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Abstract

Both the Mediterranean (MED) species of the Bemisia tabaci whitefly complex and the

greenhouse whitefly (Trialeurodes vaporariorum, TV) are important agricultural pests. The

two species of whiteflies differ in many aspects such as morphology, geographical distribu-

tion, host plant range, plant virus transmission, and resistance to insecticides. However, the

molecular basis underlying their differences remains largely unknown. In this study, we ana-

lyzed the genetic divergences between the transcriptomes of MED and TV. In total, 2,944

pairs of orthologous genes were identified. The average identity of amino acid sequences

between the two species is 93.6%. The average nonsynonymous (Ka) and synonymous

(Ks) substitution rates and the ratio of Ka/Ks of the orthologous genes are 0.0389, 2.23 and

0.0204, respectively. The low average Ka/Ks ratio indicates that orthologous genes tend to

be under strong purified selection. The most divergent gene classes are related to the

metabolisms of xenobiotics, cofactors, vitamins and amino acids, and this divergence may

underlie the different biological characteristics between the two species of whiteflies. Genes

of differential expression between the two species are enriched in carbohydrate metabolism

and regulation of autophagy. These findings provide molecular clues to uncover the biologi-

cal and molecular differences between the two species of whiteflies.

Introduction

Many whiteflies (Hemiptera: Aleyrodidae) are important pests of agriculture worldwide, such

as some species of the Bemisia tabaci whitefly complex and the greenhouse whitefly (Trialeur-
odes vaporariorum Westwood) [1, 2]. While whiteflies of the B. tabaci species complex and the

greenhouse whitefly are similar in many aspects, they differ in many features such as geo-

graphic distribution, range of host plants, virus transmission, and resistance to insecticides [2–

8]. Whiteflies of the B. tabaci complex distribute in tropic and subtropical regions; some spe-

cies of this whitefly complex, in particular two species, tentatively named as Middle East-Asia

Minor 1 (hereafter MEAM1, formally referred to as the ‘B biotype’) and Mediterranean (here-

after MED, formally referred to as the ‘Q biotype’), have invaded many regions of the world
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and caused serious damage to many crops such as cotton and tomato in the last 30 years [1, 9–

11]. The greenhouse whitefly T. vaporariorum (hereafter TV) inhabits the temperate regions

and is a major pest of fruit, vegetable and ornamental crops in protected environment [3, 12].

In some regions, MEAM1/MED and TV coexist and show interspecific competition [13, 14].

In these regions of co-existence, they often show apparently different patterns of seasonal

abundance: MEAM1/MED become predominant in seasons of relatively high temperatures,

while TV becomes predominant in seasons of relatively low temperatures [15]. While all the

three species of whiteflies are polyphagous, MEAM1 and MED have a wider range of host

plants than TV [3, 4]. In greenhouses where MEAM1/MED and TV co-exist, they differ in pat-

terns of within-plant distribution [16].

Another major difference between MEAM1, MED, and TV lies in their capacity of viral

transmission: while whiteflies of the B. tabaci species complex, including MEAM1 and MED,

transmit begomoviruses that include major agents of viral diseases of important crops such as

cotton, cassava, and tomato, as well as some other groups of viruses like criniviruses and ipo-

moviruses, TV is a major vector of criniviruses and torradoviruses but is unable to transmit

begomoviruses [2, 17]. Some criniviruses, for example Tomato chlorosis virus, are transmitted

by both TV and MED [18, 19]. MED has developed much higher levels of resistance to major

classes of insecticides than TV [6, 20, 21]. For example, MED had developed up to 1900-fold

resistance to imidacloprid, and 1200-fold resistance to thiamethoxam, while TV had developed

only 23.8- and 20.4-fold resistance to these two insecticides [6, 7]. However, the molecular

basis underneath the differences between the whiteflies of the B. tabaci species complex and

TV remains largely unknown.

RNA-seq provides an efficient approach to analyze the transcriptome of an organism and

also an efficient method to discover new genes of interest [22, 23]. Pairwise comparisons

between MED, MEAM1, and Asia II 3 (a native species of whitefly) have been conducted at

the sequence and gene expression levels, indicating that sequence divergence of gene clusters

include cytochrome P450, glutathione metabolism, and oxidative phosphorylation, and highly

expression divergent genes are mainly related to basic metabolism and detoxification [24–26].

So far, several RNA-seq studies have been analyzed on whiteflies in relation to host adaption

[27–30], insecticides resistance [31–33] and virus transmission [34–38]. Some detoxification

genes such as cytochrome 450 monooxygenases (P450s), glutathione S-transferases (GSTs)

and UDP-glucosyltransferases (UGTs) were found related with both host adaption and insecti-

cide resistance [30–32, 39, 40]. Moreover, the detoxification gene expression patterns can

shape the ability of Bemisia species to utilize multiple plant hosts [27].

In this study, first, we reassembled the previous version of transcriptome of MED [41]

using Trinity to obtain the unigenes of similar length to those of the published TV transcrip-

tome [42]; next, we compared the orthologous genes derived from transcriptomes of the two

species; and finally, we analyzed the differential gene expression between MED and TV. Our

major purpose was to find important genes that may contribute to the divergence of the two

whitefly species at both genetic and expression level.

Materials and methods

Reads assembly, functional annotation and coding sequence prediction for

MED

The raw reads of MED were downloaded from NCBI Short Read Archive (SRA), accession

number: SRX018661. Before assembly, the raw reads were preprocessed by cutting off low

quality base pairs within 20 bps (reads with unknown sequences ‘N’ or average quality score

less than 20) of each read in the 3’ends by costumed Perl script to ensure no loss of information
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from paired ends. Then the preprocessed reads were assembled using the Trinity software (tri-

nityrnaseq-r20110519) with default parameters [43].

Sequences were annotated by searching against the NCBI nr database with a cut-off E-value

of 1.0E-5using Blastx [44]. Gene Ontology (GO) annotation was analyzed using Blast2GO soft-

ware [45]. The GO terms were retrieved from Blastx hits with an e-value threshold of 1.0E-5.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation was performed

using Blastx software against the KEGG database. The best potential coding sequences (CDS)

from each of the reconstructed transcripts were predicted using the software BestORF (http://

www.softberry.com/berry.phtml?topic=bestorf&group=programs&subgroup=gfind) with

parameters trained with Drosophila ESTs. Predicted CDS that start with "ATG" start codon

and end with "TAA"/"TGA"/"TAG" stop codon were assumed as complete CDS.

Identification of orthologous genes

Transcriptome sequences of TV were obtained from InsectaCentral database (http://www.

insectacentral.org/). Identification of orthologous genes was performed according to the previ-

ous descriptions [24]. Briefly, transcriptome sequences of MED and TV were reciprocally

blasted to obtain pairs of sequences with best hit to each other with a minimum match length

of 200 bp. Then each pair of sequences were searched against the Swiss-prot database using

Blastx, and only the pairs of sequences that were unambiguously mapped to the same protein

(E value of 1.0E-5) were retained. The 5’UTR and 3’UTR regions were designated based on pre-

dicted CDS. The sequence pairs that contain predicted CDS longer than 150 bp were defined

as orthologous genes.

Analysis of sequence divergence and estimation of substitution rates

The divergence of orthologous genes at nondegenerate (nd), four-fold degenerate (4d), CpG

and non-CpG regions were calculated according to the previous description [24]. The nonsy-

nonymous sites (Ka), synonymous sites (Ks), and the Ka/Ks ratios were calculated using the

YN method with the KaKs Calculator [46].

Analysis of differential gene expression

Stock cultures of MED whitefly (mtCO1 GenBank accession: GQ371165) and TV were main-

tained on cotton Gossypium hirsutum (Malvaceae) cv. Zhe-Mian 1793 in a climate room of

27 ± 1˚C, 14 h light:10 h darkness, and 70 ± 10% relative humidity. Several hundred female

adults from MED and TV were collected for further tests, with two biological replicates for

each of the species. Total RNA of each sample was isolated using SV total RNA isolation sys-

tem (Promega) according to the manufacturer’s protocol, respectively. Sequencing libraries

were generated using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA). Each

library was sequenced on an Illumina Hiseq 2000/2500 platform in Novogene Bioinformatics

Technology Co., Ltd. (Beijing, China). Clean reads of MED and TV were obtained from NCBI

BioProject PRJNA545218 (MED: SRR9141092, SRR9141088; TV: SRR141082, SRR9141090).

After removing reads containing adapter or ploy-N, RSEM [47] was used to map the processed

RNA-seq reads of each sample to the orthologous region of the two whiteflies [48, 49]. Differ-

ential expression analysis between the two species was conducted using edgeR [50]. Differen-

tial expression genes were selected with thresholds based on FDR P-value 0.05 and fold change

2. Goseq [51] was used for GO and KEGG enrichment analysis. ‘BH’ method was used for

adjusted p-value [52].
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Results and discussions

Reassembly the transcriptome of MED

To improve quality of the MED transcriptome previously reported, Trinity software was used

to de novo reassemble the sequencing. The reads were assembled into 95,441 sequences

(N50 = 725bp) with the length cut off of 200bp. Sequence analysis showed that 12,050 of the

Trinity assembled sequences are longer than 1000 bp and 2,761 sequences longer than 2,000

bp, compared to those obtained using the SOAP method of which 4,591 sequences are longer

than 1,000 and 662 sequences longer than 2,000, indicating that the new assembled transcrip-

tome has been substantially improved.

Annotation of predicted proteins

For functional annotation, the Trinity assembly results were searched against the NCBI non-

redundant (nr) protein database using BLASTx. A total of 27,728 sequences returned signifi-

cant BLAST hits (e-value<1.0E-5). Of them, 9,673 sequences are annotated with GO terms (E-

value <1.0E-5), 5,398 match in “biological process”, 8,582 in “molecular function”, and 3,080

in “cellular component”. In addition, 8,469 sequences could be assigned to 293 KEGG

pathways.

Identification of orthologous genes between MED and TV

To compare the sequence divergence between MED and TV, bidirectional best hit approach,

which had been widely used to identify orthologous genes [24, 53, 54], was used to find ortho-

logous genes between the transcriptomes of the two species of whitefly. To remove potential

paralogs, these putative orthologous genes were further screened against the Swiss-prot data-

base. Only pairs of sequences that mapped unambiguously to the same protein in Swiss-prot

database with an e-value< 1.0E-5 were selected as orthologous genes. Totally, 4,850 pairs of

orthologs were kept with an average length of 591 bp and 82.02% identity (ranging from 76.6%

to 100%). The untranslated region (UTR) of each sequence pair was identified based on the

predicted coding region. Among the 4,850 pairs of orthologs, 57 pairs contain 5’UTR, and 54

pairs contain 3’UTR. After removing the UTRs, the CDS of all the orthologs were obtained.

The CDS sequences containing unexpected stop codon were further filtered, resulting in 2,944

pairs of orthologous CDS sequences. The average length of the orthologous genes is 555 bp

with an average similarity of 81.9%, which is much lower than that between the MEAM1 and

MED species of the B. tabaci species complex (mean = 99.2%). The average GC content of the

orthologous CDS is 42.3%, a value slightly lower than those of MEAM1 and MED species.

Sequence divergence between the orthologous genes

Among the 2,944 orthologous gene pairs, the overall divergence in CDS is 18.1%. In non-CpG

sites, the divergence is lower (16.1%); whereas in the CpG sites, the divergence (37.2%) is 2.3

times as high as that of non-CpG sites (Table 1). Nucleotides in coding regions were further

classified as non-degenerative (nd) sites (any nucleotide substitutions produce amino acid

change) and four-fold degenerate (4d) sites (no changes cause amino acid replacement). From

a total of 1,634.08 kb of coding region sequences, 954.77 kb are nd sites, and 223.91 kb are 4d

sites. At nd sites, the overall divergence is 3.7%, whereas the overall divergence at 4d sites

(56.4%) is 15.4 times of that at the nd sites (Table 1). These results indicate that the nd sites

evolve under extensive functional constraints because any nucleotide substitutions at nd sites

will produce amino acid changes.
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Synonymous and non-synonymous sites between the orthologous genes

To identify genes undergoing purifying or positive selections, rates of nonsynonymous (Ka)

and synonymous (Ks) substitutions, a measure widely used to measure the intensity and mode

of selection, between MED and TV ortholog pairs were estimated [55]. Among the 2,944 pairs

of CDS, both a Ka and a Ks rate could be calculated for 2,742 orthologs. The mean of Ks is 2.23

(median value = 1.98), indicating that synonymous sites had substituted more than 2 times on

average. The median Ks value is higher than that of the comparison between human and

chicken (1.66) [56]. The Ka/Ks ratio between MED and TV (average ratio = 0.0204) is much

lower than those between the three species, i.e., Asia II 3, MEAM1 and MED of the B. Tabaci
whitefly complex; the average ratios are 0.198 between Asia II 3 and MEAM1, 0.201 between

Asia II 3 and MED, and 0.225 between MED and MEAM 1 [24, 25]. The Ka/Ks ratio between

MED and TV is even much lower than those of rodent-human (0.170) [57], chicken-human

(0.052) [56], and 12 Drosophila species (0.06 to 0.11) [58]. The low Ka/Ks ratio is consistent

with the high 4d /nd ratio, suggesting that the orthologues genes have been under high purified

selection.

Similarity of orthologous sequences

The 2,944 pairs of orthologous CDS sequences show a mean homology of 81.9%, ranging from

70.2% to 100%. And the average homology is much lower than those shown by pairwise com-

parisons between species within the Bemisia tabaci whitefly complex (MED-MEAM1: 99.2%,

MEAM1-Asia II 3: 98.3%, and MED-Asia II 3: 98.2%). Among the 2,944 orthologous gene

pairs, only 18 genes show 100% homology, which is much fewer than pairwise comparisons

between species within the Bemisia tabaci whitefly complex (MED-MEAM1: 604 and MEA-

M1-Asia II 3: 94) [24, 25]. This result is in line with the wider genetic distance between MED

and TV compared with that between MED and MEAM1 or between MEAM1 and Asia II 3.

The average identity of amino acid sequences is 93.6%, ranging from 71.7% to 100% (Fig 1a),

much lower than that among species within the Bemisia tabaci whitefly complex (within

MEAM1, MED and Asia II 3, higher than 99%). The average identity is higher than that of

chicken-human (~75%) [56], rodent-human (~88%) [57], and the majority of pairwise

Table 1. Sequence divergence between MED and TV transcriptomes.

%CpG %GC Loci % differences Compared kb

Mean SE

CDS 10.02 42.34 2944

All 18.12 0.06 1634.08

No CpG 16.06 0.06 1470.31

CpG 37.20 0.14 163.77

nd sites� 8.6 43.89 2944

All 3.67 0.04 954.77

No CpG 3.50 0.04 872.66

CpG 5.45 0.12 82.12

4d sites# 17.94 35.98 2944

All 56.38 0.18 223.91

No CpG 50.38 0.19 183.73

CpG 85.11 0.28 40.18

�nd sites: non-degenerative sites where any nucleotide substitutions produce amino acid change.
#4d sites: four-fold degenerate sites where no changes cause amino acid replacement.

https://doi.org/10.1371/journal.pone.0237744.t001
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Fig 1. Sequence identity of orthologous. A, the distribution of amino acid identity; and B, the distribution of amino

acid identity in KEGG categories.

https://doi.org/10.1371/journal.pone.0237744.g001
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comparisons within 7 drosophilids (D. melanogaster, D. erecta, D. ananassae, D. pseudoobs-
cura, D. mojavensis, D. virilis and D. grimshawi except for one comparision: D. melanogaster
-D. erecta) [58]. Among these orthologous CDS sequences, the most divergence gene pair is

Rho GTPase-activating protein 190 that is related to olfactory learning and memory in Dro-
sophila [59].

Next, the orthologous genes were matched to the KEGG pathways to see the distribution of

these divergent genes within each pathway (S1 Table). The most highly divergent category was

xenobiotics biodegradation and metabolism, followed by categories of metabolism of cofac-

tors, vitamins, amino acids and lipids (Fig 1b, S2 Table); these categories are also highly diver-

gent between species of the B. tabaci whitefly complex [24, 25]. Some genes of MEAM1 and

TV related to signaling pathways such as junction, spliceosome, synapse and secretion, show

relatively low Ka/Ks ratio and probably have been under more purified selection (S1 Table), a

pattern similar to those shown by comparison of transcriptome and genome sequences of

other species of the B. tabaci whitefly complex [24, 25, 60]. This pattern of similarity might be

a common feature among most species of whiteflies, and the key pathways play important

roles in the divergence of different whiteflies.

Analysis of differential expression of orthologous genes

First, RNA-seq single-end reads in each sample were mapped to de novo transcriptome

sequences of MED or TV, respectively. The mapping rate of MED ranges from 87.5% to

89.9%, while that of TV ranges from 68.0% to 70.9% (S3 Table). Biological replication showed

high reproducibility (Pearson correction was 0.98 in MED and 0.94 in TV). In order to com-

pare differential expression in orthologous genes cross species, RNA-seq reads in each sample

were mapped to orthologous regions in 2,944 pair of orthologs. Approximately 8%-10% of

RNA-seq reads were mapped to the orthologous regions in each of samples (S3 Table). Genes

that had absolute of log2 MED:TV expression ratio>1 and FDR adjusted P< 0.05 were consid-

ered as differential expression genes (DEG). In the 2,944 orthologs, 394 genes show over-

expression in MED, and 409 genes show over-expression in TV (Fig 2). Some KEGG pathways

show a trend to enrich (single p-value < 0.05, but adjusted p-value >0.05). Interestingly, four

out of five genes of MED show over-expression in ‘regulation of autophagy’ pathway. Autop-

hagy is a cellular degradation system, which plays an important role in homeostatic process,

development, and pathology [61]. Some carbohydrate metabolism (‘galactose metabolism’,

‘pentose phosphate pathway’ and ‘fructose and mannose metabolism’) tend to be DEG

enriched (Table 2; S4 Table), a feature that may be related to the strong capacity in utilizing a

wide range of host plants by MED and TV. Likewise, these pathways were also DEGs enriched

in the comparisons of expression divergence between MEAM1, MED and Asia II 3 [26]. How-

ever, the ‘Oxidative phosphorylation’ pathway was not DEG enriched (6 DEG out of 20, p-

value = 0.39), suggesting that DEG in carbohydrate may not participate in energy metabolism

but in other physiological activities. Carbohydrates not only provide energy and structural

component, but also participate in various physiological activities such as protection against

exposure to unfavorable temperatures, reproduction and embryonic development [62–64].

Genes related with amino acids, vitamins and cofactors

Phloem sap is deficient in several essential amino acids [65] and phloem sap-sucking insects

harbor microbial endosymbionts to complement the requirement of these amino acids. As

phloem sap-sucking insects, whiteflies harbor the primary endosymbiont Portiera aleyrodi-
darum and one to several secondary symbionts for provision of some essential amino acids,

vitamins and cofactors [66–68]. For instance, in MED, seven essential amino acids (Arg, His,
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Lys, Val, Met, Ile and Leu) are complemented by both whitefly and symbionts, while the other

three (Phe, Thr, Trp) are provided by Portiera alone [66]. MED and TV have high sequence

divergence in categories of metabolism of cofactors, vitamins, amino acids. In order to recog-

nize genes of the whitefly genomes rather than those of symbionts, the orthologous genes were

blasted against genome sequences of Portiera, Hamiltonella defensa, MED and MEAM1. The

blast results illustrate that all these genes show high identity with those of MED or MEAM1

genomes, and all top NRs hit from animals, showing that all these orthologous genes come

from genomes of the whiteflies and not from the symbionts. High divergent genes are over-

represented in both amino acid metabolism (26 out of 65, hyper-test p<0.05) and vitamin

metabolism (21 out of 37, hyper-test p<0.05) (S5 Table). At the expression level, a few genes

related to amino acids, vitamins and cofactors show significantly differential expression

between MED and TV (24 out of 99) and none of the KEGG pathways are enriched by differ-

ential expression genes (S5 Table). Among these genes, some have both high sequences

divergence and high expression difference such as aminoacylase, biotin synthase, and FAD syn-
thetase, and may be important in amino acid and vitamin biosynthesis [60, 66] (Table 3).

These divergent sequences and/or expression between MED and TV may play an important

role in determining their capacity to utilize different host plants.

Fig 2. The log 2 ratio distribution of differentially expressed orthologous genes. Blue, MED over-expressed, and

red, TV over-expressed.

https://doi.org/10.1371/journal.pone.0237744.g002

Table 2. Enriched KEGG pathway among the DEGs.

KEGG pathway No. of DEGs No. of genes p-value Adjusted p-value

Regulation of autophagy [PATH:ko04140] 4 5 0.016 0.941

Galactose metabolism [PATH:ko00052] 7 13 0.025 0.941

Pentose phosphate pathway [PATH:ko00030] 5 8 0.028 0.941

Fructose and mannose metabolism [PATH:ko00051] 7 14 0.034 0.941

https://doi.org/10.1371/journal.pone.0237744.t002
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Table 3. Differential expression genes in metabolism of amino acids, vitamins and cofactors.

KO ID KO_description log2FC FDR Identity of amino acid sequences

K01939 purA, ADSS; adenylosuccinate synthase [EC:6.3.4.4] 1.24 5.92E-

05

93.36%

K01580 E4.1.1.15, gadB, gadA, GAD; glutamate decarboxylase [EC:4.1.1.15] -1.20 4.16E-

04

92.52%

K14677 ACY1; aminoacylase [EC:3.5.1.14] 2.68 3.57E-

06

82.71% �

K00318 PRODH; proline dehydrogenase [EC:1.5.-.-] 1.01 1.04E-

04

93.22%

K00819 E2.6.1.13, rocD; ornithine—oxo-acid transaminase [EC:2.6.1.13] -1.86 1.82E-

04

95.92%

K13253 DNOS; nitric-oxide synthase, invertebrate [EC:1.14.13.39] -1.56 3.74E-

02

94.12%

K00456 CDO1; cysteine dioxygenase [EC:1.13.11.20] -1.72 6.85E-

06

90.36% �

K00108 E1.1.99.1, betA, CHDH; choline dehydrogenase [EC:1.1.99.1] 2.50 1.86E-

02

92.59%

K06101 ASH1L; histone-lysine N-methyltransferase ASH1L [EC:2.1.1.43] -2.39 1.23E-

03

90.27% �

K00453 E1.13.11.11, TDO2; tryptophan 2,3-dioxygenase [EC:1.13.11.11] 4.57 3.00E-

02

94.12%

K00451 HGD, hmgA; homogentisate 1,2-dioxygenase [EC:1.13.11.5] 1.60 3.57E-

05

85.32% �

K09478 ACADSB; short/branched chain acyl-CoA dehydrogenase [EC:1.3.99.12] 1.83 3.01E-

06

90.53% �

K01012 bioB; biotin synthase [EC:2.8.1.6] 2.99 3.98E-

06

85.96% �

K01737 queD, ptpS, PTS; 6-pyruvoyltetrahydropterin/6-carboxytetrahydropterin synthase [EC:4.2.3.12

4.1.2.50]

-1.14 8.72E-

04

92.22%

K03783 punA; purine-nucleoside phosphorylase [EC:2.4.2.1] 2.72 4.12E-

06

95.00%

K06133 LYS5, acpT; 4’-phosphopantetheinyl transferase [EC:2.7.8.-] 1.88 1.78E-

03

88.42% �

K00430 E1.11.1.7; peroxidase [EC:1.11.1.7] -1.34 8.93E-

06

93.07%

K00699 UGT; glucuronosyltransferase [EC:2.4.1.17] 1.94 1.73E-

06

90.74% �

K15734 SDR16C5; all-trans-retinol dehydrogenase (NAD+) [EC:1.1.1.105] 3.41 1.18E-

05

96.25%

K00953 FLAD1; FAD synthetase [EC:2.7.7.2] -1.08 2.84E-

02

78.21% �

K00861 RFK, FMN1; riboflavin kinase [EC:2.7.1.26] -1.28 7.53E-

03

86.07% �

K06125 COQ2; 4-hydroxybenzoate hexaprenyltransferase [EC:2.5.1.-] 2.53 3.49E-

06

84.93% �

K06126 COQ6; ubiquinone biosynthesis monooxygenase Coq6 [EC:1.14.13.-] 1.89 3.62E-

04

86.59% �

K01800 maiA, GSTZ1; maleylacetoacetate isomerase [EC:5.2.1.2] -1.77 1.08E-

03

96.97%

� Identity of amino acid sequence was lower than lower quantile of all orthologous genes.

https://doi.org/10.1371/journal.pone.0237744.t003
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Genes related to metabolism of xenobiotics

The most highly divergent KEGG category is xenobiotic metabolism, which may contribute to

the differences in host plant range and insecticide resistance between MED and TV. Detoxifi-

cation of plant toxic compounds and resistance to insecticides can be enhanced by over-

expression of GSTs, UGTs, P450s [39, 40, 69–72]. Since gene families of cytochrome P450s

and UGTs are expanded in whiteflies [42, 60, 73], the number of orthologous genes in these

categories are limited. Gene duplication is a mechanism of adaption to the environment [74],

and the duplication of P450 genes is associated with insecticide resistance [75]. In the 2,944

orthologous genes, nine of the 13 genes related to xenobiotic metabolism show relatively high

divergence of protein sequences, including one GST (79.17%), and one UGT (90.74%) (S6

Table). Four out of the seven P450 genes show relatively high divergence (Table 4), and among

them CYP4C64 was shown to be associated with imidacloprid resistance in MED [76]. At the

expression level, only one GST (GSTZ1) is MED over-expressed, and one UGT is TV over-

expressed, while all the seven P450 genes do not differ in expression between MED and TV

(Table 4, S6 Table). In previous studies on the transcriptomes of MEAM1, MED and Asia II 3,

numerous genes related to xenobiotic metabolism were shown to have high divergence [24,

26], while the majority of genes related to drug metabolic pathway were shown to be similarly

expressed in the two invasive whiteflies MED and MEAM1 but the expression of these genes

in MEAM1 and MED is higher than that in the indigenous whitefly Asia II 3 [26]. RNA-seq

analysis across different species and host-plants show that the similar expression patterns of

detoxification related genes associated with wide host range of whiteflies [27]. Thus, MED and

TV that do not differ in expression of detoxification related genes may share a similar pattern:

high detoxification gene expression, wide host range. On the other hand, a wide host range is

probably associated with high insecticide resistance in whitefly [30]. Therefore, high sequence

divergence and non-differential expression of detoxification related genes between MED and

TV may associate with the difference in performance on plants of a wide range and insecticide

resistance.

Conclusion

In this study, we reassembled the transcriptome of MED and analyzed the divergence of

sequences and expression level between MED and TV. Analysis of sequences divergence of

2,944 orthologous genes showed that these genes have been under strong purified selection.

Some genes related to metabolism of xenobiotics, cofactors, vitamins, and amino acids show

high protein sequence divergence between the two species of whiteflies. Genes showing differ-

ential expression were found to be enriched in carbohydrate metabolism and regulation of

Table 4. Fold change of expression and identity of amino acid sequences in P450s.

Gene name of MED Gene name of TV Log2FC FDR of DGE Identity of protein sequences

CYP6DB3 CYP6DB2 0.63 0.71 85.07% �

CYP4C64 CYP4C63 0.30 0.34 89.94% �

CYP301A1 CYP301A1 1.98 0.10 92.93%

CYP18A1 CYP18A1 0.44 0.55 93.69%

CYP4CR2 CYP4CR1 0.64 0.08 84.52% �

CYP301B1 CYP301B1 -0.30 0.76 96.58%

CYP380C14 CYP380D1 -1.37 0.44 86.36% �

� Identity of amino acid sequence was lower than lower quantile of all orthologous genes (90.8%).

https://doi.org/10.1371/journal.pone.0237744.t004
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autophagy. These analyses provide valuable molecular references to investigate and under-

stand the biological and molecular differences between MED and TV, and potentially differ-

ences between other species of whiteflies.
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