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Abstract
Abelson kinase (c-Abl) is a non-receptor tyrosine kinase involved in several biological processes essential for cell differen-
tiation, migration, proliferation, and survival. This enzyme’s activation might be an alternative strategy for treating diseases 
such as neutropenia induced by chemotherapy, prostate, and breast cancer. Recently, a series of compounds that promote 
the activation of c-Abl has been identified, opening a promising ground for c-Abl drug development. Structure-based drug 
design (SBDD) and ligand-based drug design (LBDD) methodologies have significantly impacted recent drug development 
initiatives. Here, we combined SBDD and LBDD approaches to characterize critical chemical properties and interactions 
of identified c-Abl’s activators. We used molecular docking simulations combined with tree-based machine learning mod-
els—decision tree, AdaBoost, and random forest to understand the c-Abl activators’ structural features required for binding 
to myristoyl pocket, and consequently, to promote enzyme and cellular activation. We obtained predictive and robust models 
with Matthews correlation coefficient values higher than 0.4 for all endpoints and identified characteristics that led to con-
structing a structure–activity relationship model (SAR).
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GA	� Genetic algorithm
HQSAR	� Hologram quantitative structure–activity 

relationship
LBDD	� Ligand-based drug design
HB	� Halogen bond
HBD	� Hydrogen bond donor
Hyd	� Hydrophobic contact
MACCS	� Molecular ACCess system
MB	� Myristoyl binding
MCC	� Matthews correlation coefficient
CVMCC	� Cross-validation MCC
EXTMCC	� External validation MCC
PC	� Principal component
PCA	� Principal component analysis
PDB	� Protein data bank
pEC50	� Logarithmic half-maximal effective 

concentration
pIC50	� Logarithmic half-maximal inhibitory 

concentration
PLIP	� Protein–ligand interaction profiler
QSAR	� Quantitative structure–activity relationship
RF	� Random forest
RMSD	� Root mean square-deviation
SAR	� Structure–activity relationship
SBDD	� Structure-based drug design
SMARTS	� SMILES arbitrary target specification

Introduction

Abelson kinase (c-Abl) is a non-receptor tyrosine kinase 
located in many subcellular compartments, including the 
endoplasmic reticulum, cytoplasm, nucleus, cell cortex, and 
mitochondria [1]. This enzyme modulates several biological 
processes, including actin polymerization [2, 3], structural 
changes in chromatin [4], responses to DNA damage [5, 6], 

and other essential ones for cell proliferation, differentiation, 
migration, survival, and death [7].

The inhibition of c-Abl has been studied since its over-
activation is associated with various diseases such as chronic 
myeloid leukemia (CML), cancer, immunological diseases, 
neurological disorders such as Parkinson’s disease and 
others [8–11].

However, the activation of c-Abl has become the subject 
of investigation in the last years since the transient activation 
of this enzyme may have a therapeutic application such as 
the treatment of chemotherapy-induced neutropenia [12–14]. 
Moreover, c-Abl activators can block TGFβ-responsive 
mammary tumor growth in mice, showing a potential strat-
egy to deal with breast cancer [15]. Abl kinases can also 
be oncogenes in some cases, as in CML, and tumor sup-
pressors in others, such as prostate cancer with α3 integrin 
deficiency [16]. For this reason, in specific circumstances, 
the use of small-molecule activators of c-Abl kinases could 
help prostate cancer treatment [14]. Other potential applica-
tions of activators include treating ischemic injury [17] and 
synergistic effects when combined with BCR-Abl inhibitors 
that would improve treatment efficiency [18].

The c-Abl autoinhibition is mainly regulated by a series 
of intramolecular interactions in the SH3 and SH2 domains 
that stabilize the kinase domain inactive conformation 
[1, 19]. Another regulation mechanism is the N-terminal 
myristoyl binding to the myristoyl binding site in the kinase 
domain’s C-lobe (Fig. 1a, b). This binding helps form a com-
pact conformation in which the enzyme is in an autoinhib-
ited state [20, 21].

Yang et al. identified in 2011 the DHP, the first cell-
permeable molecule capable of activating the c-Abl [21] 
(Fig. 1c). Furthermore, subsequent studies carried out by the 
same research group [22] identified a series of compounds 
capable of activating c-Abl whose mechanism of action 
involves the binding to the myristoyl binding site, inducing 
conformational changes [23, 24].

Fig. 1   a Representation of the conformational changes in the c-Abl kinase during their autoinhibition process; b cartoon representation of c-Abl 
kinase colored by their domains (PDB ID 2FO0) and c representation of DPH bounded to the myristoyl binding site (PDB ID 3PYY)
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Compared to inhibitors, only a few examples of small-
molecule activators of enzymes have their mechanism of 
action well-characterized. Moreover, beyond the possible 
therapeutic applications, the study of enzymatic activators 
can help understand how the enzyme’s activation can affect a 
particular metabolic pathway and explain the conformational 
changes that govern the protein function [25]. However, even 
though recent studies have contributed to an advance in 
understanding c-Abl activation mechanisms, few investiga-
tions have explored the rational design of molecules capable 
of performing this function [22].

Traditional drug development had an estimated cost of 
58.8 billion USD in 2015, 10% higher than in 2014 [26]. 
Besides being expensive, this process is also time-consum-
ing, requiring about 10–15 years. The high cost and time 
associated with a low success rate in the traditional drug 
discovery process highlighted the necessity of using com-
puter-aided drug discovery (CADD) in the drug develop-
ment pipeline [27].

The computational strategies could be classified as 
structure-based drug design (SBDD) and ligand-based drug 
design (LBDD). The SBDD process analyzes the interac-
tions between the molecular target and ligand to rational-
ize the design of novel bioactive compounds [28]. A classic 
example of the SBDD approach is molecular docking. This 
method aims to estimate the binding mode using search-
ing algorithms and the interaction energies using a scoring 
function [29].

The LBDD is an indirect approach based on analysis of 
the physical chemistry properties or molecular features of 
known active compounds [30]. This approach is advanta-
geous compared to SBDD since it does not require pre-
liminary knowledge of the biological target. Many LBDD 
strategies use quantitative structure–activity relationship 
techniques (QSAR) such as comparative molecular field 
analysis (CoMFA) [31, 32], comparative similarity indices 
analysis (CoMSIA) [33, 34], hologram quantitative struc-
ture–activity relationship (HQSAR) [35–37], QuBiLS-
MIDAS [38, 39], radial distribution function (RDF) indices 
[40], and GETAWAY descriptors [41]. In addition, machine 
learning approaches have increasingly been applied in drug 
design and adopted by many pharmaceutical industries 
[42–50].

The tree-based models proposed by Breiman et al. in 1984 
[51] are good examples of machine learning algorithms for 
drug design purposes [52, 53]. In these models, the goal is to 
split the dataset into binary groups with the highest possible 
homogeneity. In the beginning, the chosen feature allows 
the highest gain on homogeneity. Then, as the tree grows, 
it adds other features to the splitting process for increasing 
the homogeneity between these groups [54]. Well-known 
examples of these models are the decision tree (DT) [55], 
random forest (RF) [56], and adaptive boosting (AdaBoost) 

[57]. Tree-based models are widely used in several research 
areas, such as metabolomics [58], disease detection [59], 
toxicological predictions [60–62], and stock prediction [63], 
due to their simplicity, efficiency, and interpretability.

In this context, this work aimed to study the struc-
ture–activity relationship (SAR) of a series of c-Abl kinase 
activators by combining molecular docking simulations 
with tree-based classification machine learning models, 
AdaBoost, decision tree, and random forest, for predicting 
myristoyl binding (MB), enzyme activation (EA), and cel-
lular activation (CA).

Materials and methods

Dataset description and preparation

We selected compounds classified as c-Abl kinase activators 
identified by Simpson et al. [22]. We classified the c-Abl 
kinase activators according to enzyme activation capability 
and myristoyl binding affinity, measured as the logarithmic 
half-maximal inhibitory concentration (pIC50), and cellular 
activation, measured as the logarithmic half-maximal effec-
tive concentration (pEC50).

The structures of all compounds are shown in Fig. 2, and 
their biological activities are listed in Support Information 
Table S1. Among 52 reported compounds, 49 were used 
since the racemate and chiral compounds lacking defined 
stereochemistry 33, 45, and 50 were excluded. Compounds’ 
3D structures were generated using Avogadro 1.2.0 soft-
ware [64]. Geometry optimization was performed using the 
Open Babel package [65] with MMFF94 force-field [66–70], 
Steepest Descent optimization algorithm, and Newton’s 
method linear search.

Molecular docking

Simpson et  al. [22] solved three c-Abl structures with 
enzyme activators using X-ray crystallography (PDB IDs: 
6NPV, 6NPU, and 6NPE). The selected protein structure 
for docking simulation was the chain A of the one co-crys-
tallized with compound 51 (PDB ID: 6NPV). This crystal 
structure was chosen because it has the best crystal reso-
lution (1.86 Å). Then, the protein structure was prepared 
for docking by removing all crystallographic water and 
phosphate molecules, and the amino acid residues ioniza-
tion states were adjusted using Discovery Studio Visualizer 
v19.1.0.18287 [71]. Molecular docking simulations were 
carried out using GOLD 5.8.1 software [72], using a grid of 
radius of 10 Å centered at the ALA452 CB, which contained 
the myristoyl binding site. All remaining parameters regard-
ing ligand flexibility were kept as default. The genetic algo-
rithm used in GOLD was set to maximum search efficiency 
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Fig. 2   Structure of the 52 c-Abl activators identified by Simpson et al. [22]
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with 50 GA runs per ligand. All conformations were classi-
fied according to the ChemPLP [73] score function.

Redocking using ligand 51 and cross-dockings using 
ligands 6 and 29 were carried out to evaluate the experimen-
tal binding mode’s predictability and validate the docking 
protocol. In this approach, compounds 6 and 29 were docked 
in the selected structure and were compared with their co-
crystallized ones deposited in PDB under the ID: 6NPE 
(resolution of 2.15 Å), and 6NPU (resolution of 2.33 Å), 
respectively.

Root mean square deviation (RMSD) calculation was the 
criteria used to assess whether the simulation conditions 
were adequate when comparing the docking results with 
the crystallized ligands. Besides, the results of each ligand 
were grouped in clusters of poses that differ by a maximum 
of 1 Å from one another. In this process, the best score rank-
ing poses were selected based on the most representative 
clusters that reproduced the experimental data and were 
analyzed using the software PyMOL v1.8 [74], Discovery 
Studio v19.1.0.18287, and PLIP algorithm [75] for poses 
visualization, interactions evaluation, and figures creation.

Machine learning models

The calculation of molecular fingerprints was performed 
with PaDEL descriptors [76]. The selected fingerprints 
for constructing the machine learning models were Atom-
Pairs2D, Klekota Roth, MACCS, PubChem, and Sub-
structure, based on their interpretability. Compounds were 
divided into active and inactive according to their biologi-
cal activity parameters (myristoyl binding—MB, enzymatic 
activation—EA, and cellular activation—CA). For values 
of either pEC50 or pIC50 not precisely determined for the 
endpoint, the entry was removed from the mean activity 
value calculation. Thus, the MB and EA models were built 
using 48 compounds with mean activity values of 5.733 and 
5.925, respectively, while the CA model was built from 44 
compounds with a mean activity value of 5.270.

All models were constructed using similar strategies 
previously applied [53, 77]. Python library Scikit-learn was 
used for the data analysis [78] (Fig. 3). Also, the random 
training test splits were performed using the train_test_split 
module from Scikit-learn in an 80:20 ratio based on random 
selection’s capability to generate predictive models [79]. 
The AdaBoost (AB) models were constructed varying the 
estimators’ maximum number that ended the boosting pro-
cess, from 1 to 106 (in 5 steps), 200, 500, and 600 (n_esti-
mators) and the learning rate from 0.1 to 20 (in 0.1 steps) 
(learning_rate). For the Decision Tree (DT), the maximum 
depth of the tree varied from 10 to 100 (in 10 steps) and 
without limitation (max_depth). The minimum number of 
samples required to split an internal node was varied from 
2 to 100 (in 2 step size) (min_samples_split). The random 

forest (RF) models were carried out by varying the same 
max_depth and min_samples_split from the DT models and 
same n_estimators from AB models. Accuracy, precision, 
recall, F1 score, and Matthews correlation coefficient (MCC) 
were calculated for each model using internal and external 
validations. Internal validation was also carried out using 
the fivefold cross-validation module (cross_validate). The 
model evaluation was performed using the MCC values for 
validation processes, and models with no positive predicted 
values were excluded in further analysis. The best model for 
each endpoint had an X-scramble validation following the 
SCRAMBLE’N’GAMBLE methodology [80]. 

The applicability domain was assessed by the bounding 
box approach using principal component analysis (PCA) 
[81, 82] for the best model for each endpoint, using the 
implemented method on the Scikit-learn library. Only the 
independent variables selected by each endpoint from the 
training set were employed in the model construction. The 
same model was used to transform the test set data. The PCA 
data also were applied to perform applicability domain based 
on the range, and the distance of each test sample from the 
training dataset using the Euclidean, Manhattan, Cosine, and 
Wasserstein (probability distribution) distances implemented 
in the Scipy library [83], obtaining a consensus analysis for 
applicability domain [84] using a threshold of 95%.

The best result for each endpoint was interpreted using 
the permutation importance from the Scikit-learn library 
(permutation_importance) several times to permute a fea-
ture equals 10 (n_repeats) using MCC as the metric. Fea-
tures were interpreted using the SMARTS pattern with the 
SMART.plus web service [85]. Plotting was performed 
using Matplotlib and Seaborn libraries.

Results and discussion

Molecular docking

The RMSD values obtained in the redocking and cross-
docking processes were equal to 0.878 Å (Fig. 4a), 0.402 Å 
(Fig. 4b), and 0.698 (Fig. 4c) for compounds 51, 29, and 
6, respectively. Therefore, those results indicated that the 
employed docking protocol is suitable for pose prediction 
because RMSD values lower than 1.5 or 2 Å, depending on 
ligand size, were taken to indicate that the docking protocol 
successfully predicted the experimental binding mode [86]. 
Then, the same protocol was used to perform the docking 
simulations for all other compounds.

The myristoyl binding site is composed of several hydro-
phobic residues [20]. It was observed that the aromatic ring 
of the compounds fits in a hydrophobic pocket, a region 
deeper into the myristoyl binding site where a series of inter-
actions including π-stacking with PHE512, Van der Waals 
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interactions with ALA363, LEU359, LEU448, ILE451, and 
VAL487 [87], and halogen bonding with LEU448 occur.

In the region most exposed to the solvent, the com-
pounds access various interaction sites such as hydrogen 
bond acceptors and donors and Van der Waals interactions, 
depending on their substituting groups.

Machine learning models

Starting from five fingerprints, 479 AdaBoost (AB) models, 
549 decision tree (DT) models, and 2.903 random forest 
(RF) models were built and validated for each fingerprint 
and endpoint, summing 59,640 machine learning models 
(a boxplot analysis for each model and fingerprints are dis-
played in the Supplementary Figure S1). The cross-valida-
tion MCC value was selected to evaluate the model’s perfor-
mance due to their capability of classifying the performance 
by a single value, comprising all parameters of a confusion 
matrix [88, 89]. In this sense, if the model had the higher 
CVMCC and EXTMCC, then it was selected. Otherwise, the 
distance was considered from perfection for these two met-
rics to select a balanced model in both validations. Figure 5a 
illustrates the first situation where can be seen a model from 
MACCS fingerprint having the higher CVMCC and EXTMCC 
among them, while Fig. 5b, c shows the second.

For MB models, AdaBoost performed better than the oth-
ers for both metrics using the PubChem fingerprint (CVMCC 
of 0.445 and EXTMCC of 0.612). Also, the most predictive 
random forest model used the same fingerprint. For this 
endpoint, the decision tree achieved the highest result using 
AtomPairs2D, but this model displayed the worst generaliza-
tion capability compared to the others.

The selected models for the EA were considered perfect 
for the three methods according to the MCC value for exter-
nal validation and achieved a high generalization capability 
in the cross-validation process. RF was the best method for 

Fig. 3   Flowchart of the machine learning process applied in this work

Fig. 4   Molecular docking validation results. a Redocking with com-
pound 51 in the myristoyl binding site of Abl kinase crystal structure 
(PDB ID 6NPV); b Cross-docking of compound 29 in the Abl crystal 

structure (PDB ID 6NPU); and c Cross-docking of compound 6 in the 
Abl crystal structure (PDB ID 6NPE)
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the CVMCC displaying a 0.616 value, followed by AB and 
DT with, respectively, 0.603 and 0.603 MCC values.

At least, RF performed better in the models for CA, 
achieving a perfect score for external validation and 0.622 
in the cross-validation using MACCS fingerprint. Also, 
AdaBoost with AtomPairs2D achieved internal and exter-
nal MCC values equal to 0.536 and 0.790, respectively. 
Decision tree with PubChem achieved a CVMCC of 0.445 
and EXTMCC of 0.612. Table 1 summarizes the result of the 
selected models for each endpoint. Only AB with PubChem 
model for myristoyl binding, RF with PubChem model for 
enzymatic activation, and RF with MACCS model for cel-
lular activation were considered for further analysis due their 
higher scores during the validation process and the remain 
models were disregarded.

It is important to mention that the models were gen-
erated with a small amount of chemical and biological 
data and, as expected, could present some bias and low 
variance which could led to the underfitting of the models 
[90]. Regarding the recall, a relevant metric for finding 
new active compounds, the RF models for enzymatic and 
cellular activation performed perfectly achieving the value 
equals to 1 while the model for myristoyl binding achieved 

a value equal to 0.625. However, despite the lower results 
from model for myristoyl binding model, the models were 
properly validated and could be used together (consensus 
predictions) to achieve a better success rate in finding new 
activators, strategies already used described in the litera-
ture [91–94]. Then, additional validations were carried out 
to verify the robustness of the three selected models.

The selected model for each endpoint was submitted to 
another validation process to ensure the model’s predict-
ability. For regression models, Y-scrambling is a widely 
used validation strategy [95], and by definition, it meas-
ures the prediction errors and/or validation coefficients of 
artificial models generated with scrambled target values 
(y) [96]. However, in classification models, the absolute 
error value is always one due the categorical nature of the 
target value, and for that reason, X-scrambling can pro-
vide more diversity in the scrambled input data for model 
generation. Thus, X-scrambling validation was performed 
indicating that selected models were not generated by 
chance (Fig. 6) because artificial models generated with 
X-scrambled data failed in internal and/or external valida-
tions in comparison to original models.

Fig. 5   Scatter plot of cross-validation and external validation MCC values from different methods and endpoints: a Random forest for cellular 
activation; b decision tree for myristoyl binding; and c Adaboost for myristoyl binding

Table 1   Method, fingerprint, cross-validation MCC (CVMCC), external validation MCC (EXTMCC), cross-validation AUC (CVAUC), external 
validation AUC (EXTAUC), cross-validation F1-score (CVF1), and external validation F1-score (CVF1) for the selected model for each endpoint

Endpoint Method Fingerprint CVMCC EXTMCC CVAUC​ EXTAUC​ CVF1 EXTF1

Myristoyl binding AdaBoost PubChem 0.445 0.612 0.692 0.875 0.659 0.857
Decision tree AtomPairs2D 0.188 0.500 0.579 0.813 0.605 0.769
Random forest PubChem 0.422 0.500 0.692 0.813 0.718 0.769

Enzymatic activation AdaBoost AtomPairs2D 0.603 1.000 0.777 1.000 0.876 1.000
Decision tree AtomPairs2D 0.496 1.000 0.707 1.000 0.830 1.000
Random forest PubChem 0.616 1.000 0.760 1.000 8.667 1.000

Cellular activation AdaBoost AtomPairs2D 0.536 0.790 0.738 0.916 0.537 0.909
Decision tree PubChem 0.441 0.500 0.700 0.833 0.506 0.923
Random forest MACCS 0.622 1.000 1.000 0.788 0.693 1.000
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After the validation process, the selected model for each 
endpoint had its applicability domain assessed by fitting a 
PCA into the training data and transforming the test data. 
The PCA bounding box approach for each endpoint is 
shown in Fig. 7 and it was found that the test data is within 
the training set applicability domain in the three analyzes. 
For the myristoyl binding and enzymatic activation data, 
the PCA constructed using PubChem (Fig. 7a, b), 3 PC’s 
represent 60.5% of the total variance. Similarly, the PCA 
built using MACCS and cellular activation data, hold-out 
62.1% of the total variance (Fig. 7c). Using the range and 
Euclidean, Manhattan, Cosine, and Wasserstein distances 
approaches for the applicability domain assessment, no test 
set compounds for the three models were considered out of 
the domain. Therefore, all the training and test sets splitting 
were suitable for the model validation.

Leonard and Roy [97] already discussed in their work 
methods for a rational selection of the training and test sets 
to obtain more predictive models. Despite this, in our work, 
the random selection achieved predictable models and a suit-
able distribution of the chemical space between the training 

and test sets as shown in the Hierarchical Clustering Analy-
sis dendrograms presented in supplementary information 
Figure S2. These analyses may be helpful to characterize a 
molecular dataset, especially with multiple endpoint cases 
since the HCA indirectly measures the applicability domain. 
Also, it can be used to split data in training and test sets. 
Finally, the essential features of the selected models were 
interpreted using the permutation importance in the train-
ing data (Fig. 8). This process is defined as the decrease in 
a model score, in this case, MCC, in the training set when 
only one feature is randomly shuffled. The AdaBoost for MB 
model using PubChem fingerprint returned 10 features with 
importance different from zero, and the four most important 
were the positions 645, 333, 364, and 579, respectively. For 
the random forest for EA model, also using PubChem, the 
only feature important in the permutation process was the 
position 780. For the random forest model for CA using 
MACCS, 14 features were obtained differently from zero, 
and the four most important features were the positions 95, 
160, 42, and 106, respectively. These features were selected 
to carry out the structure–activity relationship interpretation.

Fig. 6   Comparison between cross-validation MCC (CVMCC) and external validation MCC (EXTMCC) of the selected original model for each 
endpoint (pink) and 20 X-scrambled models (green): a myristoyl binding model; b enzymatic activation model; and c cellular activation model

Fig. 7   The PCA bounding box approach for the applicability domain 
assessment for each endpoint: a PubChem fingerprints and myristoyl 
binding data; b PubChem fingerprints and enzymatic activation; and 

c MACCS fingerprints and cellular activation data. Each PC axis dis-
plays the contained variance
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Structure–activity relationship

The representation of each fingerprint key pattern and the 
frequency in the active/inactive compounds are shown in 
Table 2. With this data, it is possible to see that some finger-
print keys had substantial presence and distinct frequencies 
in the active and inactive compounds. Using this informa-
tion, it is possible to infer structure–activity relationships for 
this dataset. For this analysis, features with an accumulated 
frequency higher than 30% were selected.

From the MB model, the fingerprint PubChemFP333 
has a frequency two times higher in the active compounds. 
The majority position of this pattern is the methylated 
carbon in the pyrazoline ring. Also, it is possible to see 
in the crystallographic structure of compound 51 com-
plexed with the c-Abl the Van der Waals interactions of 
this pattern (in this case, a carbon near to methylene) with 
LEU359 (Fig. 8a) and compound 47 with a methyl group 
from the pyrazoline ring interacting the same residue 
(Fig. 8b). PubChemFP579 was over six times higher in 

Fig. 8   Feature importance from permutation process: a AdaBoost for myristoyl binding model using PubChem fingerprint and b random forest 
model for cellular activation using MACCS fingerprint

Table 2   Visual interpretation for the fingerprints with permutation feature importance different from zero used in each endpoint

Dashed bonds represent any bond, and A means any atom

Endpoint Fingerprint key Presence in active 
compounds (%)

Presence in inactive 
compounds (%)

Visual interpretation

AdaBoost model for Myristoyl binding PubChemFP333 47.916 22.916

 
PubChemFP364 8.333 6.250  
PubChemFP579 29.166 4.166

 
PubChemFP645 37.500 16.666

 
Random forest model for enzymatic activation PubChemFP780 29.545 11.363

 
Random forest model for cellular activation MACCSFP42 10.416 4.166 F

MACCSFP95 2.083 12.500
 

MACCSFP160 8.333 35.416 CH3
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the active compounds, showing the importance of the ali-
phatic bulk group for the myristoyl binding affinity model 
activity. This importance can be exemplified by the dock-
ing results, where compounds 4 and 32 occupy a hydro-
phobic site between the carbon chain in the GLU481 and 
TYR454 residues at the entrance of the myristoyl binding 
site (Fig. 8c, d). For PubChemFP645, the frequency in the 
active group is over two times higher than the occurrence 
in the inactive group. It is understandable why this pattern 
is important in the model because the presence of nitro-
gen between a carbonyl group and two carbons selects the 
nitrogen in the proper position to interact with ALA452 
residue, acting as a hydrogen bond donor (Fig. 8e), an 
advance proposed by Huong et al. in 2014 [87]. This pat-
tern also displayed the same behavior, even with different 
rings in both positions, as shown in compound 17 (Fig. 8f) 
and compound 19 (Fig. 8g), highlighting the importance 
of this interaction for compound recognition.

For the enzymatic activation model, the pattern in 
PubChemFP780 has a frequency two times higher in the 
active compounds when compared to the inactive com-
pounds. The importance of this moiety is due to its optimal 
fitting to the hydrophobic pocket forming the Van der Waals 
interactions with residues LEU359, ALA452, TYR454, and 
PRO484 (Fig. 9h). Furthermore, the chlorine atom in para 
position may be used as a discriminant feature among all 
rings since its substitution to a polar group will disfavor 
these interactions [25]. The hydrophobic cavity involving 
this group can be seen in the compound 51 crystal structure 
and in the docking of compound 47 (Fig. 9a, b, respectively). 
Also, despite not being shown in the machine learning mod-
els, the chlorine atom in the meta-position can interact with 
LEU442 forming a halogen bond.

For the CA model, the generic methyl group recurring 
in the inactive compounds was the most frequent pattern. 
This result highlights the information from PubChemFP333, 
showing that only substitution in the pyrazoline ring 
is favorable. Also, a common position for this generic 
methyl group is along with the same carbonyl group of 
PubChemFP579, showing the importance of aliphatic bulk 
in this position. Finally, combining all information from ML 
models and docking simulations, a SAR model was reported 
and described in Fig. 10.

Finally, the generated models corroborated experimental 
binding modes and docking studies suggesting that the com-
bination of LBDD and SBDD strategies could be employed 
in further drug design studies. It is well known in the litera-
ture that consensus predictions improved the predictability 
of QSAR models [91–94] and virtual screening protocols 
[98–100]. Therefore, despite the limitations of generated 
models (moderate predictability of MB model and the pos-
sibility of bias due the small dataset), a prediction of novel 
compounds followed by docking studies and following the 

Fig. 9   Visual interpretation of the fingerprints using visual analysis: 
a crystal structure of compound 51 (PDB ID 6NPG), where Van Der 
Waals interactions are represented as dashed lines; b docking result 
of compound 47, where Van Der Waals interactions are represented 
as dashed lines; c docking result of compound 4, where the surface is 
colored by hydrophobicity; d docking result of compound 32, where 
the surface is colored by hydrophobicity; e docking result of com-
pound 34, where hydrogen bond interaction is represented as a blue 
line; f docking result of compound 17, where hydrogen bond interac-
tion is represented as a blue line; g docking result of compound 19, 
where hydrogen bond interaction is represented as a blue line; and h 
surface of myristoyl binding pocket colored by hydrophobicity
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proposed SAR by our work and the previous studies [22, 
87] could be a useful to the drug design of c-Abl activators.

Conclusion

Using classification machine learning models allowed the 
construction of robust and predictive models for c-Abl acti-
vation, including myristoyl binding, enzyme activation, and 
cellular activation. For the prediction of myristoyl binding 
affinity, the AdaBoost algorithm using PubChem fingerprint 
achieved better MCC results for external and cross-valida-
tion. For enzyme activation, the random forest algorithm, 
and PubChem, had the best performance. Finally, for cellular 
activation, random forest obtained the highest MCC value 
using the MACCS fingerprint. It is important to mention 
that the using of a small dataset to train and validate the 
models could provide bias to the generated models, limiting 
the model’s application and extrapolation in the SAR study. 
However, the combination of molecular docking with molec-
ular fingerprints interpretation from the machine learning 
models corroborated SARs described by Simpson et al. [25] 
and provided new insights into this structure–activity rela-
tionship. This work may assist the next steps forward in iden-
tifying and designing more potent novel kinase activators.
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