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Dear Editor,

PD-1 is a type I immune inhibitory transmembrane 
receptor of the CD28 family that modulates the activity 
of T cells in peripheral tissues [1]. It is expressed in T 
cells, B cells, monocytes, natural killer cells and many 
tumor-infiltrating lymphocytes [2]. Binding of PD-1 
to its ligands PD-L1 and PD-L2 reduces T-cell activity 
[3]. Thereby, under normal conditions, the interaction 
of PD-1 with PD-L1 or PD-L2 prevents excessive lym-
phocyte activation and maintains immune tolerance to 
self-antigens by negatively regulating the immune re-
sponse [3]. However, PD-L1 is often overexpressed in 
different tumors including lymphoma, melanoma, non-
small-cell lung cancer and other types of cancer [2]. As 
a result, tumor cells attenuate T-cell signaling to evade 
immune surveillance [4]. Blocking PD-1/PD-L1 interac-
tion has been shown to restore T-cell activation and an-
titumor response, providing the rationale for therapeutic 
intervention using PD-1/PD-L1 as target [5]. Currently 
two monoclonal antibody-based drugs targeting PD-1 are 
in clinical trials. One is nivolumab or Opdivo from Bris-
tol-Myers Squibb. The other is pembrolizumab or Key-
truda, a therapeutic IgG4 antibody developed by Merck. 

Crystal structures of mouse PD-1 (mPD-1) in complex 
with human PD-L1 (hPD-L1), mPD-1 complexed with 
mouse PD-L2 (mPD-L2) and human PD-1 (hPD-1) in 
complex with hPD-L1 have revealed the structural basis 
of PD-1’s interaction with its ligands [6-8]. Crystal struc-
ture of the full-length pembrolizumab was also reported 
recently [9]. However, how pembrolizumab specifically 
recognizes hPD-1 is still unknown. Herein, we report the 
crystal structure of pembrolizumab Fab (antigen-binding 
fragment) in complex with hPD-1, revealing the molec-
ular basis for the blockade of hPD-1/hPD-L1 interaction 
by pembrolizumab. 

Crystal structure of the hPD-1/pembrolizumab Fab 
complex (hPD-1/Fab) was determined at a resolution of 
2.9 Å (Supplementary information, Table S1). hPD-1 and 
pembrolizumab Fab form a 1:1 complex (Figure 1A), 
consistent with the stoichiometry determined by previous 

results [10]. hPD-1 is made up of a canonical β-sandwich 
immunoglobulin variable (IgV) topology with a disulfide 
bond between Cys54 and Cys123. Structural comparison 
of hPD-1 with apo-hPD-1 (PDB: 3RRQ) and hPD-1 
structure extracted from the hPD-1/hPD-L1 complex 
(PDB: 4ZQK) shows that hPD-1 in the hPD-1/Fab com-
plex resembles the conformation observed in the hPD-1/
hPD-L1 complex. The pembrolizumab Fab in the com-
plex exhibits a canonical β-sandwich immunoglobulin 
fold closely resembling the full-length pembrolizumab 
antibody (Supplementary information, Figure S1) [9]. 

The interaction of PD-1 with pembrolizumab Fab bur-
ies ~1 774 Å2 surface area, and the hPD-1/Fab interface 
can be divided into two sub-interfaces. Sub-interface I 
mainly encompasses the C′D loop of hPD-1 and pem-
brolizumab Fab’s complementary determining regions 
(CDRs) L1, L3, H2 and four β-strands of framework 
region (FR), which interact through polar, charged and 
hydrophobic contacts (Figure 1B). The most notable 
feature of this sub-interface is that the C′D loop of hPD-
1 protrudes into a groove formed by the CDRs and FR of 
pembrolizumab Fab. Specifically, Asp85 of hPD-1 estab-
lishes a salt bridge with ArgH99 of FR (hereafter residues 
of the Fab light chain and heavy chain are designated 
by superscript chain identifiers L and H, respectively). 
The side chain of Ser87 forms hydrogen bond with ArgH99 
of FR. Interestingly, two arginines Arg86 and ArgL96 are 
involved in a T-shaped stacking interaction. The back-
bone of C′D loop residues Glu84, Ser87, Gln88 and Gly90 
are held in place by hydrogen bonds with side chains of 
TyrL36, TyrH35, AsnH59 and ThrH58, respectively. Further-
more, Pro89 of hPD-1 inserts into a cavity formed by side 
chains of TyrH33, TyrH35, AsnH52 and AsnH59 of β-stands 1, 
2 and 3, and the main chains of GlyH50, IleH51, GlyH57 and 
ThrH58 of β-stands 1 and 2. 

Sub-interface II is dominated by hydrophilic inter-
actions and brings together residues in the C, C′ and F 
strands of hPD-1 and CDRs L1 and H3 of Fab (Figure 
1C). The side chains of Asn66 and Lys78 of hPD-1 form 
hydrogen bonds with the backbone groups of ArgH102 and 
TyrH101, respectively. The side chain of Thr76 of hPD-1 is 
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hydrogen bonded to the side chain of TyrH101. In addition, 
PheH103 of CDR H3 inserts into a hydrophobic pocket 
formed by Val64 and Pro83 of hPD-1 and TyrL34 of CDR 
L1. 

The extensive interactions at the hPD-1/Fab interface 
are consistent with the high binding affinity of pembroli-
zumab to the hPD-1, with an apparent disassociation 
constant (KD) of 27 pM. In the previously published 
hPD-1 structures (PDB: 3RRQ and 4ZQK), the C′D loop 
of hPD-1 is disordered and is assumed to be highly flexi-
ble [8, 10]. However, the C′D loop of hPD-1 in our hPD-
1/Fab complex structure is well ordered, as evidenced 
by its well-defined electron density, and it contributes 
to sub-interface I with Fab. Although mPD-1 and hPD-
1 share 60% sequence identity and an IgV topology, 
hPD-1 lacks the additional C″ strand observed in mPD-
1 (Figure 1D). Moreover, Asp85 and Arg86 in hPD-1 are 
substituted by Gly85 and Leu86 in mPD-1, respectively. 
Mutations in hPD-1, D85G and R86L show significant 
differences in their binding affinities with pembrolizum-
ab. D85G abolishes hPD-1 binding to pembrolizumab as 
determined by ELISA (Figure 1E). This can be attributed 
to the disruption of the salt bridge with ArgH99 of Fab, 
which can conceivably impair the PD-1/Fab complex as-
sembly. However, R86L did not affect the binding affinity 
between hPD-1 and pembrolizumab. These results are 
consistent with earlier data showing that pembrolizum-
ab displays low binding affinity toward mPD-1 (Patent: 
WC500190992).

Structural superposition of the hPD-1/pembrolizumab 
Fab complex and the hPD-1/hPD-L1 complex shows 
that pembrolizumab Fab and hPD-L1 interact with hPD-
1 through overlapping surface regions, suggesting that 
pembrolizumab and hPD-L1 can exclude each other 
from binding to hPD-1 (Figure 1F). Although the C′D 
loop in the sub-interface I contributes predominantly to 
the binding affinity of permbrolizumab, the C′D loop is 
disordered in the hPD-1/hPD-L1 complex, suggesting 
that it is not important for the hPD-1/hPD-L1 interaction. 
Consistent with this observation, the overlapping regions 
are mainly located in the sub-interface II, where the anti-
gen-binding site of permbrolizumab Fab largely overlaps 
with the regions of hPD-L1 that interact with hPD-1.

A second ligand for PD-1 is PD-L2, which shares 34% 
sequence identity with PD-L1 and exhibits 3-fold higher 
binding affinity for PD-1 [7]. Given that mPD-L2 and 
hPD-L2 share a sequence identity of 72%, we modeled 
the hPD-1/hPD-L2 complex based on the structures of 
hPD-1/hPD-L1 and mPD-1/mPD-L2. Structural superpo-
sition of hPD-1/pembrolizumab Fab complex and mod-
eled hPD-1/hPD-L2 complex suggest that pembrolizum-
ab Fab would also compete with hPD-L2 for binding to 

hPD-1 (Supplementary information, Figure S2) through 
overlapping regions similar to those observed between 
hPD-1/pembrolizumab Fab and hPD-1/hPD-L1. Taken 
together, these observations suggest a mechanism by 
which pembrolizumab outcompetes PD-L1 or PD-L2 for 
binding to hPD-1.

In summary, we have reported the crystal structure of 
the pembrolizumab Fab in complex with the ectodomain 
of hPD-1. Pembrolizumab Fab uses its CDRs and FR to 
interact with the C′D loop of hPD-1, which appears un-
structured in previously published reports. The epitope 
consists of several discontinuous segments of hPD-1, 
which overlap with the region that interacts with hPD-L1 
or hPD-L2, suggesting a mechanism by which pembroli-
zumab prevents the binding of hPD-L1 or hPD-L2 to 
hPD-1. These results have implications for the design 
and improvement of mAb drugs targeting hPD-1.

The atomic coordinates and structure factors for hPD-
1/pembrolizumab Fab complex structure have been de-
posited into Protein Data Bank under the accession code 
of 5JXE. Additional details of the methods are described 
in Supplementary information, Data S1.
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