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To control the spread of an infectious disease over a large network, the opti-
mal allocation by a social planner of a limited resource is a fundamental and
difficult problem. We address this problem for a livestock disease that pro-
pagates on an animal trade network according to an epidemiological–
demographic model based on animal demographics and trade data. We
assume that the resource is dynamically allocated following a certain
score, up to the limit of resource availability. We adapt a greedy approach
to the metapopulation framework, obtaining new scores that minimize
approximations of two different objective functions, for two control
measures: vaccination and treatment. Through intensive simulations, we
compare the greedy scores with several heuristics. Although topology-
based scores can limit the spread of the disease, information on herd
health status seems crucial to eradicating the disease. In particular, greedy
scores are among the most effective in reducing disease prevalence, even
though they do not always perform the best. However, some scores may
be preferred in real life because they are easier to calculate or because they
use a smaller amount of resources. The developed approach could be
adapted to other epidemiological models or to other control measures in
the metapopulation setting.
1. Introduction
Infectious disease spread is a problem that can have important social, sanitary and
economic consequences. Like for human diseases, this is a major public health
concern for animal diseases, for guaranteeing animal welfare and food security
[1]. In this context, epidemiological models, together with other relevant math-
ematical approaches, can help in the description and understanding of the
mechanisms involved in disease propagation, as well as in assessing the effective-
ness of control measures [2]. An approach for controlling a disease spreading on a
population, from a social planner’s point of view, is the allocation of a resource
that has an effect on this spread [3]. Many questions can arise in this context:
how much resource is needed to restrain the disease propagation to a certain
level [4–6], when should it be allocated [7] and where. In this work, we are inter-
ested in the third question. More specifically, we are concerned with the problem
of dynamically deciding where to allocate a limited available resource in an
optimal manner, in order to minimize disease spread on a large animal
metapopulation network.

On the one hand, most of the research addressing the issue of resource opti-
mal allocation on a large network [8–12] does not focus on metapopulation
networks, i.e. does not account for infection-related dynamics within each
sub-population represented by a node of the network. Even more, works rely-
ing on mean-field theory [13] do not consider structured populations, in
particular as a network.
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Figure 1. Schematic representation of the intra-herd infection and demo-
graphic dynamics for a herd j, without resource allocation. Horizontal
arrows represent transitions between health-related compartments, corre-
sponding to the course of infection inside the herd (curved rectangle),
while vertical arrows represent animal flows to and from the herd. Coeffi-
cients on the arrows are transition rates. See main text in §2.1 for
parameter definitions.
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On the other hand, the existing studies addressing the
resource allocation problem on metapopulation networks
are based on techniques that lack of scalability. For example,
optimal control [14] and reinforcement learning [15], which
would theoretically give an optimal strategy, cannot be
used in the context of very large networks due to the
dimensionality in the state space [16,17]. Even if we consider
a sub-population as healthy or infected (only two possible
states per sub-population), a network with J sub-populations
would have 2J possible health states, which yields an asymp-
totically intractable optimal allocation when the network is
very large. Hence, authors that study resource allocation on
metapopulation networks generally build and evaluate
their approach in a small number of sub-populations, usually
less than 50 [18–25]. Recently, [26] proposed a framework
built upon optimal control theory that is able to deal with
the dynamic allocation problem in a network of hundreds
of sub-populations thanks to several simplifications, among
which is considering only a subset of edges for the optimiz-
ation. Yet, such a scale does not allow one to capture the
structural characteristics of complex networks, such as the
animal trade network we consider here. In particular,
animal trade networks are in general scale-free [27] (most
herds have few trading partners while a few herds have
many) and dynamic, as the amount of exchanged animals
can vary over time [28].

Finally, published studies assume the resource to be in
general distributed only once, before or at the beginning of
an outbreak [21,29]. Therefore, the resource allocation pro-
blem is static. However, the allocation problem can be
intrinsically dynamic if it is studied in the long run. For
example, if the available resource is a vaccine, this can have
a limited effect in time, so there is need for several
vaccination campaigns.

Given the intractability of the optimal strategy, in this
work we restrict ourselves to score-based strategies, i.e. strat-
egies that consist of allocating the resource according to a
scoring function (or indicator), up to the limit given by the
available quantity of the resource. Furthermore, given the
practical importance of dynamical aspects of the allocation
problem, we include this view in the present study, i.e. we
assume that the resource allocation is dynamic.

The contribution of this work is twofold. First, from a
methodological perspective, by adapting the greedy
approach in [30], we obtain analytic scores for controlling dis-
ease spread on a large animal trade network, where the
disease propagation is represented by a stochastic SIR
model that accounts for demography and trade (model intro-
duced in §2.1). The approach consists of finding the scoring
function that minimizes a short-term approximation of a
given objective function (§§2.2, 2.3.1 and 3.1). Our generaliz-
ation is mainly driven by the metapopulation framework,
which implies that a herd is not only infected or healthy,
but that it has an internal infection and demographic
dynamics. In particular, this allows for the possibility of
needing different amounts of resources for different herds.
Furthermore, we extend this approach for two different
types of resources (vaccination and treatment) and two differ-
ent objective functions (the number of infected animals and
the number of infected herds). Second, regarding real-life dis-
ease control for livestock diseases, in §3.2, we evaluate the
performances of the analytically obtained strategies along
with the one of several heuristic strategies (introduced in
§2.3.2) that can be relevant for this context. Finally, in §4,
we extend the interpretation of the analytically found scores
and discuss their suitability in a metapopulation context in
the light of simulation-based results. We also consider several
perspectives, based either on the development of other
greedy scores or on new simulation studies that could use
the explorations performed in this work.
2. Methods
2.1. SIR stochastic epidemiological model with

demography in a metapopulation based on
a trade network

We considered a livestock disease that spreads on a large animal
trade network composed of J herds. We supposed that the disease
introduction in a herd could only be due to animal transfers, and
that it could only be transmitted between animals of the same
herd. This livestock trade network underlies a metapopulation
network where nodes represent herds and links represent
animal transfers from one herd to another. For representing this
system, we used the stochastic intra-herd SIR epidemiological–
demographic model described in [31], which takes into account
animal exchanges. The model is summarized in figure 1. Sj(t),
Ij(t) and Rj(t) are the number of susceptible, infected and recov-
ered animals in herd j at time t. Parameters βj, μj and τj are the
daily rates of disease transmission, birth and death in herd j,
assuming newborns are all susceptible. As for γ, it is the daily
recovery rate from the infection, reasonably assumed equal for
all herds. Finally, θji is the daily out rate of animals going from
herd j to herd i, assuming animals in any health state can be
exchanged. We denote as Nj(t) the size of herd j at time t. The
model was specified as a continuous-time Markov chain, and its
simulation was built on an Euler discrete-time scheme using mul-
tinomial distributions, as described in [32]. Details can be found in
the electronic supplementary material of [31].
2.2. Dynamic resource allocation problem in the
metapopulation framework

We supposed that there is a central social planner seeking to mini-
mize the disease propagation on the animal trade network, by
distributing a limited amount of a resource among the herds in
the network, dynamically with a given decision time-step. This
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Figure 2. Representation of the modelling and optimization framework of the score-based dynamic resource allocation under constraint, applied to a metapopula-
tion and vaccine allocation. See main text in §§ 2.1 and 2.2 for parameter definitions.
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dynamic resource allocation problem was formulated as:

min
A

FðAÞ subject to
XJ

j¼1

bjðtÞAjðtÞ � bfix,

8t ¼ Dd, 2Dd, . . .

ð2:1Þ

F(A) in equation (2.1) is the function that the planner has to
minimize, which depends on the allocation strategy A, i.e. the
function that determines the decisions AjðtÞ, 8j ¼ 1, . . . , J,
8t ¼ Dd, 2Dd, . . ., where j denotes the herd, and Δd is the decision
time-step. We assumed binary allocation decisions for each herd,
i.e. Aj(t) = 1 if the resource is allocated to herd j at time t, Aj(t) = 0
otherwise. In the condition of equation (2.1), bfix is the quantity of
resource that is available at each decision time and bj(t) is the
quantity of the resource that would be needed for herd j at
time t if this herd was selected for the allocation.

We supposed that the resource to allocate could be either a
vaccine or a treatment. For the vaccine, we assumed that if applied
to a susceptible animal at time t, the disease transmission rate
towards this susceptible animal becomes βv = β(1− ev) during the
period ]t; t + Δd], where 0≤ ev≤ 1 is the protective efficacy of the
vaccine. That is, Δd is also the duration of the vaccine’s efficacy.
We underline that even if all susceptible animals in herd j are vac-
cinated at time t, infections can occur within j from time t to t + Δd
if new susceptible animals enter the herd, through births or
imports of susceptible animals from other herds. For the treat-
ment, we supposed that it increases the recovery rate of treated
infected animals by an additional factor γ0, i.e. reducing the
mean duration of the infectious period for these animals to
(γ + γ0)−1.

Regarding the resource constraint, for vaccination we
assumed it concerned the number of available doses, and if a
herd j was selected at time t all the animals in the herd would
be vaccinated. So in the condition in equation (2.1), bj(t) =Nj(t)
(the size of herd j at time t). For the treatment, the resource con-
straint was on the number of herds in which animals were
treated at each decision time, so bj(t) = 1. The choice to consider
that the constraint for the treatment involves the number of
herds was mainly motivated by analytical considerations
discussed in §2.3.1.

2.3. Score-based strategies
Score-based strategies consist of ordering herds according to a
certain scoring function J and selecting the top herds, up to
the limit given by the condition in equation (2.1). Let VJðtÞ be
the set that contains the selected herds according to JðtÞ (the
score values at time t) and bfix (the available quantity of resource
per decision time-step). Then, Aj(t) = 1 if j [ VJðtÞ, 0 otherwise.
Figure 2 represents the modelling and optimization framework
of the dynamic resource allocation of vaccines under a score-
based strategy. The treatment allocation differs only in the infec-
tion and demographic dynamics component, and in the control
measure component. That is, for any herd j, there is an additional
compartment Tj for treated infected animals, where animals go
from Ij to Tj at decision time t, if Aj(t) = 1. Unlike vaccination,
the transition from Tj to Ij is not possible even if Aj(t) = 0, i.e.
treated animals can only recover.

Regarding the scoring function, it can be either optimized or
heuristic. In the following, we address the two possibilities.

2.3.1. Greedy scores
First, following the approach in [30] we searched for optimized
scoring functions. This approach consists of finding a scoring
function that minimizes a short-term approximation of the
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objective function

FðAÞ :¼
ð1
0

e�atE½JAI ðtÞ�dt,

where JAI ðtÞ is a function of the infection-related state of the net-
work at time t. The objective establishes an infinite time horizon,
and a parameter a≥ 0 which reduces the long-term impact of
JAI ðtÞ. This means that the larger a, the more we are interested
in the short-term behaviour of the infection dynamics, i.e. the
more weight we put on the initial stochasticity of the disease
diffusion.

Let us deote by X(t) the infection-related state of the network
at time t. In the SIR metapopulation framework, X(t) is a J × 3
matrix where each row j ∈ {1,…, J} contains the values of Sj(t),
Ij(t) and Rj(t) at time t. Since the allocation strategy has no
impact on the initial state, and since the process is Markovian,
the minimization problem (equation (2.1)) is equivalent to

min
A

ð1
u¼0

e�au E[JAI ðtþ uÞjXðtÞ ¼ X] du, ð2:2Þ

for all decision times t and for all network possible states X,
under the same constraint in equation (2.1). Then, focusing on
the short-term behaviour of the system, it is possible to obtain
an approximation of the objective function, which is based on
a Taylor expansion of E½JAI ðtþ uÞjXðtÞ ¼ X� for a small value of
u. Finally, one must find the scoring function that minimizes
this approximation. This approach is therefore called greedy, as
it yields locally (i.e. short term) optimal allocation decisions.

We stress that the form of the scoring function will not
depend on the parameter a in equation (2.2), i.e. we do not
need to fix a value for this parameter when exhibiting the scoring
function. Yet, the higher is a, the lower is the impact of the
approximation accuracy. See the electronic supplementary
material, S1, for more details on the approach.

We adapted this greedy approach to the metapopulation
framework by considering, for each one of the two types of
resource (vaccination and treatment), the minimization of two
different objective functions in equation (2.2). A function on the
number of infected animals

JAI ðtÞ ¼
XJ

j¼1

IjðtÞ, ð2:3Þ

and a function on the number of infected herds

JAI ðtÞ ¼
XJ

j¼1

1IjðtÞ.0: ð2:4Þ

That is, we treated four different cases, depending on the type of
resource (vaccine or treatment) and the objective to be mini-
mized: the number of infected animals (equation (2.3)) or the
number of infected herds (equation (2.4)). In particular, the deri-
vation of the score for the allocation of a treatment under the
objective of equation (2.4) required to consider that the resource
constraint of equation (2.1) was expressed in terms of the number
of attainable herds (bj(t) = 1). This allowed the total number of
treated herds to be formulated as the minimum between bfix
and the number of herds that have exactly one infected animal
(see electronic supplementary material, S1.2.1, for details).

2.3.2. Heuristic scores
In addition, we considered three types of heuristic scores based
on: the topology of the static aggregated network; the demo-
graphic changes in the network; and the dynamic infection-
related state of the network. Table 1 contains the list of the 16
heuristic scoring functions we tested for the metapopulation fra-
mework: five topological ones (in-strength, out-strength,
closeness, betweenness and pagerank), five demographic ones
(Nj(t), purchasesj(0, t), purchasesj(t− Δd, t), salesj(0, t), salesj-
(t− Δd, t)), 5 epidemiological ones (sj(t), ij(t), rj(t), ij(t− Δd, t),
rj(t− Δd, t)), and a random scoring function. All the topological
scoring functions are classical centrality measures in networks
[33].

2.4. Simulation setting and numerical explorations
The simulation setting was described in detail in the electronic
supplementary material of [31]. The metapopulation structure
was set close to real data, extracted from the French Cattle Identi-
fication Database (FCID): animal movements correspond to the
Finistère administrative area in western France, which is densely
populated with cattle. The trade parameters (u ji, 8j, i ¼ 1, . . . , J)
underlying the network structure were set to values based on
these data. The network is scale-free and consists of J = 5000
herds. The initial herd size distribution can be found in the elec-
tronic supplementary material, figure S1a. Details on the trade
parameters and on the herd size distribution can be found in
electronic supplementary material, fig. S3 of [31].

Without loss of generality, the values of demographic and
epidemiological parameters were set to the same value for
all herds. In particular, death and birth rates were
tj ¼ t, mj ¼ m, 8j ¼ 1, . . . , J, where τ = 0.0009 days−1 and μ = 2τ.
So, based on field reality, animals have a mean life time of approxi-
mately three years, and on average an animal gives birth to a calf
every 1.5 years. As herd sizes could vary not only through births
and deaths but also through animal movements, we established
a constraint on the capacity of each herd, Nj(t)≤ 1.5 Nj(0), so that
these remain relatively stable over time. Electronic supplementary
material, figure S1b, shows the final herd size distribution for a
run of the epidemiological–demographic model (without resource
allocation) on the simulated trade network. Regarding the
epidemiological parameters, we set bj ¼ b, 8j ¼ 1, . . . , J, and
considered a disease with moderate immediate impact and
long-lasting development (β/γ = 2 and 1/γ = 90 days). A second
numerical setting, corresponding to a disease with higher early
peak and smaller infection duration (β/γ = 4, 1/γ = 30 days), was
explored in the electronic supplementary material, S2. Finally, for
the available resource, we assumed it could either be a perfectly
effective protective vaccine, i.e. ev = 1, or a treatment that greatly
reduces the infectious period of infected animals (but which is
not perfect in order to avoid instantaneous recovery, an unrealistic
assumption). More specifically, the duration of the infectious
period with treatment was assumed to be 3% of the duration with-
out treatment, i.e. the mean duration of the infectious period for a
treated infected animal is (γ + γ0)−1 = 0.03(1/γ) = 2.7 days.

2.4.1. Setting for the exploration of infection-related dynamics
with score-based resource allocation

Given these parameter values, we simulated the infection-related
dynamics of the metapopulation during 3 years in 74 ( = ([16 +
3] + [16 + 2]) × 2) cases characterized by the type of resource,
the score according to which it is allocated (16 × 3 for vaccination
and 16 × 2 for treatment) and the scenario. This last one can be:
an epidemic scenario, where initially 10% of the herds (chosen
completely at random) had a random subset of 15% of their ani-
mals infected; or an endemic scenario, where the initial state was
given by the state at roughly 3 years (1080 days) without resource
allocation departing from the epidemic scenario. Indeed, elec-
tronic supplementary material, figure S9, shows that if the
simulations are extended beyond 3 years, the total proportion
of infected animals remains rather stable, and that there is only
a 10% reduction in the proportion of infected herds between
levels attained at 3 and 9 years. Hence, although the infection
dynamics after 3 years of simulation did not reach a
steady state rigorously speaking, this date was chosen as the
initial point of the endemic scenario. Indeed, on the one hand,



Table 1. Heuristic scoring functions for herd j at time t. Dependence on t means the score is dynamic in time, otherwise it is static.

Table 2. Parameter values in the allocation problem depending on the type of resource.

resource parameter definition values

vaccine bfix number of available doses at each decision time (as a % of the initial total

number of animals)

(25%�PJ
j¼1 Njð0Þ)a and

ð½5%� 90%� �PJ
j¼1 Njð0ÞÞb

Δd decision step (in days) 180

treatment bfix number of attainable herds at each decision time 25a and [5− 100]c

Δd decision step (in days) 15
aValues for infection-related dynamics explorations.
bValues for percolation analysis of vaccination. From 5% to 30%: by 0.5%. From 40% to 90%: by 10%.
cValues for percolation analysis of treatment. From 5 to 75: by 5. From 80 to 100: by 10.
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at this date the pathogen had widely spread in the metapopula-
tion (electronic supplementary material, figure S9), and on the
other hand, considering 3 years limited the simulation cost. In
each case, we explored the dynamics of the proportion of
infected herds and of the total number of infected animals for
a fixed value of the available quantity of resource, bfix. The
values of bfix and Δd parameters can be found in table 2. We sup-
posed that vaccination decisions were more spaced in time since
vaccines are preventive and tend to have long-lasting effect.
Meanwhile, we supposed that treatment decisions were more
frequent as they are more prone to being applied in a critical
situation.

We stress that in all simulations for the vaccine allocation,
only herds with at least one susceptible animal were eligible,
and that the treatment allocation only considered herds with at
least one infected animal.

Furthermore, we evaluated how other quantities of interest,
raw proxies of ‘costs’, varied with the chosen scoring function



Table 3. Greedy scoring functions studied in the numerical explorations. All the greedy scores are dynamic.

resource JAI ðtÞ scoring function for herd j scoring function name

vaccine inf. animals (equation (2.3)) (Ij(t)/Nj(t))Sj(t) greedyV_infanimals

inf. herds (equation (2.4)) ðIjðtÞ=NjðtÞÞSjðtÞð1IjðtÞ¼1ðgþ tþPJ
i=j u jiÞ þ

PJ
i=j u ji1IiðtÞ¼0Þ greedyV_infherds

inf. herds (equation (2.4)) ðIjðtÞ=NjðtÞÞSjðtÞð10,IjðtÞ,20ðgþ tþPJ
i=j u jiÞ þ

PJ
i=j u ji1IiðtÞ¼0Þ greedyV_infherds_threshold

treatment inf. animals (equation (2.3)) Ij(t) greedyT_infanimals

inf. herds (equation (2.4)) ½�PJ
i=j u ji1IiðtÞ.0� j : IjðtÞ¼1 greedyT_infherds

inf. herds (equation (2.4)) ½ð�PJ
i=j u ji1IiðtÞ.0Þ10,IjðtÞ,20� greedyT_infherds_threshold
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and the amount of available resource. We stress that the quantity
of resource that is actually used may be less than the available
quantity (bfix). For vaccination, we explored the mean proportion
of wasted doses over time, i.e. the total number of vaccine doses
allocated to infected or recovered animals, out of the number of
available doses. For the treatment, where we assumed that only
infected animals were treated, we evaluated the mean number
of used doses over time, and we explored the mean size of the
target population, i.e. the total number of animals in treated herds.

2.4.2. Setting for percolation analysis
We performed percolation experiments by assessing the final
(after 3 years) proportion of infected herds when the allocation
was done using a given scoring function, and a fixed quantity
of resource. We also included in this analysis an exploration of
the raw proxies of costs. The range of values tested for bfix
(cf. table 2) was chosen so as to exacerbate differences in the
infection-related dynamics by scoring function. The objective
was to analyse the dependence of the relative performances of
the scoring functions on limiting disease spread with respect to
the available quantity of the resource. To avoid increasing com-
putation time, we chose to run the percolation analysis only for
a subset of scoring functions. This subset was determined from
the results of the complete exploration setting described in §2.4.1.

Finally, we investigated the sensibility of the infection-related
results of percolation analysis to the value of the vaccine efficacy
ev. More specifically, we evaluated through simulations two cases
where vaccine efficacy is not perfect: ev = 0.9 and ev= 0.7. Lower
values for ev were not considered, since it is very unlikely that a
vaccine for a livestock disease with an efficacy below 0.7 is even
considered in the field, as its implementation could induce greater
economic costs than epidemiological benefits. With each of these
values we ran the percolation analysis described above, for three
values of the available number of doses: ½25%, 40%, 70%� of the
initial total number of animals in the metapopulation.
3. Results
3.1. Greedy scoring functions
We obtained four different analytic scoring functions by con-
sidering the minimization problem in equation (2.2) for each
resource and for each objective with the greedy approach.
The scoring functions for an objective on the number of
infected herds (greedyV_infherds and greedyT_infherds)
were obtained through a second-order Taylor expansion,
while the other two scoring functions (greedyV_infanimals
and greedyT_infanimals) were obtained using a first-order
approximation. Details on how the greedy scoring functions
were computed in each case can be found in the electronic
supplementary material, S1.
As mentioned in the previous section, the values of βj, τj, μj
were set equal for all herds in our simulations, so we present in
table 3 the scores in this setting. The greedy scoring functions
found for the generic framework, where these values can be
different across herds, can be found in electronic supplemen-
tary material, table S1. In simulations, five scoring functions
(directly or indirectly issued from the greedy approach) were
used. Table 3 includes in total six scoring functions: the four
obtained by optimization, an additional scoring function for
vaccination (greedyV_infherds_threshold) and the scoring
function greedyT_infherds_threshold for the treatment,
which replaced greedyT_infherds in our simulations.

To minimize the number of infected animals by distribut-
ing a vaccine, the greedyV_infanimals scoring function
privileges herds with a large within-herd incidence rate
(βIj(t)Sj(t)/Nj(t)), i.e. many infected animals and a large pro-
portion of susceptible animals. For the treatment, with
greedyT_infanimals the allocation would be made only as a
function of the number of infected animals by herd (Ij(t)).

Regarding the minimization of the number of infected
herds, for vaccination it led to a scoring function, greedy-
V_infherds, favouring two types of herds: either herds that
have a large within-herd incidence rate, and that send to
many healthy herds (large

P
i=j u ji1IiðtÞ¼0); or herds with

only one infected animal, also presenting a large proportion
of susceptible animals and which sell many animals (largePJ

i=j u ji ). With the same objective for treatment, the greedy-
T_infherds scoring function only concerns herds with exactly
one infected animal, and among these, the priority is on
herds that send the smallest flows to infected buyers (smallPJ

i=j u ji1IiðtÞ.0).
We remark that the minimization of the function on the

number of infected animals for vaccination led to scoring func-
tions that only depend on the epidemiological state of herd j,
but not on the states of other herds, and in particular not on
the topology of the network. This is due to the use of a first-
order Taylor development for approximating the objective
function (see electronic supplementary material, S1, for
details).

The two additional scoring functions, considered on the
basis of the analytically obtained scores, were built in the fol-
lowing way. For vaccination, the additional scoring function
greedyV_infherds_threshold consists of replacing 1IjðtÞ¼1 by
10,IjðtÞ,20 in greedyV_infherds. This intends to avoid that
the first term of the sum in the scoring function becomes 0
for herds that have few infected animals but not necessarily
just one. Similarly, for the treatment, we replaced greedy-
T_infherds by a scoring function with a softer condition on
the number of infected animals. The condition in
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Figure 3. Dynamics of infection spread (proportion of infected herds) under resource allocation based on different scoring functions. Epidemic (left) and endemic
(right) scenarios, for vaccination (a,b) and treatment (c,d ). no_budget (red) represents the case where there was no resource allocated, and full_budget (grey) the
case where the resource was not limited. For other curves, each colour represents the scoring function according to which the allocation decisions were taken:
random (black), topological (green), demographic ( purple), epidemiological (orange) and greedy scoring functions (blue tones). For vaccination, the amount of
available doses by decision time was bfix ¼ 25% of the initial total number of animals in the metapopulation. For treatment, the number of attainable herds
by decision time was bfix = 25 herds. Grey vertical lines represent resource allocation times. Mean results and 90% confidence bands over 50 runs.
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greedyT_infherds on having exactly one infected animal for a
herd to be eligible appeared to be too restrictive. Indeed, if
the quantity of available treatment exceeded the number of
herds that satisfy this condition, the rest of the treatment
would not be allocated to any herd. Yet, allocating the
exceeding treatment to herds with more than one infected
animal could only be beneficial for limiting disease spread
and would satisfy the constraint on the quantity of available
treatment. Hence, the greedyT_infherds_threshold scoring
function considers all herds that are potentially eligible
with a non-negligible probability, yet favours herds that
have few infected animals (10,IjðtÞ,20).

3.2. Results of numerical explorations
3.2.1. Infection-related dynamics following score-based resource

allocation
Figure 3 presents the results for the dynamics of the proportion
of infected herds, under the setting described in §2.4.1 for a
subset of the scoring functions. In particular, since the results
for the topological scores were very similar, we present only
the results of the pagerankj score. This was also the case for
demographic scores, so we chose the sales over the decision
period, salesj(t− Δd, t), as the representative score for this
group. For the epidemiological scores, we present only the
results for the best performing score, ij(t). In addition, we
included as the best and worst reference cases, results
for cases where there was sufficient resource for all herds
( full_budget), and where there was no resource to allocate
(no_budget). Electronic supplementary material, figure S2, pre-
sents the complete results for cases by scenario (epidemic or
endemic), type of available resource (vaccine or treatment)
and the heuristic or greedy score according to which the allo-
cation was performed. We also included in electronic
supplementary material, figure S2, results for the dynamics
of the total number of infected animals, yet we remark they
were similar to the ones found for the proportion of infected
herds.

One of the main remarks emerging from the analysis of
figure 3 and electronic supplementary material, figure S2, is
that topological and demographic scoring functions were
the groups that performed less well for limiting the disease
spread, both for vaccination and for the treatment. This is
in comparison with the group formed by the scoring func-
tions that take into account the health statuses of the herds,
i.e. the greedy scoring functions and the best performing
epidemiological functions, in particular ij(t).

Furthermore, electronic supplementary material, figure
S2, shows that for vaccination, the scoring function sj(t) (the
proportion of susceptible animals) performed the worst for
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allocating the available quantity of vaccines (equal to 25% of
the initial number of animals in the metapopulation) in both
scenarios. The group of topological scoring functions per-
formed better than the random scoring function in the
epidemic scenario, but was not very different from it in the
endemic scenario. Demographic scoring functions performed
in general better than the topological ones, in particular
salesj(0, t) and salesj(t− Δd, t). Apart from sj(t), the epidemio-
logical scoring functions had a good performance, except for
the proportion of recovered animals (rj(t)) in the endemic
scenario, where it was just as good as the random score.

The second important remark (figure 3) is that the best per-
forming scores were the proportion of infected animals (ij(t)),
and greedyV_infanimals. Electronic supplementary material,
figure S2 shows that this applies both for reducing the total
number of infected animals and the proportion of infected
herds. They were closely followed by greedyV_infherds_thres-
hold in both scenarios. Meanwhile, greedyV_infherds was not
as good as these three, particularly in the endemic scenario.

Figure 3 and electronic supplementary material, figure S2,
also present results when the resource was a treatment and
bfix was equal to 25 herds. In particular, electronic supplemen-
tary material, figure S2, shows that in the epidemic scenario,
sj(t) performed badlywhen compared to the other scoring func-
tions. Yet rj(t) arrived to performworse at the end of the 3 years
in this scenario, andwas theworst-performing scoring function
in the endemic scenario. Even more, these two scoring func-
tions, the topological and demographic ones, and the
difference in the proportion of recovered animals (rj(t− Δd, t)),
all performed worse than the random score in both scenarios.
Regarding the other scoring functions, greedyT_infanimals
(allocating according to the number of infected animals by
herd, Ij(t)) had the best performance in both scenarios. It was
followedby the score ij(t), i.e. the proportion of infected animals
by herd, though this last one did not manage to eradicate the
disease before the 3 years. The next best performance was
given by ij(t− Δd, t),whichwas followed bygreedyT_infherds_-
threshold. To sum up, for the treatment allocation, only the
greedy scores and two epidemiological scores (ij(t) and ij(t−
Δd, t)) performed better than the random score. In particular,
greedyT_infanimals was the only one that eradicated the
disease within the 3 years (figure 3).

The dynamics of raw proxies of costs can be found in elec-
tronic supplementary material, figure S3. In particular, it is
shown that the proportion of herds that were vaccinated
varied according to the allocation scoring function. Indeed,
topological and demographic scoring functions led to vaccinat-
ing slightly fewer herds than the epidemiological and the
greedy scores (excluding sj(t)). Unsurprisingly, sj(t) led to the
highest proportion of vaccinated herds and did not waste
any doses, i.e. only vaccinated herds without infected or recov-
ered animals, while rj(t) wasted the highest proportion of
available doses. For the treatment, the topological and demo-
graphic scoring functions led to the smallest number of used
doses and to the highest size of target population, contrary
to the epidemiological and greedy scores.

Finally, electronic supplementary material, figure S4,
shows the relationship between allocation decisions among
different scoring functions at a given decision time. Both for
vaccination and treatment, decisions according to the topolo-
gical and demographic indicators were very similar (in terms
of targeted herds) according to the Jaccard index [34]. For
vaccination, decisions according to epidemiological and
greedy scoring functions were similar at the first decision
time (six months), yet this similarity diminished over
time. Regarding decisions through time for a given scoring
function (electronic supplementary material, figure S5), topo-
logical functions tended to allocate the resource to the same
herds over time. This was also the case for demographic func-
tions, except for the sales scoring functions in vaccination, for
which the first decisions were less and less similar to
decisions at the following decision times. On the contrary,
for sj(t) the similarity between consecutive vaccination
decisions seemed to increase over time. And for each of the
other epidemiological and greedy scoring functions, vacci-
nation decisions were in general less similar over time.
Treatment decisions according to each epidemiological and
greedy scoring function were very different over time as
long as the disease was not eradicated, except for decisions
according to rj(t).
3.2.2. Percolation analysis results
Figure 4 shows results of the percolation analysis in the ende-
mic scenario for each type of resource, using a selected subset
of scoring functions. Results in the epidemic scenario can be
found in electronic supplementary material, figure S6. We
ran this analysis using all the epidemiological and greedy
scores, since the infection-related dynamics results in §3.2.1
were quite different for the scores within each of these
groups. By contrast, because the results of the topological
scoreswere very similar, aswere the results of the demographic
scores, we considered only one of each type: salesj(t− Δd, t)
for the demographic scoring functions and pagerankj for the
topological scores. This figure (also figure 4) confirms the
main observations made in §3.2.1: certainly, the best-
performing scoring functions for reducing disease prevalence,
for almost every quantity of resource that we tested, were the
greedy scores along with some epidemiological scores.

For vaccination, figure 4a shows that when the proportion
of vaccinated herds was at least 0.10 of the initial number of
animals in the metapopulation, the scoring functions that
led to the lowest final proportion of infected herds were
greedyV_inf_animals, greedyV_infherds_threshold and ij(t).
They were followed by the greedyV_infherds scoring func-
tion. The topological and demographic scoring functions,
pagerankj and salesj(t− Δd, t), were just as good as the
greedy scores only when the available quantity of resource
was very low (particularly when the proportion of vaccinated
herds was less than 0.05), but did not perform well as this
proportion was higher. The rj(t− Δd, t) and ij(t− Δd, t) scoring
functions had a bad performance for such low levels of
vaccinated herds, performed better for medium levels of
vaccination, and performed worse when the proportion
of vaccinated herds was higher than 0.2. In particular, ij(t−
Δd, t) was better than greedyV_infherds when the proportion
of vaccinated herds was less than 0.2. On the contrary, as the
proportion of vaccinated herds was higher, rj(t) performs
better. Indeed, when less than 25% of herds were vaccinated,
it was just as bad as the random scoring function, which was
the second worse score after sj(t). But for a proportion of vac-
cinated herds higher than 0.45, its performance was close to
the one of the best-performing greedy scores. Even when
this proportion was more than 0.6, only rj(t), ij(t) and the
greedy scores arrived to eradicate the disease.
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Regarding the mean proportion of wasted doses (over
time and over runs), it was almost zero when the vaccine allo-
cation was done using sj(t) as criterion, irrespective of the
proportion of vaccinated herds. The other scoring functions
led to quite similar levels of wasted doses, except for rj(t)
and rj(t− Δd, t), which led to the highest proportion of
wasted doses, particularly when the proportion of vaccinated
herds was lower than 0.15.

In figure 4b, we observe that when the resource to allocate
was a treatment, greedyT_infanimals managed to eradicate
the disease when it was possible to treat at least 25 herds
per decision time-step, i.e. 0.5% of the total number of
herds. As for ij(t), it could eradicate the disease when this
percentage was higher than 0.6%, and ij(t− Δd, t) when it
was at least 0.7% herds. When bfix was equal to 0.9% of
the total number of herds, greedyT_infherds_threshold, the
random scoring function and rj(t− Δd, t) also eradicated
the disease, in that order. The other epidemiological scoring
functions and the topological and demographic ones per-
formed worse than the random score for all values of bfix.
In particular, salesj(t− Δd, t) only eradicated the disease if
bfix was higher than 1% of the total number of herds, sj(t)
could only do it when this percentage was higher than
1.2%, and the other two scoring functions (rj(t) and
pagerankj) eradicated it when it was possible to treat at
least 1.3% and 1.4% of the total number of herds, respectively.

As for the number of used doses of treatment, they were
in general lower for bad-performing scoring functions, and
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higher for those that performed the best. The exception was
rj(t), which performed badly and led to a high number of
used doses. When bfix was high, it used even more doses
on average than the best scoring functions for reducing
disease prevalence.

Results in the epidemic scenario (electronic supplemen-
tary material, figure S6) were quite similar. Yet, for the
treatment, only greedyT_infanimals, ij(t) and ij(t− Δd, t)
were always better than the random score. The greedyT_inf-
herds_threshold indicator was better than the random
score only when bfix was less than 0.8% of the total number
of herds. Additionally, electronic supplementary material,
figure S7, shows that the variability of the percolation results
were moderate between runs, with no or little overlapping
90% confidence intervals.

In addition, electronic supplementary material, figure S8,
shows that when vaccine efficacy is decreased, the loss of
performance is not the same for all scores. In particular, the
scores that are not the best but perform rather well (epidemio-
logical scores and greedyV_infherds) are the ones for which
performance is most depreciated. This results in salesj(t−
Δd, t) performing better than ij(t− Δd, t) when the average
proportion of vaccinated herds was 55% and vaccine efficacy
was 0.9 or less. Yet, despite the overall loss in efficiency, two
of the greedy scores and one epidemiological score (ij(t)) still
performed the best.

Finally, electronic supplementary material, figures S9 and
S10, show that a disease with higher early peak and smaller
infection duration (β/γ = 4, 1/γ = 30 days) spreads and fades
out rapidly at the intra-herd level. At the same time, recurrent
outbreaks are observed which are likely due to reintroduction
of infected animals by trade. Electronic supplementary
material, figure S11, shows that, in such a case, allocating vac-
cines according to the historic sales, in particular according to
salesj(t− Δd, t), was among the best strategies in both the
epidemic and endemic scenarios.
4. Discussion
To control an infectious disease that spreads in a metapopu-
lation network, allocating a limited resource is a fundamental
yet difficult question, especially for large networks. In this
study, we considered this resource allocation problem for a
livestock disease that spreads over a large animal trade
network, where the intra-herd infection and demographic
dynamics was specified as an SIR stochastic model taking
into account animal movements and demography.

The problem of resource allocation in networks had
been previously addressed from several perspectives such
as optimal control [23] and reinforcement learning [35], but
mostly for networks where each node is an individual [10],
or where the network is rather small [36]. Yet, in the context
of a very large network these methods lack scalability for
tracking the optimal solution [30]. In this work, we chose to
concentrate on strategies based on scoring functions, heuristic
and optimized, which consist of ordering the nodes of the
network according to their score and allocating the resource
to the top of the ranking, up to the limit given by the avail-
able resource.

First, following the greedy approach in [30], we provided
new analytic scoring functions for controlling the disease
spread over the animal metapopulation network by
optimizing approximated objective functions. The scoring
functions we derived depend on the infection-related state
of the herd, and some are also dependent on the topology
of the metapopulation network. They differ according to
the objective of the control (minimizing the number of
infected animals versus minimizing the number of infected
herds) and the type of available resource (a protective vaccine
or a treatment that reduces the infectious period). Meanwhile,
most similar existing approaches for other population
structures derive strategies solely for distributing a vaccine
[5,11], or are concerned with only one objective to be
optimized [10,13].

Through intensive simulations, we observed that these
analytically obtained scoring functions can be optimal for
reducing disease prevalence in the metapopulation, though
this is not always the case. For example, even if greedyV_in-
fanimals (the score for greedily minimizing a function on the
total number of infected animals in the metapopulation)
showed the greatest reduction in disease prevalence through
vaccination, allocating vaccines according to the proportion
of infected animals by herd, ij(t), can be just as good when
the number of available vaccine doses equalled 25% of the
initial number of animals in the metapopulation (figure 3).
Even more, we observed that this was the case as long as
the number of available doses was more than 15% of the
initial number of animals in the metapopulation (figure 4a).

For the treatment, most of the scoring functions, in particu-
lar topological and demographic ones, were counterproductive
in the sense that they performed worse than randomly allocat-
ing the resource among the infected herds (figures 3 and 4b).
We explain this by the fact that the infected herds which
were central in the network were not the most infected ones
(in terms of the proportion of infected animals). Indeed, elec-
tronic supplementary material, figure S3b, shows that the
random allocation among infected herds also targeted herds
with many infected animals, while the scoring functions that
performed badly only targeted high sized infected herds but
generally with few infected animals.

Furthermore, we noticed that irrespective of the resource
type, the optimized scoring function for an objective on the
number of infected herds was outperformed by the optimized
scoring function for an objective on the number of infected ani-
mals. Even if for vaccination, a slightly modified version of
greedyV_infherds provided results almost as good as the
ones of greedyV_infanimals (figures 3 and 4a), this was not
the case for the treatment. Indeed, the allocation implemented
using the greedyT_infanimals scoring function, i.e. the number
of infected animals per herd, yielded undoubtedly the best
results (figures 3 and 4b). This is probably due to the fact
that the scoring functions for minimizing an objective on the
number of infected herds only focus on the fast recovery of
slightly infected herds (0 < Ij(t) < 20), for vaccination, or on
avoiding that completely healthy herds receive infectious ani-
mals (Ij(t) > 0), for the treatment. Although this is the best way
to have a small incremental number of infected herds from one
instant to another according to these scoring functions, it does
not take into account new animal infections, which only occur
at the intra-herd level once the herd is infected. Our interpret-
ation is that a scoring function obtained with the greedy
approach (which consists of focusing on the short-term behav-
iour of the objective function) performs better for limiting
the disease spread if the objective function it is built on directly
captures the intra-herd aspect of the disease dynamics. Hence,
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minimizing a first-order approximation for an objective that
directly concerns the number of infected animals can provide
more performing scoring functions than that obtained by
minimizing a higher-order approximation for an objective
that does not.

Numerical investigations also allowed evidencing that
intra-herd health information can be crucial for optimally con-
trolling the propagation of a slowly spreading disease such as
the one considered in this work. In most combinations, given
by the resource’s type and available quantity, even if topology-
based scoring functions managed to limit disease spread,
scoring functions based on the infection-related state of
herds performed better (figure 4; electronic supplementary
material, figure S6). This observation can give some insight
into why most control strategies implemented in real systems
might fail to eradicate livestock diseases in areas that lack this
kind of information.

A final interesting remark is that the best scoring functions
for reducing disease prevalence can induce a higher number of
wasted vaccine doses or a higher number of used treatment
doses compared to other scores that performed less well for
controlling the disease spread (figure 4; electronic supplemen-
tary material, figures S3 and S6). However, for vaccination,
they are not necessarily those that vaccinate the highest
proportion of herds.

To our knowledge, our work is one of the few studies that
explores dynamic resource allocation in a metapopulation
network for many allocation scoring functions (16 heuristics
and at least 2 optimized scores by measure), while varying
the available quantity of the resource in two different scen-
arios. Despite the fact that the performances of the scores
could have been different if the network had been static or
not scale-free, score-based resource allocation can be a rel-
evant approach for controlling pathogen spread in other
cases, as the complexity of the problem is mainly due to
the large dimension of the network. Furthermore, we stress
that the scores we found by optimization using the greedy
approach are the same irrespective of the network topology,
as they are based on fixed trade parameters representing
the static aggregated network. Indeed, they are built on a
static view of the network, irrespective of whether it is actu-
ally static or dynamic (as it is in our study). We believe it
would be possible to use the same approach to obtain opti-
mized scores that take into account the dynamic nature of
the network, i.e. scores that are function of time-dependent
trade parameters, although this requires a new formal analy-
sis. Of course, these new scores could be of a different form
from the ones we found, and hence their performance
might also be different.

We assessed the robustness of the results regarding
vaccine allocation by considering realistic values for the
vaccine efficacy. This showed a limited impact on the relative
performance of the different scoring functions (electronic
supplementary material, figure S8). We note that although
in reality vaccines are rarely perfectly effective, and also
take some time to be effective, it did not seem straightforward
to determine an appropriate time frame for the vaccine to
have an effect. More importantly, it seems unlikely that a
slight delay in the effect of the vaccine would have a signifi-
cant impact on our results, given that we considered a
pathogen that spreads rather slowly.

Regarding the limitations of ourwork,we emphasize that in
the context of a fast-spreading pathogen, the current framework
is not really appropriate. In such a case, other decision factors
should be taken into account. For example, if the disease is zoo-
notic or has a strong economic impact, the social planner may
consider more radical options, such as mass culling. In this
case, the questionof resource allocation thusbecomes irrelevant.
In particular, we showed that for a disease with higher early
peak and shorter infection duration (β/γ = 4, 1/γ = 30 days) an
intra-herd epidemic extinguishes before a newdisease introduc-
tion occurs (electronic supplementary material, figures S9 and
S10). Therefore, it is not surprising that vaccinating herds that
sellmanyanimals appears as agoodstrategy for limitingdisease
propagation (electronic supplementarymaterial, figure S11). So,
the resource allocation problem seems more straightforward in
sucha scenario anddoesnot necessarily require anoptimization
procedure.

Additionally, a parameter that could impact our con-
clusions is the decision step, Δd, for which we considered a
fixed heuristic value. Although the assumption of regular
vaccination decisions defined by the duration of the protec-
tion conferred by the vaccine appears to be a realistic
hypothesis relative to field practice, a more versatile assump-
tion could be considered to determine the frequency of
allocation decisions. Indeed, the decision step could be deter-
mined in an adaptive manner by the social planner, for
example by taking into account the stability in disease preva-
lence, or some external input such as the farmers’ demand for
accelerating resource allocation. A second option would be to
determine the decision step by optimization. Yet, these are
essentially different problems from the one we addressed in
this article: determining when to allocate instead of where
to allocate a limited resource. Optimizing both aspects at
the same time is a more complex problem that, to the best
of our knowledge, has only been addressed by heuristic
approaches [37]. In particular, it does not seem straightfor-
ward to address with the approach of this study.

Finally, we stress that the performance of the epidemiologi-
cal and the greedy scoring functions can be counterbalanced by
their difficulty of access. Indeed, having updated knowledge on
the epidemiological state of all the herds of the network is a
strong hypothesis in real life, as this kind of information can
be hard to gather for most livestock diseases [38]. For example,
a scoring function calculated as the increment in the proportion
of infected animals in a herd over a certain period can be
observed through changes in the herd’s seroprevalence
between two time points, which incurs into increased logistics,
can be observed with error and not in real time. Furthermore,
having such updated and detailed health-related information
can be costly, and this cost should be taken into account in
the constrained optimization problem for the allocation.
Among the possible perspectives of this work, the previous
point opens an important one: combining scoring functions
for improved performances, and above all for yielding a scor-
ing function that can be useful in practice. This could be
achieved, for example, through the (linear) combination of scor-
ing functions, or through the selection of herds at the top of the
ranking given by several scoring functions that do not allocate
the resource in a similar way. Additionally, for cases when the
value of the score is the same for many herds, the allocation
could be done using a second scoring function that would
take different allocation decisions. As a second, more methodo-
logical perspective, the greedy scoring functions built on first-
order approximations could be eventually constructed using
higher-order approximations. This could lead to analytic
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scores that also depend on the network topology, and could
improve their performance. Although it has to be stressed
that they were already among the best-performing scores for
reducing disease prevalence in all cases. Finally, despite the
fact that we focused on a protective vaccine and a treatment
that increases the recovery rate, other types of resources
could be studied with the same approach. However, it might
not be straightforward to derive the analytic expression of
the greedy scoring function in such cases. For example, the
effect of the restriction of animal movements, which is a rel-
evant control measure in this context, lies on the connections
of the herd rather than on the intra-herd level, which could
further complicate the derivation of the scoring function.
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