the
absorption range from ultraviolet light to visible light; (2) form a p-n junction to enhance
the life-time of the electron; or (3) the disjunct Co3O4 nanoparticles act as an activation
point to improve the photo-electrochemical activity. The conduction band (CB) position
of TiO2 is more anodic than Co3O4, so the excited electrons on the CB of TiO2 could not
transfer to Co3O4, while the holes could transfer from TiO2 to Co3O4. The recombination
of electron and hole could be reduced just as shown in Scheme 1. At the hetero-junction
in thermal equilibrium, the p-type and n-type regions have completely opposite charges,
and the n-type regions become positive, while the p-type region becomes negative. When
the n-p hetero-junction semiconductor is excited by visible light with high energy to band
gap, the photo-generated electrons can move to the CB of the n-type TiO2 and holes can
move to the VB of the n-type semiconductor for the formation of the inner electric field
in the Co3O4/TiO2 sample, which effectively impedes the recombination of electron–hole
pairs. The biased voltage could further restrain the photo-excited electrons and holes
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recombination through the following mechanism. The positive bias voltage depletes the
electrons and, as a result, the holes can be excluded to the surface. Then, the absorbed
molecules on the surface of Co3O4 can react with the holes to form a series of radicals, such
as OH radical and other radicals. These radicals have great energy to oxidize the organic
waste to water and carbon dioxide.

Co3O4 + visible light→ Co3O4
(
e−
)
+ Co3O4

(
h+) (9)

TiO2 + bias voltage→ TiO2
(
h+) (10)

Co3O4 + bias voltage→ Co3O4 + holes (11)

H2O2 + hole→ 2OH (12)

MB + 2OH→ CO2 + H2O (13)
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Scheme 1. Schematic mechanism of the photo-electrochemical degradation of organic pollution on
Co3O4-TiO2 at a constant positive bias potential.

According to the above results and discussion, consequently, under external bias
voltage, electrons transfer along the external wires to auxiliary electrode and leave holes on
the surface of Co3O4, which could oxidize the organic waste to water and carbon dioxide,
as the schematic shows.

4. Conclusions

Ultra small amounts of Co3O4-modified TiO2 nanorod arrays were successfully fab-
ricated thorough green photochemical deposition methods without adding any nocuous
reagents. The Co3O4/TiO2 nanorod arrays fabricated in acid solution had the highest
photo-electrochemical activity. We elaborated on the mechanism of Co3O4-TiO2 fabricated
in different pH value solutions. The amount of Co3O4 could be controlled by adjusting the
concentration of Co ions. The small amount of Co3O4 made many disjunct active points,
which acted as active sites to mineralize organic wastes during photoelectrochemical degra-
dation. The Co3O4/TiO2 nanorod arrays had higher photo-electrochemical activity to
degrade organic waste than pure TiO2 nanorod arrays, which had great potential in waste
water treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/1/214/s1, Figure S1: EDX of Co3O4 modified TiO2 nanorod arrays, Figure S2: Full XPS data of
Co3O4 modified TiO2 nanorod arrays, Figure S3: OCP response of Co3O4 modified TiO2 nanorod
arrays fabricated in different pH value. Table S1: the content of Co3O4 modified TiO2 nanorod arrays.
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