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Abstract

Vaccination can delay the peak of a pandemic influenza wave by reducing the number of individuals initially susceptible to
influenza infection. Emerging evidence indicates that susceptibility to severe secondary bacterial infections following a
primary influenza infection may vary seasonally, with peak susceptibility occurring in winter. Taken together, these two
observations suggest that vaccinating to prevent a fall pandemic wave might delay it long enough to inadvertently increase
influenza infections in winter, when primary influenza infection is more likely to cause severe outcomes. This could
potentially cause a net increase in severe outcomes. Most pandemic models implicitly assume that the probability of severe
outcomes does not vary seasonally and hence cannot capture this effect. Here we show that the probability of intensive
care unit (ICU) admission per influenza infection in the 2009 H1N1 pandemic followed a seasonal pattern. We combine this
with an influenza transmission model to investigate conditions under which a vaccination program could inadvertently shift
influenza susceptibility to months where the risk of ICU admission due to influenza is higher. We find that vaccination in
advance of a fall pandemic wave can actually increase the number of ICU admissions in situations where antigenic drift is
sufficiently rapid or where importation of a cross-reactive strain is possible. Moreover, this effect is stronger for vaccination
programs that prevent more primary influenza infections. Sensitivity analysis indicates several mechanisms that may cause
this effect. We also find that the predicted number of ICU admissions changes dramatically depending on whether the
probability of ICU admission varies seasonally, or whether it is held constant. These results suggest that pandemic planning
should explore the potential interactions between seasonally varying susceptibility to severe influenza outcomes and the
timing of vaccine-altered pandemic influenza waves.
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Introduction

Both seasonal and pandemic influenza are associated with a

considerable burden of disease, in the form of absenteeism,

hospitalizations, intensive care unit (ICU) admissions, and deaths

[1]. Severe complications can occur even in patients without

chronic health conditions [2]. Complications are often the result of

secondary bacterial infections, and the delay between primary

influenza and the diagnosis of subsequent bacterial infections

means that the primary influenza infection is not always confirmed

[3]. Data from the influenza pandemics of 1918, 1957 and 1968

are consistent with secondary bacterial pneumonia causing the

majority of influenza-associated deaths [4]. Pandemic influenza

can be associated with a higher burden of disease than seasonal

influenza, if only because more individuals become infected during

a pandemic due to lower levels of natural immunity in the

population, as compared to typical seasonal influenza [5].

As with previous influenza pandemics, the 2009 H1N1

pandemic imposed a significant disease burden [6]. Pulmonary

complications were common, with primary influenzal pneumonia

and acute respiratory distress syndrome in adults and secondary

bacterial pneumonia in children [7]. Secondary pneumococcal

infections were often a factor in severe and fatal cases of influenza

[8]. However, unlike in previous pandemics, immunization

programs may have played a mitigating role, despite late

introduction of the vaccine. The use of a vaccine against pandemic

influenza for the first time ever suggests that immunization will

form a part of mitigation plans for future influenza pandemics.

However, as always, it remains necessary to address how best to

design and execute large-scale immunization programs in the face

of uncertainties.

Seasonal influenza is characterized by strong seasonal variation

in incidence, generally surging in the winter months in temperate

regions [1]. Severe outcomes such as influenza-related hospital-

izations and deaths also peak in winter [9,10]. In comparison,

although influenza pandemics may be influenced by seasonality,

they do not always follow the same pattern: spring, fall and winter

waves have all occurred in past pandemics [11]. One possible

explanation for this difference is that the widespread host

susceptibility that accompanies an antigenically novel strain means

an outbreak can occur even when seasonal factors do not support

its transmission.
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The cause of seasonality in seasonal influenza is debated [12].

Suggested contributors include seasonal variation in host health,

school attendance, ambient temperature, indoor/outdoor absolute

humidity, and ultraviolet (UV) radiation intensity [12–15]. Some

of these observations have led to a hypothesis that innate host

susceptibility varies seasonally, enabling seasonal outbreaks to

occur. Impairments of the antimicrobial peptide (AMPs) systems

that respond to influenza infection are caused by very low levels of

25-hydroxy-vitamin D [25(OH)D] in the winter months [16].

Vitamin D levels vary with seasonal trends in UV radiation levels

and are therefore highest in August and lowest in February (since

most Vitamin D is obtained through sun exposure, not diet). This

implies heightened host susceptibility in late fall, winter, and early

spring [17].

Susceptibility to secondary bacterial infections from influenza

also varies seasonally, and exposure to UV-B radiation is known to

reduce the risk of invasive pneumococcal disease (pneumonia,

bacteremia, and meningitis) [18]. Seasonality in susceptibility to

secondary bacterial infections suggests that influenza outcomes

might be more severe when peak influenza incidence aligns with

peak susceptibility to secondary bacterial infections. Immunization

alters the susceptibility of the host population to influenza infection

and may thereby affect the timing of pandemic influenza peaks

[19]. Therefore, a pandemic immunization program may mitigate

a fall wave and reduce the total number of influenza infections.

However, at the same time, it may push some influenza incidence

into winter months where an influenza infection is more likely to

cause severe secondary bacterial infections. Because of these two

factors have competing effects on the number of severe outcomes,

it is not clear a priori what their net impact will be. Thus, it is

worthwhile to investigate the potential for such a result.

Mathematical models can be used to address such questions

because they offer an opportunity to explore a wide range of

scenarios, including not only scenarios close to what actually

happened but also scenarios that might have happened, or that

may happen in the future. A significant amount of modeling has

addressed the topic of mitigation strategies for influenza

pandemics [20–30]. Some of this work investigates the potential

role of interventions or co-infections in creating multiple pandemic

waves [23–25,29]. Many models only track a single outcome

measure–the incidence of influenza infection–and hence cannot

predict serious outcomes like hospitalizations and ICU admissions.

However, severe outcomes from influenza are very important for

decision-making given that most individuals recover from infection

without experiencing severe outcomes. Several models do include

such outcomes, but they tend to assume the probability of severe

outcomes per influenza infection does not vary seasonally [20,27]

and hence they cannot be used to explore interactions between

vaccine-altered timing of pandemic influenza waves and seasonal

variation in susceptibility to severe outcomes such as caused by

secondary bacterial infections.

Here, we use a mathematical model to investigate conditions

under which a pandemic immunization program could increase

the number of ICU admissions by increasing influenza infections

in months where infection is more likely to lead to ICU admission.

The model assumes seasonality in both influenza transmission

rates and susceptibility to influenza infection, as well as seasonality

in host susceptibility to ICU admission caused by influenza. The

probability that an influenza infection leads to an ICU admission,

as a function of time of year, is estimated using data from the 2009

H1N1 influenza pandemic. We also compare the predicted

number of ICU admissions when the probability of ICU admission

per incident influenza infection varies seasonally to when it does

not. The latter simplifying assumption is implicit to most pandemic

models, hence this comparison allows us to determine its impact

on model predictions.

Methods

Our SIRS (Susceptible-Infectious-Recovered-Susceptible) com-

partmental model of influenza transmission divides the population

into Susceptible, Infectious and Recovered/Immune categories

(see Text S1). Despite its simplifying assumptions, the SIRS model

and its variants have been shown to capture features of real

influenza outbreaks, such as observed epidemic curves and

seasonal patterns [23,25,31,32]. Susceptible individuals become

infectious at a rate equaling an infection rate parameter b times

the number of susceptible individuals (S) times the proportion of

the population that is infectious (I=N). The infection rate b varies

seasonally to reflect seasonal variation in both influenza transmis-

sibility and susceptibility to influenza infection [33,34]. The

amplitude of seasonality is controlled by k1 (amplitude of

seasonality in transmission due to changes in school attendance

over the school year) and b1 (amplitude due to any other sources of

seasonality in transmission and susceptibility to infection).

Individuals flow from infectious (I ) to immune (R) at a rate c
(where 1=c is the mean infectious period). The average value of b
over a year, SbT, can be determined from the basic reproduction

number R0 according to SbT&cR0 (see Text S1). Individuals are

immunized at a rate r and the vaccine has efficacy e. Efficaciously

vaccinated individuals are moved from the S to the R
compartment. Individuals are born into the susceptible compart-

ment at rate m per capita, and individuals in any compartment die

from all causes at rate n per capita. The strain is introduced at time

tentry during the summer, and a proportion R(0) of individuals are

assumed initially immune due to previous vaccination and

infection (e.g. Spring wave).

As in many previous models, we model antigenic drift as a flow

of individuals from immune (R) to susceptible (S) due to waning

immunity at a rate v (where 1=v is the average duration of

immunity). This gradual loss of immunity represents the effects of

antigenic drift within a population. However, new cross-reactive

antigenic variants can also be introduced to a population by case

importation, meaning a large proportion of the population must

be immediately re-classified as susceptible. This may happen

within a pandemic year: for instance, sequential variants of the

virus have been posited as one possible reason for the repeated

waves such as observed in the 1918 pandemic [25,35]. Hence at

the end of December (during the holiday travel period), a

proportion y of recovered individuals were transferred to the

susceptible compartment to represent importation of a novel cross-

reactive strain into the population. (We also explored y~0 in

sensitivity analysis.) We note that modelling the effects of

importing a cross-reactive strain would not be captured adequately

through the y parameter if co-circulation of the two strains were

occurring; however, in our simulations, the fall wave caused by a

first strain is over by the time the cross-reactive strain is introduced

and hence this is not an issue. Parameter values and their sources

appear in Table S1 [36–45]. The model was simulated in Matlab

[46].

The number of new ICU admissions per week (O) was taken as

O~sx, where x is number of incident influenza cases per week

(derived from the SIRS model) and s~s(t) is the probability that

an influenza infection in week t causes ICU admission. The

function s(t) varied seasonally according to a modified sinusoidal

function (Table S2). This function was fitted to data on lab-

confirmed influenza cases and ICU admissions attributable to

influenza infection from the 2009 H1N1 pandemic [47–49].

Can Pandemic Vaccines Increase Severe Outcomes?
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To assess the impact of parameter uncertainty and understand

how model dynamics vary across a range of plausible parameter

values, we conducted a probabilistic (Monte Carlo) sensitivity

analysis. To ensure model realism, the sensitivity analysis also

excluded parameter combinations that gave rise to unrealistic

dynamics,. We defined lower and upper plausible ranges for the

parameters c, v, b1, k1, y, R0, tentry and the initial condition R(0)
(Table S1). We conducted many realizations, and for each

realization we drew samples from these ranges for each parameter,

simulated the model equations, and generated outcomes for each

sampled set of parameter values. However, to ensure realism and

consistency with experience from past pandemics, we excluded

any realizations (1) that yielded a summer peak in the following

calendar year, (2) that did not end up producing normal seasonal

influenza peaks (i.e. a single peak in fall, winter or spring) in any of

the three following calendar years, or (3) that produced closely

spaced peaks in both December and February of the pandemic

year (these simulations were excluded because we wished to

simplify the analysis by restricting attention to simulations where

there was only one peak per season). These three criteria were

applied in the absence of an immunization program. Fall was

defined as September to November, winter as December to

February, and spring as March to May.

Approximately 1,000 simulations survived this filtering Monte

Carlo algorithm and were used to generate results for the

prevalence and incidence of influenza infection as well as the

incidence of ICU admissions, in the absence of an immunization

program. From this, we computed the total number of ICU

admissions from the fall to the following summer. To evaluate the

impact of vaccination, we ran the same set of simulations in the

presence of an immunization program. We analyzed a total of 30

immunization program designs based on a subset of the following

combinations of characteristics: (1) Starting September 1, October

1, or November 1, (2) lasting 1, 2, 3, 4, 5 or 6 months, (3)

vaccinating 10%, 20%, 40% or 60% of the population (Table S3).

However we only report results for seven profiles denoted ‘A’

through ‘G’ vaccinating 40% of the population (Table 1) since the

other 23 profiles either produced qualitatively similar results or

produced trivial results because most vaccine ended up being

administered after the fall wave.

Results

The best fit of the seasonally-varying probability of ICU

admission per influenza infection to the data appears in Figure 1.

This figure shows a clear increase in the probability of ICU

admission per new influenza infection as winter progresses, even as

the total number of influenza infections declines as the fall wave

ends. The probability of being admitted to ICU due to an

influenza infection in the extrapolated model is highest in the

months of January and February, which is consistent with what we

would expect based on the literature describing peak susceptibility

to secondary bacterial infections in these months. Only data to

mid-December were used to fit the model because influenza-

attributable ICU admissions and lab-confirmed influenza cases

became too few after that point to support fitting. Also, numbers

reported after late December had new counts based on

retrospective analysis of the spring and fall waves rather than

being based on new case reports alone, which could have

confounded the results.

Figure 2 shows how influenza incidence, number of ICU

admissions, and susceptibility to influenza infection evolve over

time for a typical realization of the simulation, with and without a

vaccination program. Without a vaccination program, there is a

single peak in infection prevalence in October, which also

corresponds to a peak in the number of ICU admissions

(Figure 2a). The pool of susceptible individuals is rapidly depleted

by the first wave, but in December it begins increasing again due

to the effects of case importation, and thereafter climbs gradually

due to recruitment of new susceptible individuals through births

and antigenic drift (Figure 2b). This increase in susceptibility is not

sufficient to cause a second wave, although it does cause a second

peak in the number of ICU admissions (Figure 2a). The addition of

a vaccination program (profile C from Table 1) in this example

alters these dynamics considerably. Immunization significantly

reduces the number of individuals infected by the first pandemic

wave, which still peaks in October, but at a considerably lower

level (Figure 2c versus Figure 2a). This reduces the number of ICU

admissions in October (Figure 2c). However, due to the mitigating

effects of the vaccination program, the pool of susceptible

individuals is larger by the start of the following January

(Figure 2d versus Figure 2b). As a result, there is a second

pandemic wave in January when the probability of severe

outcomes is highest, which causes a large peak in ICU admissions

(Figure 2c). The net result is that the total number of ICU

admissions from Fall to Summer is higher with the vaccination

program than without it. In this simulation, the combination of

higher susceptibility due to importation of a cross-reactive strain

December and implementation of an immunization program in

early Fall are enough to increase total susceptibility in January to

the point where a second wave is possible.

Under certain vaccination programs, an increase in net ICU

admissions can occur. For example, we found that vaccination

profile C leads to an increase in ICU admissions in 18% of the

approximately 1,000 realizations used for the analysis (Figure 3).

This is more than any other vaccination profile, and–surprisingly–

despite the fact that profile C also averts more influenza infections

than any other profile. Profile C, which covers 40% of the

population in September, vaccinates more individuals prior to the

Fall wave than do Profiles A, B or D, in which vaccination also

starts in September but is spread over two or three months and

continues during the Fall wave. Similarly, profiles A, B and D

Table 1. Description of different vaccination profiles.*

Vaccination Profile: A B C D E F G

Month of initiation Sep Sep Sep Sep Oct Oct Oct

Length of vaccination program (months) 3 2 1 3 3 2 1

Distribution per month 1/3, 1/3, 1/3 1/2, 1/2 1 1/2, 1/4, 1/4 1/3, 1/3, 1/3 1/2, 1/2 1

*A 40% vaccination rate was assumed for results presented in main text. The distribution per month indicates what portion of the 40% were vaccinated each month. So,
in vaccination profile D, in September, half of the targeted population gets immunized with a fourth of the targeted population getting immunized in each of the
following 2 months.
doi:10.1371/journal.pone.0023580.t001
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increase ICU admissions in 0:5%, 5:8% and 5:5% of realizations,

respectively. In comparison, profiles E–F which start immunizing

in October always avert influenza infections without causing a net

increase in ICU admissions (Figure 3). This occurs because in most

realizations, the fall wave is already under way when vaccination

starts in October. Hence, profiles E–F prevent fewer influenza

infections and consequently shift fewer susceptible individuals to

the winter months when the risk of severe outcomes from influenza

infection is higher.

In our baseline parameters, the value of v (within-population

antigenic drift) was too small to cause an increase in susceptibility

that, when combined with the mitigating effects of a vaccine,

would increase ICU admissions. However, if v is increased

sufficiently (1=v[(2, 6) months), similar effects are observed as for

large values of y, and an immunization program can increase the

total number of ICU admissions even if y~0 (Figure S1). Hence,

a vaccination program can cause adverse outcomes whether

susceptibility increases suddenly due importation of a cross-

reactive strain, or gradually due to within-population antigenic

drift. In the special case y~0 (no importation of cross-reactive

strain) and v is at its smaller baseline value, no realizations yielded

an increase in the number of ICU admissions for any of the

vaccination profiles (Figure S2). In the case 1=v[(2, 6) months

(rapid antigenic drift), and yw0, we again found that some

vaccination programs (especially profile C) could lead to more

ICU admissions (Figure S3). Hence, our model predicts an

Figure 1. Probability of ICU admission per influenza infection, estimated from the H1N1 pandemic of 2009. Data from the H1N1
pandemic of 2009 (black line) was fit to our seasonally varying function (Table S2) and extrapolated (solid grey line). Weekly H1N1 positive specimens
(dashed grey line) is on the secondary vertical axis.
doi:10.1371/journal.pone.0023580.g001

Figure 2. Example where vaccination increases the number of ICU admissions. A typical run where the number of ICU admissions increased
due to vaccination for Profile C for 40% vaccination rate. (a), infected incidence (black) and number of ICU admissions (grey) over time without
vaccination (top panel) and (c), with vaccination (bottom panel). (b), time series of the number of susceptible individuals without (top panel) and (d),
with vaccination (bottom panel). Vaccination leads to an increase in the number of ICU admissions by increasing the number of susceptibles available
for another wave leading to higher incidence and higher morbidity. Parameter values: L~2:5977 years, D~0:0192 years, b1~0:0609, k1~0:0708,
R0~2:0627, tentry~240, y~0:3325, R(0)~2927100 and r~0:4.
doi:10.1371/journal.pone.0023580.g002

Can Pandemic Vaccines Increase Severe Outcomes?

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23580



increase in ICU admissions due to a vaccination if importation of a

cross-reactive strain occurs or if antigenic drift within the

population is sufficiently fast.

To understand which parameter combinations are most likely to

increase the number of ICU admissions, we compared scatter plots

of realizations where vaccination led to more ICU admissions to

scatter plots of realizations where it led to fewer ICU admissions,

using vaccination profile B as an example (Figure 4). These scatter

plots suggest that vaccination is more likely to cause an increase in

ICU admissions when the duration of infectiousness is longer

(smaller c), antigenic drift is more rapid (larger y), or when the

entry time is later in the summer (larger tentry). For a given R0, a

longer duration of infectiousness will spread out the epidemic

curve, increasing incidence in the winter months and hence ICU

admissions. A later entry time or more antigenic drift before

January likewise mean that susceptibility, and hence incidence, is

higher in the winter months. Thus, in general, when processes that

tend to shift susceptibility to winter months are already present,

implementation of a vaccination program is more likely to cause a

further increase in susceptibility in winter and hence a net increase

in ICU admissions. As the duration of the immunization program

decreases from 3 months (Profile A) to 1 month (Profile C), the

range of values for c, y and tentry for which vaccination caused

more ICU admissions become widened (results for Profiles A and

C not shown).

For profiles A–D, vaccination increases the number of ICU

admissions every time there is a transition from a fall wave without

vaccination, to fall and winter waves with vaccination (Table 2). In

this case, the vaccination program creates a small second wave at a

time where the risk of ICU admission is higher. This also happens

very frequently when vaccination causes a transition from a fall-

and-spring wave to a fall-and-winter wave, or from a fall wave to a

fall-and-spring wave (Table 2). In this case, vaccination adds

susceptibility before the start of the winter and thus leads to an

earlier second wave (in winter instead of spring), which thereby

results in more ICU admissions. Hence, ICU admissions are most

likely to increase if vaccination increases susceptibility enough to

cause a second wave in the winter months. These are often the

outliers in Figure 3.

It is instructive to compare the predicted number of severe

outcomes in a model with seasonally varying susceptibility to

severe outcomes (‘‘seasonal estimator’’) to a model where

susceptibility to severe outcomes is the same in all months

(‘‘average estimator’’). If the predictions are significantly different,

this provides a rationale for pandemic influenza models to include

interactions between seasonally varying susceptibility to severe

outcomes and timing of vaccine-altered influenza pandemic waves.

We made this comparison by replacing the seasonally varying

probability of ICU admission per influenza infection with a

constant probability, parameterized using the same data from the

2009 H1N1 pandemic (see Text S1). Across all vaccine program

profiles, the model predictions vary significantly depending on

whether the average or seasonal estimator is used (Table 3). The

average estimator predicts somewhat more ICU admissions than

the seasonal estimator, in the absence of a vaccination program.

This occurs because the probability of ICU admission per

influenza infection in the fall months (when a pandemic peak

occurs) according to the seasonal estimator is lower than the

probability used in the average estimator, which was obtained by

averaging the frequency of ICU admissions over the period of the

whole pandemic including later months when ICU admission was

a more likely outcome of infection. However, the seasonal

estimator predicts more ICU admissions averted by vaccination

programs (Table 3). Also, the variation in ICU admissions averted

by vaccination is much higher across the different vaccination

profiles for the seasonal estimator than for the average estimator.

For example, more ICU admissions are averted under the seasonal

estimator than the average estimator for profile A, but the

difference is quite low for profile C. Results are similar for 10%,

20% and vaccine 60% coverage (results not shown). For the case of

a pathogen that is more virulent than the 2009 H1N1 pandemic

strain was, leading to a uniformly higher probability of ICU

Figure 3. ICU admissions averted (top) and infections averted (bottom) for different vaccination profiles. Boxplots of ICU admissions
and infections averted with different vaccination profiles for 40% vaccination rate. Vaccinating a larger proportion of the population in advance can
lead leads to a lower number of infections in total but a higher number of ICU admissions. Points are drawn as outliers (z) if they are larger than
q3z1:5(q3{q1) or smaller than q1{1:5(q3{q1), where q1 and q3 are the 25th and 75th percentiles, respectively.
doi:10.1371/journal.pone.0023580.g003
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admission per week, we note that the predictions remain the same:

the seasonal estimator predicts a higher number of ICU

admissions averted by vaccination programs (results not shown).

We carried out a similar comparison of average and seasonal

estimators for the case where y~0, corresponding to no

importation of a cross-reactive strain in December (Table S4).

We found that, as for the yw0 case, both the predicted number of

ICU admissions with vaccination, and the number of ICU

admissions averted by a vaccination program, differed widely

depending on whether the average or seasonal estimator is used.

Hence, even when vaccination cannot cause an increase in ICU

admissions by increasing incidence in winter months, the predicted

number of ICU admissions averted by vaccination programs can

vary considerably depending on whether or not seasonality in the

probability of severe outcomes is taken into account.

Discussion

Here we used a model to explore potential interactions between

seasonally varying susceptibility to severe outcomes from influenza

infection and the timing of influenza pandemic waves as modified

by vaccination programs. We found that vaccination programs

could increase ICU admissions by increasing susceptibility to

infection in winter months if (1) there is a pre-existing tendency

Figure 4. Scatter plots of realizations where ICU admissions increased or decreased due to vaccination, as a function of various
parameters. Parameters where vaccination caused a higher (black circles) or lower (blue diamonds) number of ICU cases for Profile B for 40%
vaccination rate. There is some evidence for clustering near the upper constraint for the entry time parameter. R0 (horizontal axis in all panels) values
smaller than approximately 1.7 did not give rise to simulations that passed our filtering criterion, hence the lack of data for these values of R0 . Longer
duration of infectiousness (smaller c), more rapid antigenic drift (larger y), or when the entry time is later in the summer (larger tentry) seem more
conducive to resulting in an increase in the number of ICU admissions.
doi:10.1371/journal.pone.0023580.g004

Table 2. Number of realizations where vaccination led to a
higher number of ICU cases because of a transition of
pandemic waves.*

Vaccination Profile A B C D

Fall-and-spring to fall-and-winter 0 (0) 0 (0) 18 (18) 0 (0)

Fall to fall-and-winter 0 (0) 1 (1) 6 (6) 1 (1)

Fall to fall-and-spring 0 (0) 4 (5) 14 (14) 2 (4)

Fall to fall-and-summer 0 (0) 2 (3) 12 (22) 1 (1)

*The values in parenthesis are the total number of results observed out of 1000
included simulations for the specific vaccination profile for 40% vaccination
rate.
doi:10.1371/journal.pone.0023580.t002
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toward higher susceptibility in early winter due to antigenic drift or

importation of a cross-reactive strain, and (2) vaccination occurs in

advance of the fall pandemic wave. We found that scenarios where

vaccination began during the pandemic wave instead of before it

did not increase ICU admissions, simply because these programs

do not protect as many individuals by virtue of starting later, and

hence they do not increase susceptibility enough in the winter. An

increase in ICU admissions occurred only when we allowed for

introduction of a cross-reactive variant in December or when

antigenic drift was sufficiently fast. However, even when we did

not allow this to happen, the predicted number of ICU admissions

averted by vaccination varied significantly depending on whether

we allowed the probability of ICU admission per influenza

infection to vary seasonally or whether we force it to be constant,

suggested the current approach of assuming the same probability

of severe outcomes across all months may be too limited.

These results suggest that fall pandemic waves may be a blessing

in disguise in some respects, since under a fall wave, the majority

of individuals are infected and attain natural immunity before the

time of year when the risk of severe outcomes from influenza

infection is highest. However, the number of severe outcomes due

to a fall pandemic wave are not necessarily small in absolute terms.

For example, the Fall wave of the 1918 pandemic was the deadliest

on historical record, and the cause of this may have been

secondary bacterial infections [4]. Baseline host susceptibility to

severe secondary bacterial infections has likely evolved over the

past century.

Here we focused on ICU admissions as a marker of severe

outcome measures. Although risk of ICU admission is likely to

correlate with risk of death and risk of hospitalization, an

expanded model including a broader array of outcomes may

yield different predictions. Our discussion about the causes of

higher severity in winter months focused on secondary bacterial

infections, but there are other reasons why health outcomes of

influenza may be worse in the winter months such as greater

crowding of ICUs and demand for resources such as extra-

corporeal membrane oxygenation (ECMO) due to seasonal peaks

in non-influenzal pneumonia and other seasonal viral infections.

We used a simplified method of capturing the effects of

importing a cross-reactive strain by changing the number of

susceptible individuals in December, rather than explicitly

modelling two strains. The results of a two-strain model can differ

significantly, especially if both strains are co-circulating or differ in

their antiviral resistance. However, in our case this will have little

effect since the first pandemic wave was finished by early

December in most realizations and hence co-circulation would

not occur. The degree of natural cross-protection is reflected in

how many individuals are moved to the susceptible compartment.

Therefore, the impact of this simplified approach is minimal.

Previous work on the impact of pandemic interventions on the

susceptibility profile of a population over time has identified

conditions where early application of an intervention (in

particular, antiviral drugs) can lead to a second wave by boosting

susceptibility in later months [23]. This previous work did not

include severe outcomes as a model output. However, their

findings combined with ours do suggest that widespread

prophylactic use of antiviral drugs in fall or early winter might

have a similar effect of increasing the total number of ICU

admissions. In fact, we expect the effect to be greater because

antiviral drugs only reduce susceptibility while they are being

taken, whereas vaccines confer longer term protection.

Here, we relied on data from the 2009 H1N1 pandemic. The

2009 pandemic did not have a 2010 winter or spring wave in

northern countries so we extrapolated the fall data to obtain the

probability of ICU admission in winter and spring. However, we

expect many of our results to generalize for any pandemic in

which the probability of severe outcomes per influenza infection

varies seasonally. It is also important to note that there is potential

for confounding in the model estimates for case severity since other

factors in additional to seasonal variation in severity may influence

the probability of severe complications. For instance, large

subpopulations may have co-morbidities that predispose them to

severe outcomes, and these subpopulations may experience the

highest incidence of influenza infection at a time of year that is

different from that of the rest of the population [50]. Despite this,

our model fits showed that there is not much change in the

probability of a severe outcome in the summer when the disruptive

effects of this kind of confounding variable would be strongest,

which agrees well with what was observed in the first wave of the

pandemic of 2009 [51].

Including other features of influenza transmission might change

our quantitative predictions. For instance, explicitly modelling co-

circulation of a second drug-resistant strain, modelling the

circulation of relevant bacterial infections, or adding age structure,

social structure, or other heterogeneities could influence model

predictions. The predictions of a model with feedback between

bacterial transmission and influenza transmission (where each

influences the other) in particular might diverge considerably from

our model predictions. However, most of these potential

extensions should not change the fact that vaccination can delay

the peak of an epidemic and thus increase influenza incidence in

winter months, and that this might increase the number of ICU

Table 3. Comparison between ICU estimates (standard deviations) from the average and seasonal estimators.*

Vaccination Profile (?) A B C D E F G

Number of ICU admissions on average
using the average function without vaccination

4391 (756) 4391 (755) 4392 (756) 4392 (755) 4388 (755) 4389 (754) 4392 (756)

Number of ICU admissions on average using
the seasonal function without vaccination

3443 (2882) 3439 (2871) 3438 (2864) 3443 (2882) 3431 (2877) 3436 (2876) 3447 (2883)

Number of ICU admissions averted on
average using the average function

341 (255) 378 (278) 448 (321) 373 (265) 329 (280) 270 (259) 277 (268)

Number of ICU admissions averted on
average using the seasonal function

1192 (1662) 1081 (1740) 538 (2309) 1084 (1703) 1454 (1863) 1334 (1700) 1359 (1752)

*For simulations of approximately 1000 runs each for the two strain case for 40% vaccination rate. The mean of the number of ICU admissions on average using both
the average and seasonal function vary a little bit across vaccination profiles due to runs (from particular combinations of parameters) resulting in a flag that made our
pandemic filtering criteria exclude it.
doi:10.1371/journal.pone.0023580.t003
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admissions under certain conditions. We also expect the finding

that seasonal estimators and average estimators give rise to very

different predicted ICU admissions will be robust under potential

model extensions.

Effective pandemic planning requires accounting for various

possible scenarios that may unfold in a real pandemic. Use of a

vaccine in future pandemics is a likely scenario, given its

prominent role in the 2009 H1N1 pandemic. Future increases in

manufacturing efficiency could also mean pandemic vaccines are

available well in advance of future fall pandemic waves. Our

research has shown that the predicted impact of vaccine programs

on the incidence of severe outcomes due to influenza infection can

be different–sometimes even opposite–to the impact on total

influenza infections, if susceptibility to severe outcomes is modelled

as a seasonally varying function. More research is required to

understand how including interactions between seasonal suscep-

tibility to severe outcomes and vaccine-altered pandemic waves in

models can change which vaccine programs are predicted to be

optimal from the public health perspective. Future models should

include the kinds of severe outcomes that are often at the front of

policy-makers’ minds, such as physician office visits, hospitaliza-

tions and ICU admissions, and they should also explore whether

their conclusions change if the probability of severe outcomes is

allowed to vary seasonally.
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