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Abstract

Background: WD40 repeat proteins constitute one of the largest families in eukaryotes, and widely participate in
various fundamental cellular processes by interacting with other molecules. Based on individual WD40 proteins,
previous work has demonstrated that their structural characteristics should confer great potential of interaction
and complex formation, and has speculated that they may serve as hubs in the protein-protein interaction (PPI)
network. However, what roles the whole family plays in organizing the PPI network, and whether this information
can be utilized in complex prediction remain unclear. To address these issues, quantitative and systematic analyses of
WD40 proteins from the perspective of PPI networks are highly required.

Results: In this work, we built two human PPI networks by using data sets with different confidence levels, and studied
the network properties of the whole human WD40 protein family systematically. Our analyses have quantitatively confirmed
that the human WD40 protein family, as a whole, tends to be hubs with an odds ratio of about 1.8 or greater, and
the network decomposition has revealed that they are prone to enrich near the global center of the whole
network with a fold change of two in the median k-values. By integrating expression profiles, we have further
shown that WD40 hub proteins are inclined to be intramodular, which is indicative of complex assembling. Based on this
information, we have further predicted 1674 potential WD40-associated complexes by choosing a clique-based method,
which is more sensitive than others, and an indirect evaluation by co-expression scores has demonstrated its reliability.

Conclusions: At the systems level but not sporadic examples’ level, this work has provided rich knowledge for better
understanding WD40 proteins’ roles in organizing the PPI network. These findings and predicted complexes can offer
valuable clues for prioritizing candidates for further studies.

Background
The WD40 repeat proteins constitute one of the largest
protein families in eukaryotes [1], and more than 1% of
human protein-coding genes encode WD40 proteins [2].
Studies found they participated in signal transduction,
transcriptional regulation, protein degradation, cytoskeleton

assembly, DNA damage repair, cell cycle regulation, and so
forth, leading to an understanding of their involvement in
many fundamental cellular processes [1, 3, 4]. The β sub-
units of heterotrimeric G proteins, as the most well-known
WD40 proteins, transduce transmembrane signals me-
diated by GPCRs [5]. A set of WD40 proteins contain-
ing F-box, as key modules in SCF-ubiquitin ligases,
recognize substrates and are responsible for their
ubiquitin-dependent degradation [6]. Study on their in-
teractions with other molecules is indispensable to
understand their functions.
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Available crystal structures have shown that WD40
domain exhibits a β-propeller structure exposing its top,
bottom, and side surfaces. Through these large surfaces,
they interact with other molecules and form complexes
to perform their versatile functions [1, 3, 5, 7–10]. For
instance, FBXW7 utilizes its top surface to interact with
the substrates [11], and PALB2 interacts with BRCA2
through its side surface [12]. It is reasonable to assume
that these structural characteristics can offer great po-
tential of interactions and make them as scaffolds for
complex assembling. Based on this consideration, re-
searchers have speculated that the whole WD40 protein
family may act as nodes with high connectivity (i.e., hub)
in the protein-protein interaction (PPI) network [1, 4].
However, this inference has not been validated by using
PPI networks directly. In addition, what roles the whole
WD40 protein family play in organizing PPI networks
remain unclear, and need to be elucidated for better un-
derstanding of their functions. Another crucial problem
is to identify their involvements in functional complexes,
but whether the information drawn from the network
analyses could be utilized in the prediction of WD40-
associated functional complexes is currently unexplored.
To address these issues, quantitative and systematic ana-
lyses of WD40 proteins, as a whole family, from the per-
spective of PPI network are highly required.
High-throughput approaches such as yeast two-hybrid

(Y2H) and affinity purification-mass spectrometry (AP-
MS) have generated large-scale PPI data sets [13–15], and
many online databases, such as MINT [16], MIPS [17],
HPRD [18], and STRING [19], have integrated compre-
hensive information of both high-throughput and low-
throughput PPIs. The accumulation of PPI data makes it
possible to construct PPI networks and to perform sys-
tematic studies based on available network analysis
methods. These network analyses, focusing on either the
static features such as connectivity and location or the dy-
namic features such as co-expression coefficients, have in
fact obtained various achievements [20–25]. All of these
have offered the feasibility for a network analysis on
WD40 proteins.
In this work, we adopted the human PPI data set from

HIPPIE [26, 27] database to build two human PPI net-
works with different confidence levels. Using these two
networks in parallel, we then analyzed the network char-
acteristics of human WD40 proteins, including their cen-
trality measures such as degree, the location (k-value in k-
core decomposition), and the co-expression correlation
coefficient between a node and its interacting partners, to
help understand their roles in organizing the PPI network.
Finally, we predicted WD40 protein-associated complexes
based on the network topological features, and evaluated
its performance. The overall pipeline of this work is illus-
trated in a flowchart (see Additional file 1: Figure S1).

Results
Two PPI networks with different confidence levels
We curated two human PPI data sets with different confi-
dence levels from HIPPIE database [26, 27]. One contains
all the interactions from HIPPIE after data cleaning
(namely ALL-PPI), while the other only consists of the
PPIs with high confidence scores (namely HC-PPI, see
Methods). In brief, ALL-PPI contains 229,137 interactions
among 16,226 human proteins, while HC-PPI contains
66,789 interactions among 11,108 human proteins, ac-
counting for about 29% of ALL-PPI (Table 1, see
Additional file 2: Table S1 and Additional file 1: Figure S2).
The network analyses were performed on HC-PPI and
ALL-PPI in parallel, which ensured that we could obtain
robust and consistent conclusions. This was also helpful to
the evaluation of the impact on the inferences stemming
from PPIs with different confidence levels.
There are 242 and 203 WD40 proteins in ALL-PPI and

HC-PPI, respectively, and all of them are located in the
main components in the constructed networks. As the
main components occupy the majority of the nodes (see
Table 1 and more detailed information in Additional file 2:
Table S1), further network analyses have been carried out
on them only. We have observed that the degrees approxi-
mate the power law distribution in both networks
(Additional file 1: Figure S3), which is consistent with the
well-established opinion that most biological networks fol-
low a scale-free topology [28].

WD40 proteins tend to be hubs in human PPI networks
For the whole human WD40 protein family, we directly
evaluated their tendency of acting as hubs in the PPI
networks. There are 123 WD40 hub proteins (with de-
gree greater than 5, see definition in Methods) in HC-
PPI network (Table 2). By considering the numbers of
hubs and non-hubs in non-WD40 proteins, we have ob-
tained an odds ratio (OR) of 1.82 (p = 3.844e-5 in a χ2

test, see Methods). The quantitative measure of the odds
ratio, which is significantly greater than 1, supports the
inference that the whole WD40 protein family indeed
tend to act as hubs in HC-PPI network. We performed
the same analysis on ALL-PPI network, and the result
backs the above inference more strongly (OR = 2.83, p =
2.077e-9, see Additional file 1: Table S2). To be more
stringent, we also attempted these analyses by using

Table 1 Basic information of the ALL-PPI and HC-PPI networks

HC-PPI ALL-PPI

Proteins (nodes) 11,108 16,226

Interactions (edges) 66,789 229,137

WD40 proteins 203 242

Components 76 8

Occupation of main component 96% 99%

Zou et al. BMC Systems Biology 2018, 12(Suppl 4):41 Page 50 of 166



alternative hub definitions with different cutoffs (degree
greater than 10 or 15, see Methods), and all confirmed
that the WD40 family tend to be hubs (Additional file 1:
Table S3). The observation that the OR value in ALL-
PPI is much larger than in HC-PPI for each hub defin-
ition, indicates that the tendency of WD40s to be hubs
may be underestimated when using high confidence PPIs
only. Nevertheless, this tendency is significantly larger
than that of non-WD40s in all scenarios, demonstrating
that our inference is robust.
The definition of hub protein is controversial cur-

rently. To avoid this, we further compared their degrees
directly. In HC-PPI network, the median degree of
WD40 proteins is significantly greater than that of non-
WD40s (9 vs. 5, fold change ~ 2, p = 2.19e-8, Mann-
Whitney U test, see Additional file 1: Table S4), which
again demonstrates that they possess higher preference
of interacting with other proteins than non-WD40s do.
Similar results were observed from the analysis on ALL-
PPI (24 vs. 11, fold change ~ 2, see Additional file 1:
Table S4). Based on the investigations of certain individual
WD40s and their structural features, previous studies have
speculated that the whole WD40 family may tend to par-
ticipate frequently in molecular interactions [1, 3, 29]. In
this work, directly analyzing the whole set of human
WD40 family in the PPI networks has confirmed this in-
ference systematically.
In addition, our analysis has provided quantitative de-

grees for each WD40 protein, which could be utilized to
select candidates for in-depth studies. It is well accepted
that proteins with high degree in the network are often as-
sociated with important functions [20]. In HC-PPI, the
top three WD40 hubs are FBW1A, FBW1B, and DDB1,
whose degrees are 108, 102, and 81, respectively (Table 3).
FBW1A and FBW1B, which are paralogous to each other,
serve as subunits of SCF E3 ubiquitin ligases, and many

studies have shown that these two genes regulate cell cycle
by degrading related proteins such as Cdc25A and Wee1
[30, 31]. As a linker in DDB1-CUL4-ROC1 E3 ligase,
DDB1 was predicted to interact with about 90 other
WD40 proteins by sequence similarity search [32]. By de-
grading corresponding protein substrates, it regulates
many fundamental cellular processes, including DNA re-
pair, cell cycle, and DNA replication [33].
Although the whole family tends to be hubs, many in-

dividual proteins in this family have very low degrees,
and are worth exploring as well. The 3 WD40 proteins
with lowest degrees in both HC-PPI and ALL-PPI net-
work are listed in Table 3. According to the database
search in PubMed and UniProt [34], they have not been
studied widely and their functional annotations remain
limited. Interestingly, we found that they show a tissue-
specific or tissue-preferential expression pattern (for def-
inition of expression patterns, see Methods) [2, 35]. On
the contrary, the three genes with top degrees are prone
to express widely (Table 3). Although further confirm-
ation of this correlation is needed, we can speculate that
the widely-expressed proteins may interact with different
partners in different tissues, and that combining all in-
teractions from different tissues into the overall PPI net-
work has resulted in the high degrees.
Degree is the most simple and intuitive characteristics

that describes the centrality of a node. To obtain more
comprehensive understanding of their centralities, we
also compared other measures including betweenness,
closeness, stress, and clustering coefficient, between
WD40 and non-WD40 proteins in both HC-PPI and
ALL-PPI. All these comparisons have revealed consistent
trends (Additional file 1: Table S4), demonstrating the
WD40 family indeed tends to have higher centrality
levels from multiple perspectives.

WD40 proteins prefer to locate near the global center of
PPI networks
Proteins are hierarchically located in the PPI network,
and those with high degrees may be located near the
periphery or the center of the whole network [21], which
are often referred to as the local center or global center
(see Methods for definition), respectively. While the sta-
tus of a protein to be hub or not provides valuable

Table 2 Number of hubs and non-hubs of both WD40 and
non-WD40 proteins in HC-PPI network

WD40 Non-WD40 Total

Hub 123 4995 5118

Non-hub 80 5910 5990

Total 203 10,905 11,108

Table 3 WD40 proteins with high- and low-degrees in both HC-PPI and ALL-PPI network

Protein Degree in HC-PPI Degree in ALL-PPI Expression

High degree FBW1A 108 341 High in many tissues

FBW1B 102 375 High in many tissues

DDB1 81 240 High in all tissues

Low degree DC121 1 1 Testis-specific

EMAL5 1 2 Ovary-preferential

TBL1Y 1 2 Prostate-specific
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information for understanding its role in organizing the
PPI network, whether a protein tends to be located near
the global center or local center can offer additional
clues.
To investigate the distinct locations of WD40 proteins

in human PPI network, we performed the k-core decom-
position (see Methods) for HC-PPI. As shown in Table 4,
HC-PPI network can be split into 21 layers, and the
WD40 proteins are widely located from layer 1 to 19.
The median k-value of WD40 proteins is significantly
greater than that of non-WD40s (8 vs. 4, fold change =
2, p = 8.56e-10, Mann-Whitney U test). As the large k-
value can indicate the preference of being located near
the global center (see Methods), this result has demon-
strated that this propensity of WD40 proteins is signifi-
cantly higher than that of non-WD40s. We further
found that the percentage of WD40 proteins in each k-
core subnetwork increased almost linearly with k in a
certain range (from 1 to 15 on Fig. 1, linear regression
R2 = 0.95, p = 4.12e-10), further showing that the WD40
protein family is prone to enrich near the global center

in a more vivid way. The same analysis was carried out
for ALL-PPI network, and similar results were observed
(median k-value: 20 vs. 10, fold change = 2, see
Additional file 1: Figure S4 and Table S5).
It has been demonstrated in the yeast PPI network that

proteins located near the global center tend to be essential
genes and be conserved in evolution [21]. Hence, we
checked three human WD40 proteins with the largest k-
values in HC-PPI (Table 4). Among them, GBLP (also
named RACK1) plays roles in many cellular processes,
such as translational repression, PKC signaling pathway,
and so forth, and it belongs to the human essential genes
reported previously [36]. MED16 is a key component of
the Mediator complex which is involved in the transcrip-
tion regulation of nearly all RNA polymerase II-dependent
genes [37], and it is synthetically lethal when knocked out
together with MED15 [38]. CORO1C, a member in the
Coronin gene family, is associated to many cancers and
brain development [39]. In addition, all the three genes
are evolutionarily conserved in vertebrates or even in the
whole eukaryotes (see Additional file 1: Table S6).

Table 4 WD40 proteins in different layers by k-core decomposition on HC-PPI network

k-layer # of WD40 # of non-WD40 WD40 protein

21 0 26 –

20 0 203 –

19 3 141 MED16, GBLP, COR1C

18 8 130 FBW1A, FBXW7, ARC1B, FBW1B, RBBP4, DDB1, PAAF1, RBBP7

17 11 253 EED, VPRBP, STRN3, WDR5, MEP50, CDC20, STRN, DDB2, WDR1, BUB3, 2ABB

16 12 262 WDR48, WRP73, RFWD2, EIF3B, SEH1, RBBP5, STRN4, PRP19, EIF3I, DCAF7, RAE1L, PRP4

15 10 216 TBL1X, SEC13, GEMI5, NEDD1, SNR40, COPA, FZR, STRAP, COR1B, 2ABD

14 6 216 TBL1R, TLE1, KI21A, TAF5, WDR62, FAN

13 8 277 2ABA, KI21B, TF3C2, 2ABG, LRWD1, LYST, WDR33, WAP53

12 6 281 RPTOR, CAF1B, GBB2, GBB1, WDR82, COR2A

11 7 376 EDC4, WDR61, FBXW5, COPB2, A16L1, WDR20, WDR36

10 13 312 CIR1A, CORO7, APAF, DCA11, PAN2, PLRG1, FBXW4, DTL, TBL3, WDR18, WDR26, PHIP, THOC6

9 12 448 WIPI2, LIS1, NUP37, HPS5, PALB2, WDR90, ERCC8, WDR92, DCAF8, WDR6, NUP43, TAF5L

8 12 426 PI3R4, GBB4, TLE3, WDR83, ELP2, CIAO1, THOC3, WDR35, WDR74, FBXW8, ARC1A, CSTF1

7 7 463 LST8, DC1I2, DCAF4, WDR75, NBEL1, WDR76, HIRA

6 3 551 SMU1, WDR3, DC1I1

5 15 682 SHKB1, DCA10, KCTD3, BRWD1, GBB5, GBB3, AAAS, PWP2, WDHD1, EMAL3, UTP18, PEX7,
BOP1, SC31A, WDR24

4 14 802 NBEL2, WDR34, EIF2A, WDR44, STXB5, PRP17, WDTC1, PLAP, TLE2, WDR43, WSB1, FBXW2,
UTP15, AHI1

3 17 1078 NLE1, WDR12, TSSC1, WIPI1, DCA13, POC1B, COR1A, IF172, SCAP, AAMP, EMAL4, WDR70,
BRWD3, DCAF5, TRAF7, WDR5B, WDR46

2 20 1449 DCA12, FBXW9, WIPI4, EMAL1, LRBA, DMXL2, TEP1, WSB2, EMAL2, WDR59, WDR55, DMXL1,
WDR7, PK1IP, PWP1, HERC1, WDR4, TBL2, MIO, U3IP2

1 19 2313 TCPR2, COR2B, WDR47, WDR37, GNB1L, DC121, IFT80, IF122, TBL1Y, SC31B, DC4 L1, MABP1,
NOL10, EMAL5, KTNB1, DEND3, WDR81, NBEA, WDR25
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Taken together, the k-core decomposition has provided
information concerning the WD40 proteins’ locations in
the PPI network, which cannot otherwise be derived
from the degrees only. These results have shown that
WD40 proteins prefer to locate near the global center in
organizing the network topology. By identifying WD40
proteins close to the global center, one can further mine
the WD40 proteins and prioritize candidates for further
investigation.

WD40 hubs tend to be intramodular hubs
By integrating expression data into the PPI network, pre-
vious studies defined two kinds of hubs by the level of
co-expression between the hub and its interacting part-
ners (see Methods) [23, 24], where the high level and
low level indicate intramodular and intermodular hubs,
respectively. These two kinds of hubs display distinctive
characteristics consistent with their roles in organizing
communications and functions of dynamic protein net-
works, e.g., the intramodular ones often serve as plat-
forms to assemble complexes [23, 24].
We measured the co-expression levels between hubs

and their partners by calculating the average Pearson
correlation coefficients (PCC, see Methods) in the HC-
PPI network. As expected, the average PCCs of WD40
and non-WD40 hubs are both higher than those of ran-
domized data (Fig. 2). Furthermore, the average PCCs of
WD40 hubs are significantly higher than those of non-
WD40 hubs (Fig. 2), indicating that WD40 hubs have
higher tendency to be intramodular than non-WD40
hubs. We observed the similar trend for the protein-level
(median of average PCCs: 0.343 vs. 0.217 for WD40 and
non-WD40 hubs, p = 1.7e-10, Mann-Whitney U test) and
the RNA-level (0.221 vs. 0.171, p = 1.6e-4, Mann-Whitney
U test) expression data in the HC-PPI network (see Add-
itional file 1: Table S7). In addition, the difference between
WD40 hubs and non-WD40 hubs is evidently larger in
protein-level expressions than in RNA-level expressions

(Fig. 2 and see Additional file 1: Table S7). As we are study-
ing the interactions at the protein level, the protein-level
expressions should be more proper and more direct than
RNA-level expressions. Hence, the larger difference ob-
served based on protein-level expression has further
strengthened our inference concerning WD40 hubs’ intra-
modular tendency. The similar analyses were also per-
formed in ALL-PPI network, and led to consistent
observations (see Additional file 1: Figure S5 and Table S7).
By using both protein-level and RNA-level expression

data, and by using both HC-PPI and ALL-PPI network,
these results have provided quantitative clues systematic-
ally to support the inference that WD40 hubs, as a
whole set, are more prone to being intramodular. This
information, in combination with their tendency to be
hubs and to locate near the global center, has largely ex-
tended our understanding concerning their roles in or-
ganizing the PPI network. According to the previous
studies on PPI networks, the intramodular hubs tend to
assemble complexes [24]. Hence, analyses in this section
also directly confirmed previous speculations about their
tendency of acting as scaffolds. Taken together, these
network analyses may indicate that one can further pre-
dict WD40-associated complexes by using the network
topology.

WD40-associated complex predictions
Protein complex, from biological perspectives, repre-
sents a group of proteins that interact with each other at
the same time and place, forming a multimolecular ma-
chine. From a topological perspective, protein complex
represents a highly connected subgraph or cluster that
has more interactions with each other within it and
fewer with the outside of the subgraph [25]. Cliques are
such a kind of highly connected subgraphs, where each
pair of nodes are linked by an edge, and clique-based
methods are useful for predicting complexes from net-
work [40–42]. The previous sections has confirmed at

Fig. 1 Percentage of WD40 proteins in each k-core subnetwork during the decomposition of HC-PPI network. The percentages were obtained by
dividing the number of WD40 proteins to that of total proteins in each k-core subnetwork
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the systems level that WD40 hubs tend to form com-
plexes (Fig. 2), and the clustering coefficients, which
measure the trends of nodes to form dense clusters, of
WD40 proteins are also much higher than those of non-
WD40 proteins (see Additional file 1: Table S4). There-
fore, choosing a method simply based on finding cliques
may be effective to predict WD40-associated complexes.
By using the HC-PPI network, we detected 1674 max-

imal cliques (Additional file 3: Table S8). The size of
clique ranges from 3 to 16, and many cliques are over-
lapped with each other. We merged the cliques to obtain
a series of predicted complex sets, namely from M05 to
M10, according to different levels of the overlap between
two cliques (see Methods for the names of the sets).
These sets contain from less than 100 to more than
1000 predicted complexes (Additional file 1: Table S9).
To find out which complex set is the best, we com-

pared them with a reference set containing 234
experimentally-identified human WD40-associated pro-
tein complexes extracted from the CORUM database
[43] (see Methods and Additional file 4: Table S10). To
fulfill these comparisons, we also tried different values of
ω [44], which was used to determine whether a pre-
dicted complex matches one of the reference complexes
(Additional file 1: Table S9 and see Methods for the def-
inition of ω). As shown in Fig. 3, M10 matches the refer-
ence set better than other predicted sets (from M05 to
M09) under all ω scores. This result suggests that using
the maximal cliques without further merging can effect-
ively predict out true WD40-associated complexes, so
the following analyses are all based on M10.
We also tried other well-known methods for compari-

son, including MCODE [44], ClusterOne [45], and MCL
[46]. We found that all the three methods output much
less WD40 protein-associated complexes than the clique-
based method (Additional file 1: Table S11), indicating
that the clique-based method is much more aggressive.

Besides, when comparing the predicted complex sets by
these three methods to the reference set, we found that
the numbers of matched reference complexes are much
less than clique-based method under almost all ω scores
(Additional file 1: Figure S6), suggesting a higher sensitiv-
ity of the clique-based method. In addition to considering
the matched number of reference complexes, we further
adopted the maximal matching ratio (MMR) to compare
these methods [45]. The MMR can measure to what
extent the predicted complexes overlap with the
matched reference complexes. At the setting of ω > = 0.
2, as recommended by MCODE [44], we found that the
clique-based method obtained similar or even better
MMR (Additional file 1: Table S12), revealing that the
clique-based method can detect more true complexes

Fig. 2 Distributions of average PCCs of WD40 hubs, non-WD40 hubs, and randomized data in HC-PPI network. The solid lines in orange represent
the WD40 hubs, the dotted lines in purple denote the non-WD40 hubs, and the longdash lines in blue represent the randomized data. The average
PCCs are calculated by using both protein-level expression data (a) and RNA-level expression data (b)

Fig. 3 The number of reference complexes matched by the predicted
complex sets at different ω scores. Different lines represent different
predicted complex sets derived from different merging parameters.
The ω at the X-axis denotes the score that determines whether a
predicted complex matches a reference one. The Y-axis gives out the
number of reference complexes matched by predicted ones at
corresponding ω scores
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without sacrificing their quality. Taken together, these
observations indicated that, although the clique-based
method may have a high false positive rate, it can detect
much more true WD40 complexes than others.
In order to evaluate the impact on the prediction

stemming from PPIs with different confidence, we fur-
ther performed the clique-based prediction by using
ALL-PPI network. It turned out that the M10 matched
the reference set best, similar to the case by using HC-
PPI network (Additional file 1: Figure S7). As expected,
the predicted WD40 protein-associated complexes from
ALL-PPI are much more than those from HC-PPI
(Additional file 1: Table S13), as the incorporation of
many interactions with lower confidence forms more cli-
ques. However, the numbers of matched reference com-
plexes based on ALL-PPI and HC-PPI are similar and
are near the total number of reference complexes at the
ω > = 0.2 (Additional file 1: Figure S8 and Table S13).
This indicates that the clique-based method on ALL-PPI
network has output too many positive predictions with-
out contributing much to the true positive predictions,
suggesting that clique-based complex prediction by
using HC-PPI may be better than by using ALL-PPI.

Further evaluation of the final predicted complex set
We chose M10 from HC-PPI as the final predicted com-
plex set according to the analysis above, and it matched
202, 190, 158, and 99 known WD40-associated complexes
in the reference set at ω scores no less than 0.2, 0.3, 0.4,
and 0.5, respectively (see Additional file 1: Table S9). As it
is difficult to obtain a suitable negative control data set, it
is challenging for us to evaluate the false positive of our
prediction directly. However, as protein complexes are
groups of proteins that exert functions at the same time
and location, it is reasonable to assume that proteins
within a true complex have high co-expression relation-
ships. Therefore, we further evaluated the final predicted
complex set indirectly by calculating a co-expression score
for each potential complex (similar to but different from
the average PCC for hub proteins, see Methods).
By comparison (Fig. 4), we observed that both the pre-

dicted WD40-associated complexes and the reference
complexes presented significantly higher co-expression
scores than the decoy complexes, i.e., randomized protein
sets (p < 2.2e-16 for both tests with protein-level or RNA-
level expression data, Mann-Whitney U tests). In addition,
the fold changes with the protein-level expression are both
larger than 2, and those with the RNA-level expression
are both larger than 1.5 (see Additional file 1: Table S14).
When the co-expression scores of the predicted com-
plexes were compared to those of reference complexes,
the statistically significant difference was observed with
protein-level expression data (p = 1.015e-6, Mann-
Whitney U test), but the fold change of medians is only 1.

09 (see Additional file 1: Table S14). With the RNA-level
expression data, no statistically significant difference was
even observed (p = 0.115, Mann-Whitney U tests), and the
fold change of medians is only 1.04 (see Additional file 1:
Table S14).
The above results provide several indications. First, the

co-expression scores are more distinguishable by using the
protein-level expression data, which meets our under-
standing that the protein-level expression data is more
suitable for integrating into the PPI network analyses than
the indirect RNA-level expression data. Second, the co-
expression scores are much higher in the reference com-
plex set than in the decoy complex set, indicating that the
co-expression values do have the potential to evaluate the
predicted complexes. Third and most important, the much
smaller differences between co-expression scores of our
predicted complexes and those of the reference complexes
show the high quality of our predictions in an indirect way.
Our complex prediction can provide valuable information

for researchers studying WD40 proteins. For example, a
predicted complex named “core_209” consists of seven pro-
teins (Fig. 5a, see Additional file 3: Table S8), and among
them, TCPA, TCPB, TCPE, TCPH, and TCPQ are subunits
of the CCT chaperonin complex (CORUM complex ID:
126) [47]. The NEDD1 (WD40 protein) is not included in
any complexes in the CORUM database, so the researchers
studying on NEDD1 cannot obtain its complex information
from CORUM but our predictions provided some. Further-
more, literature searching shows that NEDD1 was reported
to localize at the centrosome and recruit γ-tubulin ring
complex [48] through interacting with TBG1 (tubulin
gamma-1 chain protein) [49]. And interestingly, one study
has found that CCT can bind to unfolded γ-tubulin and
promote its folding [50]. According to these studies, it is
reasonable to propose that “core_209”might be a true com-
plex in which the CCT bind to γ-tubulin to promote its
folding, and then NEDD1 might recruit folded γ-tubulin
ring complex (containing TBG1) to the centrosome.
Another example is “core_5” (Fig. 5b), which includes a

WD40 protein (PAFF1) a protease (UCHL5), and many
members of the 19S regulatory complex (CORUM com-
plex ID: 32, PA700 complex) of the 26S proteasome. The
database contains no information about whether it can
interact with PAAF1 and UCHL5, but the predicted “core_
5” suggests this possibility. Literature searching shows sup-
porting evidences: The 19S regulatory complex recognizes
poly-ubiquitinated proteins, recruits UCHL5 (a deubiquiti-
nase) to removes the ubiquitins, and translocates them to
the 20S core particle for degradation [51, 52]; PAAF1 inter-
acts with the 19S regulatory complex, and destabilizes the
association between the 19S complex and the 20S core
[53], serving as a negative regulator of the 26S proteasome.
Based on these clues, it is reasonable to propose that both
UCHL5 and PAAF1 can bind the 19S regulatory complex
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to form a larger one. These examples demonstrate that our
complex predictions based the network topology, in com-
bination with literature mining, can provide informative
clues to propose putative functions of WD40 proteins.

Discussion
Network-based approaches have been applied to protein
studies in recent years. During the last two decades, various

methods and theories have been accumulated for biological
network analyses concerning relationships between network
features and proteins’ functions [20, 21, 23, 28, 54, 55]. Scar-
doni et al. discussed several topological centrality properties
as well as their biological significances [56]. Highly con-
nected proteins in a yeast interactome are found to tend to
be essential [20], and the central located proteins are pro-
posed more likely to be essential [21]. These established

Fig. 4 Distributions of the co-expression scores of predicted WD40-associated complexes, reference complexes, and decoy complexes. The orange
solid line, the blue dotted line, and the black dashed line represent the distributions of co-expression scores of predicted WD40 complexes, reference
complexes, and decoy complexes, respectively. The co-expression scores are calculated by using both the protein-level expression data (a) and the
RNA-level expression data (b)

Fig. 5 Two examples of potential WD40 protein-associated complexes. The nodes connected by dark grey lines belong to predicted complexes,
whereas the nodes connected by light grey lines represent the reference complexes. Nodes in light red are shared by the predicted complex and
reference complex. a the predicted complex, core_209, superimposed with the reference complex CCT complex; b the predicted complex,
core_5, superimposed with reference complex 19S proteasome
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analysis strategies and the corresponding findings, in com-
bination with the fast accumulated PPI data in online data-
bases, make it possible to interrogate the distinct network
characteristics of a specified protein set, such as the WD40
protein family.
The WD40 proteins are abundant in eukaryotes [57],

and studies have suggested that they may expand into a
large family in the evolutionary early stage of eukaryotes
through the duplication events acted on the whole do-
main or protein [2]. In prokaryotes, a substantial propor-
tion of WD40 proteins have been speculated with late
origin through duplication events acted on the repeat
level, although the total number of prokaryotic WD40s
is much less than eukaryotic ones [58]. The reason why
this family is prevalent in proteomes may stem from
their structural and functional characteristics. According
to the crystal structures of certain family members, the
WD40 protein family is assumed to participate in
protein-protein interactions and complex assembling,
but there was no systematic confirmation. In this work,
we have performed the first systematic and quantitative
network analyses on human WD40 proteins. First, this
work has shown that human WD40 protein family, as a
whole, tends to be intramodular hubs and be located
near the global center, leading to a better understanding
concerning their roles in organizing the PPI networks.
Second, we have provided quantitative measures for each
WD40 protein concerning its network properties, such
as degree and k-value, which can serve as clues to
prioritize certain candidates for in-depth studies. On the
other hand, these quantitative measures for each protein
also provided information that could not otherwise be ob-
tained from the overall tendency. For example, we found
many non-hub WD40 proteins with very low connectivity,
such as DC121, DC4 L1, DEND3, EMAL5, and TBL1Y.
Using only degrees, we cannot distinguish hub pro-

teins located near the global center from those at the
periphery, and the k-core decomposition can comple-
ment this deficiency. The k-core decomposition has
demonstrated that WD40 proteins prefer to be located
close to the global center of the PPI network, but not
the local centers. The fact that the three WD40 proteins
(MED16, GBLP, and COR1C) with top k-values are not
the same as the three WD40s with top degrees, further
shows the k-core decomposition has indeed added more
information from another dimension.
In addition to static topological properties, the dy-

namic feature describing the average PCC between a
hub and its interacting partners was also attempt, and it
has revealed that WD40 hubs should tend to be intra-
modular, which quantitatively confirmed the previous in-
ference that most WD40 proteins, if not all, should
participate in various protein complexes. Inspired by
this, we further predicted WD40-associated complexes

from the topology of the human PPI network by using a
simple clique-based method and three other well-known
predictors. The comparison has revealed that, although the
clique-base method may have a higher false positive rate, it
can give out many more putative complexes with relatively
high co-expression scores, which can serve as indicators of
low false positive rates. The predicted novel complexes can
also provide valuable clues to infer their detailed functions.
In future work, one can seek to construct a negative set to
evaluate the false positive rate directly.
We utilized two human PPI networks with different

confidence levels. In all cases, the inferences drawn from
these two networks are consistent, demonstrating that the
overall conclusions in this work should be with enough
robustness. In some cases, we can extrapolate the impacts
stemming from different confidence levels: the tendency
of WD40 proteins to be hubs can be higher when incorp-
orating PPI data with low confidence, but many false posi-
tive complex predictions could be introduced. This also
suggests that a more sophisticated clique-based method
should be developed in the future, e.g., by integrating the
confidence score of each PPI in the network and by train-
ing proper parameters for selecting informative interac-
tions automatically.

Conclusions
In summary, we have conducted the first systematic and
quantitative network analyses on human WD40 proteins.
By comparing with non-WD40 proteins on several static
topological properties and a dynamic feature by integrat-
ing co-expression data, our work demonstrated that the
WD40 family tend to be intramodular hubs and be lo-
cated near the global center of the whole network, pro-
viding clues about their roles in organizing the PPI
network. In addition, these findings have quantitatively
confirmed that the previous structure-based inference
that the WD40 protein family may often act as scaffolds
to assemble complexes. Finally, we have effectively pre-
dicted the WD40 protein-associated complexes by using
a clique-base method. The quantitative features analyzed
in this work and the predicted complexes, can serve as
clues for inferring putative functions and prioritizing
candidates for further studies.

Methods
Protein-protein interaction data set and network
construction
The human PPI data set was downloaded from the HIP-
PIE database [26, 27] (v2.0, release 2016–05-24), which
presents one of the most comprehensive human PPI
data set. It has integrated experimentally detected PPIs
extracted from MINT [16], MIPS [17], HPRD [18], In-
tAct [59], BioGRID [60], DIP [61] and BIND [62], and
has also implemented a confidence scoring system
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weighting the amount and quality of the evidences for
each interaction. The larger the score (ranging from 0 to
1) is, the higher the confidence is. After downloading the
data set (273,927 interactions at the moment when
accessed), we further cleaned it by removing PPIs lacking
the UniProt ID [34] or describing self-interactions, and
the repetitive interactions were also merged. This process
of data cleaning resulted in the ALL-PPI data set. Based
on it, we curated the HC-PPI (high confidence PPI) data
sets by keeping only the PPIs whose confidence scores are
at least 0.72, the third quartile of all the scores, which was
also suggested for filtering out potential false positive in-
teractions by the authors of HIPPIE. In practice, as the
confidence scores take values from 65 different ones, and
more than 25,000 interactions have the score of 0.72, the
percentage of interactions in HC-PPI to those in ALL-PPI
was greater than 25%. A list of 262 human WD40 proteins
was retrieved from previous work [2], and was adopted to
label the WD40 proteins in ALL-PPI and HC-PPI. All
other proteins were treated as non-WD40s.
A PPI network is defined as a graph, where nodes and

edges represent proteins and their interactions, respect-
ively. In the network, there may be isolated components
without any edge connecting them, and the largest one
is referred to as the main component. We adopted
Cytoscape [63] to construct the PPI networks for the
ALL-PPI and HC-PPI, and the topological parameters
were calculated by NetworkAnalyzer [63].

Centralities and other properties comparison between
WD40 and non-WD40 proteins
Centralities are basic network properties to characterize
each node or edge with respect to their positions within
the network. The comparison of centrality between
WD40 and non-WD40 proteins was mainly conducted
by utilizing the degree measure, which is the most intui-
tive. Other measures including betweenness, closeness,
and clustering coefficient were also attempted.
The degree of a node in network is the number of its

direct links with other nodes. In PPI network, a highly
connected protein (say, degree greater than 5) is defined
as a ‘hub’, as described in previous publications [23, 24].
We mainly adopted this cutoff to define hubs, and the
cutoff of 10 and 15 were also used for extended compar-
isons. The ratios of hubs to non-hubs were calculated
for WD40 and non-WD40 proteins, respectively. The
odds ratio (OR) was defined by dividing this ratio in
WD40 proteins to that in non-WD40s. The χ2 test was
adopted to measure the statistical significance that the
odds ratio differs from 1.
Betweenness centrality of a node in network reflects

the amount of control that this node exerts over interac-
tions of other nodes in the network [64]. The between-
ness of node n is calculated as follows:

Cb nð Þ ¼
X

s≠n≠t
σst nð Þ=σstð Þ; ð1Þ

where s and t are nodes in the network different from
node n, σst denotes the number of shortest paths from s
and t, and σst(n) is the number of shortest paths from s to
t that node n lies on. In NetworkAnalyzer, the between-
ness value for each node n is further normalized by divid-
ing by the number of node pairs excluding node n.
Closeness centrality measures how fast information

spreads from a given node to other reachable nodes in
the network. Closeness centrality of node n is defined as
the reciprocal of the average shortest path length [65],
and it can be calculated as follows:

Cc nð Þ ¼ 1=avg L m; nð Þð Þ; ð2Þ

where L(m, n) is the length of shortest path between
node n and m, and m denotes any other nodes that are
reachable to node n.
Stress centrality of a node n is calculated by the num-

ber of shortest paths passing through node n. A high
stress centrality means traversed by a lot of shortest
paths [66].
In PPI networks, the clustering coefficient of a node n

is defined as follows:

Cn ¼ 2en= kn kn−1ð Þð Þ; ð3Þ

where kn denotes the number of neighbors of node n, en
is the number of connected pairs between all neighbors.
This property measures the trend of forming a cluster
by node n and its neighbors [28].
All the network properties described above were cal-

culated for each protein in both HC-PPI network and
ALL-PPI network through NetworkAnalyzer [63]. Direct
comparisons of them between WD40 and non-WD40
proteins were performed by using single-tailed Mann-
Whitney U test. The fold changes measuring the ratio of
median degree of WD40 proteins to that of non-WD40
were also calculated.
Expression patterns of top high- and low-degree WD40

proteins were retrieved directly from a previous study [2].
They were based on the RNA-seq data set in the Human
Protein Atlas project [35], which was further utilized in
the following sections in this study. Proteins expressed in
all 27 tissues with FPKM > 10 are defined as “High in all
tissues”, and those expressed in most (but not all) tissues
with FPKM > 10 are defined as “High in many tissues”.
Proteins expressed in one tissue with FPKM 5 or more
times greater than in all other tissues are defined as “Tis-
sue-specific”, and those demonstrate expression prefer-
ence in specific tissues, but fold changes were less than 5,
are named as “Tissue-preferential”.
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k-core decomposition of PPI network
The k-core decomposition [67] of a PPI network was
carried out by iteratively removing all nodes with degree
less than k until all the remaining nodes have degrees of
at least k. The remaining part is named as the k-core
subnetwork accordingly. When the k increases stepwise
from 1, the locations of the remaining nodes go from
the periphery to the center of the whole network
(Additional file 1: Figure S9a). This decomposition
process splits the network into different layers from out-
side to inside, where the layer k contains proteins in the
k-core subnetwork but excluding those in the (k + 1)-
core subnetwork. Each protein in layer k can then be
assigned the value of k (i.e., the k-value) to describe its
layer location. The larger the k-value is, the closer to the
center of the whole network (i.e., the global center) the
node is. Nodes with high degrees but low k-values are
hubs located at the periphery, and are named as local
centers (Additional file 1: Figure S9b) [21].
The k-core decomposition described above was ap-

plied to the HC-PPI and ALL-PPI network respectively.
For comparison, the median k-values for WD40 and
non-WD40 proteins in each network, and the percent-
age of WD40s in each k-core subnetwork were calcu-
lated respectively. A fold change was measured by the
ratio of median k-value of WD40 proteins to that of
non-WD40s.
The list of human essential genes was retrieved from a

previous study [36]. It contains 1299 genes which were
integrated from four distinct sources. Evolutionary con-
servation analysis of WD40 proteins near the global cen-
ter was performed by checking their orthologs in other
model eukaryotes in the Inparanoid database [68].

Analysis of the intramodular preference for WD40 hubs
Using the gene expression data from a series of different
tissues, one can calculate the Pearson’s correlation coef-
ficient (PCC) to quantify the extent to which a pair of
interacting proteins were co-expressed. Here, the expres-
sion data of a gene was represented as a vector consist-
ing of the same number of components as the number
of different tissues. According to previous studies in
yeast and human interactome [23, 24], the average of all
PCCs between a hub and its interacting partners can be
adopted to identify whether interactions of this hub are
context-specific (low average PCC) or constitutive (high
average PCC), and this hub is referred to as intermodu-
lar or intramodular accordingly.
The distribution of the average PCCs of the WD40

hubs was compared with that of non-WD40 hubs. As a
control, we also generated a random distribution of the
average PCCs of all hub proteins. In brief, the associa-
tions between the expression vectors and proteins were
shuffled, and then the average PCC for each hub protein

was re-calculated to generate this random distribution.
The same analyses were carried out on HC-PPI and
ALL-PPI network, respectively. For each one, both
RNA-level and protein-level expression data set were
considered independently.
For the RNA-level expression, we used the RNA-seq

data set in the Human Protein Atlas project (ArrayEx-
press ID: E-MTAB-1733) [35]. This data set contains the
RNA expression levels in terms of the FPKM values for
20,050 protein-coding genes in 27 different tissues from
95 samples. In each tissue, the FPKM values of a gene
from different samples were averaged to represent its ex-
pression level, and its expression values from different
tissues constitute the expression vector. The expression
vectors of a protein pair were used for the PCC calcula-
tion. The UniProt ID mapping tool [34] and bioDBnet
[69] were adopted to map the IDs in the RNA-seq data
set and the protein IDs in the PPI networks. After ID
mapping and deletion of ambiguities, 15,358 and 10,751
proteins in the ALL-PPI and the HC-PPI network were
assigned expression data, respectively.
For the protein-level expression, we utilized the data

from Human Proteome Map [70], which contains expres-
sion information for more than 30,000 proteins in 30 hu-
man tissues. After ID mapping and deletion of ambiguities,
13,764 and 10,003 proteins in the ALL-PPI and the HC-
PPI network were assigned expression data, respectively.

Complex predictions
In the clique-based method, we took three simple steps
to mine WD40-associated complexes in the PPI net-
work. First, we extracted a subnetwork that only con-
tains WD40 proteins and their directly connected
neighbors (first-order neighbors). Second, all maximal
cliques were identified based on the algorithm developed
by Bron et al. [71]. Third, maximal cliques with size
greater than 2 and containing at least one human WD40
proteins were chosen to be potential WD40-associated
complexes.
Since some cliques generated above may overlap with

others, two cliques can be merged according to a speci-
fied merging parameter that measures the proportion of
overlapped protein number to that in the smaller clique.
To determine to what extent the overlapped cliques
should be merged together, we tried several merging pa-
rameters (50%, 60%, 70%, 80%, 90%, and 100%), resulting
in a series of predicted complex sets (namely M05, M06,
M07, M08, M09, and M10, respectively). For example,
predicted complex set M05 is obtained from iteratively
merging cliques that share 50% nodes, and M10 means
no merging at all.
The reference complex data set contains all 234 ex-

perimentally identified human WD40-associated protein
complexes extracted from the CORUM database [43],
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where 90 human WD40 proteins were involved. The
overlap score ω [44], which was used to determine
whether a predicted complex “matches” one of the com-
plexes in the reference set, was defined as:

ω ¼ A ∩ Bj j2
Aj j � Bj j ; ð4Þ

where A and B represent the complex A and complex B,
and |A| and |B| represent the number of proteins in
them, respectively. We tried a series of scores of ω com-
prehensively, from 0.0 to 1.0, to evaluate our complex
prediction results from different merging parameters
mentioned above. This evaluation could help to choose
a proper merging parameter.
For comparison, other methods including MCODE

[44], ClusterOne [45], and MCL [46] were also
attempted. These methods took two steps to predict
WD40 protein-associated complexes from the main
component of the PPI network. First, they detected all
so-called “modules” in the main component of the PPI
network; Second, “modules” with size of at least 3 and
containing at least one WD40 protein were kept as po-
tential complexes. According to the recommendation of
the original literatures, default settings were chosen for
both ClusterOne and MCODE, whereas three different
values (1.5, 2.0, and 4.0) were used to control the granu-
larity for MCL, respectively.
To compare different complex prediction methods, we

calculated the numbers of matched reference complexes
by predicted complexes from each method, and further
utilized a measure called maximal matching ratio
(MMR) [45], which is a well-known index that evaluates
the overall level of overlap between the matched refer-
ence complexes and the predicted complexes that
matching these reference complexes.

Co-expression scores of predicted complex set,
randomized protein set, and reference set
Co-expression score of a complex (or a protein set) was
calculated through two steps. In the first step, we calcu-
lated the PCCs between any two proteins within the com-
plex. In the second step, the mean of these PCCs was
computed as the co-expression score of this complex.
The randomized data set, which was used for compari-

son, was generated by random sampling from the HC-
PPI network. It contained the same number of “decoy
complexes” as that in the predicted set. The numbers of
member proteins were also the same as those in the pre-
dicted set, but they were randomly chosen from the
main component of HC-PPI network.
The expression data sets used here were the same as

described in the calculation of average PCCs for hub
proteins. The co-expression scores of the predicted

complexes, the reference complexes, and the “decoy
complexes” were all independently calculated based on
the protein-level expression and the RNA-level expres-
sion data.
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