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Abstract

At present, there are no antiretroviral drugs that inhibit incorporation of the envelope glycoprotein 

into newly-synthesized virus particles. The botanical glycoside, oleandrin, derived from extracts of 

Nerium oleander, has previously been shown to reduce the levels of the gp120 envelope 

glycoprotein on human immunodeficiency virus type-1 (HIV-1) particles and inhibit HIV-1 

infectivity in vitro. We therefore tested whether oleandrin or an extract from N. oleander could 

also inhibit the infectivity of the human T-cell leukemia virus type-1 (HTLV-1): A related 

enveloped retrovirus and emerging tropical infectious agent. The treatment of HTLV-1+ 

lymphoma T-cells with either oleandrin or a N. oleander extract did not significantly inhibit viral 

replication or the release of p19Gag-containing particles into the culture supernatants. However, the 

collected virus particles from treated cells exhibited reduced infectivity on primary human 

peripheral blood mononuclear cells (huPBMCs). Unlike HIV-1, extracellular HTLV-1 particles are 

poorly infectious and viral transmission typically occurs via direct intercellular interactions across 

a virological synapse. We therefore investigated whether oleandrin or a N. oleander extract could 

inhibit virus transmission from a GFP-expressing HTLV-1+ lymphoma T-cell-line to huPBMCs in 

co-culture assays. These results demonstrated that both oleandrin and the crude phytoextract 

inhibited the formation of virological synapses and the transmission of HTLV-1 in vitro. 

Importantly, these findings suggest oleandrin may have broad antiviral activity against enveloped 

viruses by reducing the incorporation of the envelope glycoprotein into mature particles, a stage of 

the infection cycle not targeted by modern HAART.
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INTRODUCTION

The botanical glycoside, oleandrin, and an extract of Nerium oleander have been shown to 

prevent the incorporation of the gp120 envelope glycoprotein of HIV-1 into mature virus 

particles and inhibit viral infectivity in vitro [1]. These findings prompted us to investigate 

whether oleandrin could similarly inhibit another related retrovirus, the HTLV-1. Growing 

evidence suggests that certain plant species, including N. oleander and N. indicum, may 

contain pharmacological compounds with beneficial medicinal properties [2–12]. Although 

N. oleander is considered poisonous and many of its chemical byproducts elicit 

cardiotoxicities [13–16], the cardenolides derived from N. oleander extracts, including 

oleandrin, 8-hydroxy-oleandrigenin-3-O- β -Ddiginoside, 5 α -oleaside A, 14-carbonyl-

neriaside, 21-hydroxy-neriaside, among others, have been shown to have antiproliferative, 

anti-inflammatory, and anti-tumorigenic effects [3,4,6,7,17–20]. Indeed, a N. oleander-
derived drug, PBI-05204, which contains oleandrin as a bioactive agent, has completed both 

Phase I and initial Phase II clinical trials to test its efficacy and safety in patients with 

advanced solid cancers [21]. Pan et al. [22] have shown that PBI-05204 inhibited pancreatic 

tumor growth by targeting the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. 

Oleandrin has also been shown to accumulate in the central nervous system (CNS) and 

penetrate the blood-brain-barrier (BBB) following injection [23]; and Garofalo et al. [3] 

have further demonstrated that oleandrin inhibited tumor growth and disease progression in 

a murine xenograft model of malignant glioma. Moreover, oleandrin exhibited 

neuroprotective effects and protected neuronal tissues from damage, due to glucose and 

oxygen deprivation, dependent on the induction of brain-derived neurotrophic factor 

(BDNF), in brain slices and in vivo models of ischemic stroke [10,24]. It is an intriguing 

notion that the ability of oleandrin to cross the BBB and inhibit HTLV-1 infectivity and the 

expression of viral antigens could have potential therapeutic implications for the treatment 

of HTLV-1-associated neuroinflammatory diseases, including HTLV-1-associated 

myelopathy/tropical spastic paraparesis (HAM/TSP) [25,26].

The HTLV-1 is a delta oncoretrovirus and blood-borne pathogen that is endemic to tropical 

equatorial regions, including Southeast Asia (e.g., Japan, China, Taiwan, and Malaysia), 

Australia and Melanesia, Northern and Central Africa, the Middle East, Central and South 

America, and certain islands of the Caribbean (e.g., the FWI). It is estimated there are 10–15 

million HTLV-1-infected individuals worldwide; and this virus is considered an emerging 

health threat, as was described in a 2018 open letter to the World Health Organization 

(WHO) [27]. Indeed, HTLV-1 has been detected with high incidences of seropositivity in 

remote indigenous populations in central Australia and South America [28,29]. The HTLV-1 

infects CD4+ T-lymphocytes and causes adult T-cell leukemia/lymphoma (ATLL)-a rare, yet 

aggressive hematological malignancy with high rates of therapy-resistance and generally 

poor clinical outcomes [30–32], in addition to several autoimmune/inflammatory conditions, 
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including infectious dermatitis [33,34], rheumatoid arthritis [35,36], uveitis [37,38], 

keratoconjunctivitis [39], sicca syndrome [40,41], Sjögren’s syndrome [42,43], and HAM/

TSP, among others [25,26,44–46]. The replication of HTLV-1 and the expression of viral 

antigens is positively and negatively regulated by products encoded by the conserved 3’ pX 

region, including the viral transactivator protein Tax, the latency-maintenance factors: p30II, 

HBZ, and p13II, and the hbz antisense mRNA which can modulate the expression of p30II 

[47–63]. While ATLL is etiologically linked to viral latency associated with oncogenic 

transformation and the clonal expansion of HTLV-1-infected cells [30–32], the inflammatory 

diseases, such as HAM/TSP, are caused by autoimmune and/or immunopathological 

responses to proviral replication and the expression of viral antigens [25,26,44–46,64–67]. 

HAM/TSP is a progressive neuroinflammatory disease that results in the deterioration and 

demyelination of the lower spinal cord. The persistence of proviral replication and the 

proliferation of HTLV-1-infected cells in the CNS leads to a cytotoxic T-cell response 

targeted against viral antigens, and which may be responsible for the autoimmune 

destruction of nervous tissues [25,68–70].

Here we demonstrate that purified oleandrin and a N. oleander extract inhibit the infectivity 

of HTLV-1 particles released into the culture supernatants of treated cells, and also reduce 

the intercellular transmission of HTLV-1 by inhibiting the Env-dependent formation of 

virological synapses.

MATERIALS AND METHODS

Cell-lines and isolation of primary huPBMCs

The virus-producing HTLV-1-transformed (HTLV-1+) SLB1 lymphoma T-cell-line [71] 

(kindly provided by P. Green, The Ohio State University-Comprehensive Cancer Center) 

was cultured in a humidified incubator at 37°C under 10% CO2 in Iscove’s Modified 

Dulbecco’s Medium (IMDM; ATCC No. 30–2005), supplemented with 10% heat-

inactivated fetal bovine serum (FBS; Biowest), 100 U/ml penicillin, 100 μg/ml 

streptomycin-sulfate, and 20 μg/ml gentamycin-sulfate (Life Technologies). Primary human 

peripheral blood mononuclear cells (huPBMCs) were isolated from whole blood samples, 

provided without identifiers by the SMU Memorial Health Center under a protocol approved 

by the SMU Institutional Review Board and consistent with Declaration of Helsinki 

principles. In brief, 2 ml of whole blood was mixed with an equal volume of sterile 

phosphate-buffered saline (PBS), pH 7.4, in polypropylene conical tubes (Corning) and then 

the samples were gently layered over 3 ml of Lymphocyte Separation Medium (MP 

Biomedicals). The samples were centrifuged for 30 min at 400 × g in a swinging bucket 

rotor at room temp. The buffy-coat huPBMCs were subsequently aspirated, washed 2X in 

RPMI-1640 medium (ATCC No. 30–2001), and pelleted by centrifugation for 7 min at 260 

× g. The cells were resuspended in RPMI-1640 medium, supplemented with 20% FBS, 100 

U/ml penicillin, 100 μg/ml streptomycin-sulfate, 20 μg/ml gentamycin-sulfate, and 50 U/ml 

recombinant human interleukin-2 (hu-IL-2; Roche Applied Science), and stimulated for 24 h 

with 10 ng/ml phytohemagglutinin (PHA; Sigma-Aldrich) and grown at 37°C under 10% 

CO2 in a humidified incubator. On the following day, the cells were pelleted by 

centrifugation for 7 min at 260 × g and washed 2X with RPMI-1640 medium to remove the 
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PHA, and then resuspended and cultured in complete medium, supplemented with 

antibiotics and 50 U/ml hu-IL-2, as described.

Generation of GFP-expressing HTLV-1+ SLB1/pLenti-GFP T-cell clones

To generate the GFP-expressing HTLV-1+ SLB1 T-cell clones, 2 × 106 SLB1 cells were 

plated in 60 mm2 tissue-culture dishes (Corning) in IMDM, supplemented with 10% heat-

inactivated FBS and antibiotics, and then transduced with lentiviral particles containing a 

pLenti-6.2/V5-DEST- protein expression vector which also carries a blasticidin-resistance 

gene [53]. After 6 h, the transduced cells were pelleted by centrifugation for 7 min at 260 × 

g at room temperature, washed 2X with serum-free IMDM, and resuspended in complete 

medium supplemented with 5 μg/ml blasticidin (Life Technologies) and aliquoted into 96-

well microtiter plates (Corning). The cultures were maintained with blasticidin-selection for 

two weeks in a humidified incubator at 37°C and 10% CO2. The GFP-expressing 

lymphoblasts were screened by fluorescence-microscopy, and then plated by limiting-

dilution in 96-well microtiter plates to obtain homogenous GFP-expressing cell clones. The 

resulting HTLV-1+ SLB1/pLenti-GFP T-lymphocyte clones were expanded and repeatedly 

passaged; and the expression of GFP was confirmed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using a rabbit 

polyclonal Anti-GFP (FL) antibody (Santa Cruz Biotechnology).

Quantitation of virus production and particle infectivity by Anti-HTLV-1 p19Gag ELISAs

To determine the effects of oleandrin or an extract of N. oleander upon HTLV-1 proviral 

replication and the release of newly-synthesized extracellular virus particles, the HTLV-1+ 

SLB1 lymphoma T-cell-line was plated at 2 × 104 cells per well in 300 μl of complete 

medium, supplemented with antibiotics, in 96-well microtiter plates and incubated at 37°C 

under 10% CO2. The purified oleandrin compound and extract of N. oleander (Phoenix 

Biotechnology) [1] were resuspended in the Vehicle solution (20% v/v dimethyl sulfoxide, 

DMSO, in MilliQ distilled/deionized H2O) at a stock concentration of 2 mg/ml and then 

sterilized using a luer-lock 0.2 μm syringe filter (Millipore). The HTLV-1+ SLB1 cells were 

treated with oleandrin or the N. oleander extract at concentrations of 10, 50, and 100 μg/ml, 

or with increasing amounts (1.5, 7.5, and 15 μl) of the Vehicle control for 72 h. The 96-well 

microtiter plates were then centrifuged for 7 min at 260 × g at room temp using an 

Eppendorf A-2-DWP swinging plate rotor to pellet the cells, and the levels of extracellular 

p19Gag-containing HTLV-1 particles released into the culture supernatants were quantified 

relative to a p19Gag protein standard by performing colorimetric Anti-p19Gag enzyme-linked 

immunosorbent assays (ELISAs; Zeptometrix). The samples were analyzed with triplicate 

replicates on a Berthold Tristar LB 941 multimode microplate-reader at 450 nm in 

absorbance mode.

To assess the infectivity of newly-synthesized extracellular HTLV-1 particles collected from 

oleandrin-treated cells, 2 × 104 HTLV-1+ SLB1 T-lymphoblasts were plated in 300 μl of 

complete medium, supplemented with antibiotics, and the cultures were treated for 72 h with 

increasing concentrations (10, 50, and 100 μg/ml) of oleandrin or a N. oleander extract, or 

the Vehicle control (1.5, 7.5, and 15 μl). Then, 50 μl of the virus-containing supernatants 

were used to directly infect huPBMCs plated at a density of 2 × 104 cells per well on 96-
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well microtiter plates in complete medium, supplemented with antibiotics and hu-IL-2. The 

oleandrin compound, N. oleander extract, or Vehicle control were maintained in the 

huPBMCs culture medium to control for possible re-infection events by newly-produced 

particles. After 72 h, the relative levels of extracellular p19Gag-containing HTLV-1 virions 

released into the culture supernatants by the infected huPBMCs were quantified through 

Anti-HTLV-1 p19Gag ELISAs as described.

Measuring cellular apoptosis

To assess the relative cytotoxicity of the oleandrin compound, extract of N. oleander, or the 

Vehicle control in treated cell cultures, 2 × 104 HTLV-1+ SLB1 lymphoma T-cells or 

activated/cultured huPBMCs were plated in 300 μl of complete medium, supplemented with 

antibiotics, and maintained at 37°C under 10% CO2 in a humidified incubator. The cultures 

were treated with either increasing concentrations (10, 50 and 100 μg/ml) of oleandrin or N. 
oleander extract, or the Vehicle control (1.5, 7.5, 15 μl) and incubated for 72 h. 

Cyclophosphamide (50 μM; Sigma-Aldrich)-treated cells were included as a positive control 

for apoptosis. The cells were then aspirated and plated on Permanox 8-chamber tissue-

culture slides (Nalge) that had been pre-treated with a sterile 0.01% solution of Poly-L-

Lysine and Concanavalin A (1 mg/ml; Sigma-Aldrich). The samples were subsequently 

stained using a microscopy apoptosis detection kit with Annexin V conjugated to fluorescein 

isothiocyanate (Annexin V-FITC) and propidium iodide (PI; BD-Pharmingen), and the 

relative percentages of apoptotic (i.e., Annexin V-FITC and/or PI-positive) cells per field 

were quantified in-triplicate by confocal fluorescence-microscopy using a 20x objective 

lens. The total numbers of cells per field were quantified by microscopy using a DIC phase-

contrast filter.

HTLV-1 transmission and virological synapse formation in co-culture assays

As the transmission of HTLV-1 typically occurs through direct contact between an infected 

cell and uninfected target cell across a virological synapse [72–76], we tested whether 

oleandrin, a N. oleander extract, or the Vehicle control might influence the formation of 

virological synapses and/or the transmission of infectious HTLV-1 particles via intercellular 

interactions in vitro. For these experiments, 2 × 104 virus-producing HTLV-1+ SLB1 T-cells 

were plated in 96-well microtiter plates and treated with mitomycin C (100 μg/ml) in 300 μl 

of complete medium for 2 h at 37°C under 10% CO2 [77]. The culture media was then 

removed, the cells were washed 2X with serum-free IMDM, and the cells were treated for 

either 15 min or 3 h with increasing amounts (10, 50, and 100 μg/ml) of oleandrin or N. 
oleander extract, or the Vehicle control (1.5, 7.5, and 15 μl). Alternatively, 2 × 104 of the 

GFP-expressing HTLV-1+ SLB1/pLenti-GFP T-cells were plated on 8-chamber tissue-

culture slides in 300 μl of complete medium and treated with mitomycin C, washed 2X with 

serum-free IMDM, and then treated with oleandrin, N. oleander extract, or the Vehicle 

control as described for confocal microscopy experiments. We next aspirated the medium, 

washed the HTLV-1+ SLB1 cells 2X with serum-free medium, and added 2 × 104 huPBMCs 

to each well in 300 μl of RPMI-1640 medium, supplemented with 20% FBS, antibiotics and 

50U/ml hu-IL-2, and then co-cultured the cells for another 72 h (the cells were co-cultured 

for 6 h to visualize virological synapse formation and viral transmission by confocal 

microscopy using the SLB1/pLenti-GFP lymphoblasts) at 37°C under 10% CO2 in a 
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humidified incubator. As a negative control, huPBMCs were cultured alone in the absence of 

virus-producing cells. The oleandrin, N. oleander extract, and Vehicle were maintained in 

the co-culture medium. The relative levels of extracellular p19Gag-containing HTLV-1 

particles released into the co-culture supernatants as a result of intercellular viral 

transmission were quantified by performing Anti-HTLV-1 p19Gag ELISAs. Virological 

synapses formed between the GFP-positive HTLV-1+ SLB/pLenti-GFP cells and huPBMCs 

were visualized using immunofluorescence-confocal microscopy by staining the fixed 

samples with an Anti-HTLV-1 gp21Env primary antibody and a rhodamine red-conjugated 

secondary antibody. Diamidino-2-phenyl-indole, dihydrochloride (DAPI; Molecular Probes) 

nuclear-staining was included for comparison and to visualize uninfected (i.e., HTLV-1-

negative) cells. The intercellular transmission of HTLV-1 to the huPBMCs in co-culture 

assays was quantified by counting the relative percentages of HTLV-1 gp21Env-positive (and 

GFP-negative) huPBMCs in 20 visual fields using a 20x objective lens.

Microscopy

The Annexin V-FITC/PI-stained samples to quantify cellular apoptosis and cytotoxicity were 

visualized by confocal fluorescence-microscopy on a Zeiss LSM800 instrument equipped 

with an Airyscan detector and stage CO2 incubator, using a Plan-Apochromat 20 × 0.8 

objective lens and Zeiss ZEN system software (Carl Zeiss Microscopy). The formation of 

virological synapses and viral transmission (i.e., determined by quantifying the relative 

percentages of Anti-HTLV-1 gp21Env-positive huPBMCs) between the mitomycin C-treated 

HTLV-1+ SLB1/pLenti-GFP lymphoblasts and cultured huPBMCs were visualized by 

immunofluorescence-confocal microscopy using a Plan-Apochromat 20 × 0.8 objective lens. 

The relative fluorescence-intensities of the DAPI, Anti-HTLV-1 gp21Env-specific 

(rhodamine red-positive), and GFP signals were graphically quantified using the Zen 2.5D 

analysis tool (Carl Zeiss Microscopy). The GFP-expressing HTLV-1+ SLB1/pLenti-GFP T-

cell clones were screened by confocal fluorescence-microscopy on a Nikon Eclipse TE2000-

U inverted microscope and D-Eclipse confocal imaging system, equipped with 633 nm and 

543 nm He/Ne and 488 nm Ar lasers, using a Plan Fluor 10 × 0.30 objective lens and DIC 

phase-contrast filter (Nikon Instruments).

Data analysis

The statistical significance of experimental data sets was determined using unpaired two-

tailed Student’s t-tests (alpha =0.05) and calculated p values using the Shapiro-Wilk 

normality test and Graphpad Prism 7.03 software. The p values were defined as: 0.1234 (ns), 

0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****). Unless otherwise noted, error bars 

represent the SEM from at least three independent experiments.

RESULTS

The botanical glycoside oleandrin does not inhibit viral replication or the release of 
p19Gag-containing HTLV-1 particles

Oleandrin is a lipid-soluble, botanical cardiac glycoside comprised of: (1) the steroid 

aglycone, oleandrigenin, and (2) a sugar moiety (e.g., D-diginosyl) and its chemical 

structure is shown in Figure 1a [1,4,78]. To determine whether the purified oleandrin 
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compound, or an extract of N. oleander, could inhibit HTLV-1 proviral replication and/or the 

production and release of p19Gag-containing virus particles, the virus-producing HTLV-1-

transformed SLB1 lymphoma T-cell-line [71] was treated with increasing concentrations of 

oleandrin or a N. oleander extract, or the sterile Vehicle control (20% DMSO in MilliQ-

treated ddH2O) and then incubated for 72 h at 37°C under 10% CO2. The cells were later 

pelleted by centrifugation and the relative levels of extracellular p19Gag-containing virus 

particles released into the culture supernatants were quantified by performing Anti-HTLV-1 

p19Gag ELISAs (Zeptometrix). The results in Figure 1b demonstrate that neither oleandrin, 

nor the N. oleander extract, significantly inhibited viral replication or the production and 

release of p19Gag-containing virions relative to untreated cells or the Vehicle negative 

control (note: the data are presented on an abbreviated scale and the concentrations of 

HTLV-1 p19Gag in the culture supernatants were determined relative to a p19Gag protein 

standard).

We next assessed the cytotoxicity of the different dilutions of the purified oleandrin 

compound and N. oleander extract in treated HTLV-1+ SLB1 lymphoblast cultures. For 

these experiments, SLB1 T-cells were treated with increasing concentrations (10, 50, and 

100 μg/ml) of oleandrin or a N. oleander extract for 72 h as described above. As a negative 

control, the cells were also treated with increasing amounts (1.5, 7.5, and 15 μl) of the 

Vehicle solution which corresponded to the volumes used in the drug-treated cultures. 

Cyclophosphamide-treated SLB1 cells were included as a positive control for apoptosis. 

Then, the samples were washed and stained with Annexin V-FITC and propidium iodide 

(PI) and analyzed by confocal fluorescence-microscopy. The relative percentages of 

apoptotic (i.e., Annexin V-FITC and/or PI-positive) cells per field were quantified in-

triplicate using a 20x objective lens, as compared to the total numbers of cells visualized 

using a DIC phase-contrast filter. These results (Figures 1c and 1d) revealed that the lowest 

concentration (10 μg/ml) of oleandrin and the N. oleander extract did not induce significant 

cytotoxicity/apoptosis. However, the higher concentrations (50 and 100 μg/ml) of the crude 

phytoextract induced notably more apoptosis than did the oleandrin compound (Figures 1c 

and 1d). This is consistent with the fact that oleandrin represents only 1.23% of the N. 
oleander extract [1] which also contains other toxic cardenolides, including folinerin and 

digitoxigenin [13]. The cytotoxicity caused by oleandrin was not significantly higher than 

the Vehicle control in treated HTLV-1+ SLB1 cells (Figures 1c and 1d).

Oleandrin and the N. oleander extract inhibit the infectivity of p19Gag-containing HTLV-1 
particles released into the culture supernatants of treated cells

Singh et al. [1] have previously demonstrated that oleandrin and a N. oleander extract 

inhibited the incorporation of the gp120 envelope glycoprotein into newly-synthesized 

HIV-1 particles and reduced the infectivity of virions released from treated cells. We 

therefore tested whether these agents could inhibit the infectivity of newly-synthesized 

extracellular p19Gag-containing HTLV-1 particles obtained from treated SLB1 T-cells. For 

these studies, HTLV-1+ SLB1 lymphoma T-cells were treated with increasing concentrations 

of either the oleandrin compound or N. oleander extract, or the Vehicle control for 72 h in 

96-well microtiter plates, and then the virus-containing supernatants were collected and used 

to directly infect primary cultured, human peripheral blood mononuclear cells (huPBMCs) 
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in vitro. Following 72 h, the relative levels of extracellular p19Gag-containing virus particles 

released into the culture supernatants, as a result of direct infection, were quantified by 

performing Anti-HTLV-1 p19Gag ELISAs. Interestingly, the lowest concentration (10 μg/ml) 

of both oleandrin and the N. oleander extract inhibited the infectivity of newly-synthesized 

p19Gag-containing virus particles released into the culture supernatants of treated cells, 

relative to a comparable amount of the Vehicle control (Figure 2a). The levels of inhibition, 

however, seemed to plateau and did not continue to increase with higher concentrations, 

which suggests their molecular target(s) could be limiting and/or saturated at the 

concentrations tested (Figure 2a).

We also assayed the cytotoxicity of purified oleandrin and the N. oleander extract, compared 

to the Vehicle negative control, in treated huPBMCs. Primary buffy-coat huPBMCs were 

isolated and stimulated with phytohemagglutinin (PHA) and cultured in the presence of 

recombinant human interleukin-2 (hIL-2). The cells were then treated for 72 h with 

increasing concentrations of oleandrin or a N. oleander extract, or with increasing volumes 

of the Vehicle. The samples were subsequently stained with Annexin V-FITC and PI and the 

relative percentages of apoptotic (i.e., Annexin V-FITC and/or PI-positive) cells per field 

were quantified by confocal fluorescence-microscopy and counting in-triplicate. As shown 

in Figure 2b, the oleandrin compound exhibited moderate cytotoxicity (e.g., 35–37% at the 

lowest concentration) in huPBMCs as compared to the Vehicle control. By contrast, the N. 
oleander extract was significantly cytotoxic and induced high levels of programmed cell-

death even at the lowest concentration (Figure 2b). The huPBMCs were somewhat more 

sensitive to purified oleandrin than the HTLV-1+ SLB1 lymphoblasts; however, the 

huPBMCs were drastically more sensitive to the crude N. oleander extract which also 

contains other cytotoxic compounds [13].

Oleandrin inhibits Env-dependent virological synapse formation and the transmission of 
HTLV-1 in co-culture assays

Unlike HIV-1, HTLV-1 particles are poorly infectious and viral transmission typically occurs 

via intercellular interactions across a virological synapse [72–76]. Therefore, we next 

investigated whether oleandrin or the N. oleander extract could interfere with the 

transmission of HTLV-1 particles to target huPBMCs in co-culture experiments. For these 

studies, the virus-producing HTLV-1+ SLB1 T-cell-line was treated with mitomycin C [77] 

and then with increasing amounts of oleandrin, N. oleander extract, or the Vehicle control 

for either 15 min or 3 h. The SLB1 cells were washed 2X with serum-free medium and 

equivalent numbers of huPBMCs were then added to each well, and the samples were co-

cultured for 72 h in complete medium at 37°C under 10% CO2 in a humidified incubator. 

The relative intercellular transmission of HTLV-1 was assessed by performing Anti-HTLV-1 

p19Gag ELISAs to measure the levels of extracellular virus released into the culture 

supernatants. Interestingly, the results in Figure 3a demonstrate that both oleandrin and the 

N. oleander extract inhibited the transmission of HTLV-1 as compared to the Vehicle control 

–although there were no differences observed between the 15 min and 3 h of pre-treatment 

of the HTLV-1+ SLB1 cells.
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To directly visualize the formation of virological synapses and the interaction of target 

huPBMCs with the virus-producing cells, we generated HTLV-1+ SLB1 T-cell clones that 

stably express the Green fluorescent protein (GFP; Figure 3b). The HTLV-1+ SLB1 

lymphoma T-cell-line was transduced with lentiviral-GFP particles and the GFP-positive cell 

clones were selected on blasticidin, and subsequently confirmed by direct fluorescence-

microscopy and immunoblotting (Figure 3b). The formation of virological synapses between 

the huPBMCs and mitomycin C-treated HTLV-1+ GFP-expressing SLB1 cells was 

visualized by staining the samples with an Anti-HTLV-1 gp21Env primary antibody and 

rhodamine-red-conjugated secondary antibody, together with DAPI nuclear-staining, and 

then performing confocal immunofluorescence-microscopy. The arrows in the top panels of 

Figure 3c indicate virological synapses between the huPBMCs (i.e., gp21Env-positive; GFP-

negative) and HTLV-1+ SLB1 cells treated with the Vehicle control. There were markedly 

fewer synapses observed in the samples treated with oleandrin or the N. oleander extract 

(Figures 3c). This was further evidenced by the reduced percentages of HTLV-1 gp21Env-

positive huPBMCs in these treated samples as compared to the Vehicle control (Figure 3c).

DISCUSSION

Oleandrin and other structurally similar digoxin-related cardenolides exert most of their 

toxic effects by inhibiting sodium/potassium pump ATPase catalytic activity [5–7,79]. 

Conversely, Yang et al. [80] have shown that the inhibition of sodium/potassium pump 

ATPase activity by oleandrin reduced the sensitivity of swine testicular cells to infection by 

the porcine transmissible gastroenteritis virus in vitro. Oleandrin has also been demonstrated 

to inhibit nuclear factor-kappa B (NF-B) and activator protein-1 (AP-1)-dependent 

transcriptional signaling through the c-Jun NH2-terminal kinase (JNK) and mitogen-

activated/extracellular signal-regulated kinase (MEK) pathways, and thus could have anti-

inflammatory and anti-tumorigenic properties [81,82]. Indeed, Afaq et al. [19] have shown 

that topically-applied oleandrin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-

induced inflammation and tumor promotion in a murine model of skin cancer. While the 

mechanism(s) by which oleandrin interferes with NF-КB-mediated inflammatory signaling 

remains to be fully determined, Manna et al. [83] have suggested oleandrin could inhibit 

interleukin-8 (IL-8)-receptor functions by altering plasma membrane fluidics and 

downregulating this cytokine receptor from the cell surface. Oleandrin also induces the 

production and accumulation of damaging reactive oxygen species (ROS) which could 

contribute to its overall cytoxicity and anti-tumorigenic effects [20]. Turan et al. [8] have 

also demonstrated that extracts of N. oleander resulted in decreased levels of the P-

glycoprotein on the surfaces of treated leukemic cell-lines. Though speculative, it is likely 

that oleandrin’s ability to inhibit the incorporation of envelope glycoproteins into budding 

virions could reflect oleandrin-induced alterations to the plasma membrane and vesicle 

fluidics in a manner analogous to the downregulation of P-glycoprotein and the IL-8-

receptor [8,83].

It is possible the inhibition of HTLV-1-infectivity, viral transmission and virological synapse 

formation by oleandrin could have implications for the suppression of viral antigen 

expression in HTLV-1-infected patients with HAM/TSP [25,26]. There are currently no good 

therapeutic options for the treatment of HTLV-1-associated neuroinflammatory diseases 
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caused by the infiltration of HTLV-1-infected CD4+ lymphocytes into the CNS [64–66]. 

HTLV-1-associated myelopathy/tropical spastic paraparesis is a progressive 

neurodegenerative disease that leads to the deterioration and demyelination/atrophy of the 

lower spinal cord as a result of inflammatory immunopathological responses to viral 

antigens [68,70,84–87]. Anderson et al. [68] have demonstrated that viral antigens, including 

the transactivator protein Tax, were present in exosomes in the cerebral spinal fluid (CSF) of 

HAM/TSP patients. Also, Fox et al. [88] have detected extrachromosomal long terminal 

repeat (LTR) circular DNA indicative of virus replication in PBMCs isolated from HTLV-1-

infected HAM/TSP patients. Oleandrin has been shown to penetrate the blood-brain-barrier 

and accumulate in brain tissues following injection [23], suggesting this compound may be 

able to target HTLV-1-infected lymphocytes in the CNS to potentially help combat HAM/

TSP. Moreover, Dunn et al. [24] have shown that oleandrin is the critical neuroprotective 

component of the botanical drug PBI-05205, and that oleandrin prevented neuronal 

apoptosis due to oxygen and glucose deprivation in brain slice and animal models of 

ischemic injury. This neuroprotective effect was attributed to the induction of BDNF by 

oleandrin [10]. The induction of BDNF was also shown to be central for the anti-

tumorigenic activity of oleandrin in a murine model of glioma [2,3].

These findings, taken together with the observations of Singh et al. [1], suggest the botanical 

glycoside oleandrin may have broad antiretroviral activity by reducing the incorporation of 

the envelope glycoprotein into newly-synthesized virus particles –a stage of the infection 

cycle that is not targeted by modern HAART. Jejcic et al. [89] have previously demonstrated 

that a synthetic peptide mimetic, glycyl-prolyl-glycine amide (GPG-NH(2)), prevented the 

maturation of the HIV-1 envelope glycoprotein into gp120/gp41 and caused it to become 

degraded in the endoplasmic reticulum, and resulted in the production of defective virus 

particles with reduced envelope-incorporation and decreased infectivity. Intriguingly, 

Rajbhandari et al. [11] have shown that extracts from a related botanical, Nerium indicum, 

possessed antiviral activity against influenza virus (A/WSN/33 (H1N1) London isolate) and 

herpes simplex virus type-1 (HSV-1, KOS strain) in vitro. James et al. [90] have further 

reported that oleandrin, as well as an extract of N. oleander, inhibited virus production in 

treated Vero cells infected with either the Marburg or Ebola filoviruses, or Venezuelan 

equine encephalitis virus.

CONCLUSION

It is therefore possible that phytomedicinal compounds, such as the cardenolide oleandrin, 

may one day represent a cost-effective therapeutic strategy to help combat enveloped virus 

infections in developing countries with limited access to modern antivirals.
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Figure 1a: 
Diagram of the chemical structure of oleandrin.
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Figure 1b: 
The HTLV-1+ SLB1 lymphoma T-cell-line was treated for 72 h with the Vehicle control (1.5 

ml, 7.5 ml, or 15 ml), or increasing concentrations (10 mg/ml, 50 mg/ml, and 100 mg/ml) of 

the oleandrin compound or an extract of N. oleander. Viral replication and the release of 

extracellular particles into the culture supernatants were quantified by performing Anti-

HTLV-1 p19Gag ELISAs (Zeptometrix). Untreated (UT) cells are shown for comparison.
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Figure 1c: 
The cytotoxicity of the Vehicle control, oleandrin, and N. oleander extract was measured by 

treating the HTLV-1+ SLB1 lymphoma T-cell-line as in a and then staining the cultures with 

Annexin V-FITC and propidium iodide (PI). Cyclophosphamide (50 mM; Sigma-Aldrich)-

treated cells were included as a positive control for apoptosis. The relative percentages of 

Annexin V-FITC and/or PI-positive cells were quantified by fluorescence-microscopy and 

counting triplicate visual fields using a 20x objective lens.
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Figure 1d: 
Representative micrographs of the Annexin V-FITC (green) and PI (red)-staining results 

with DIC phase-contrast in the merged images are shown. The individual Annexin V-FITC 

and PI fluorescent channel images are also provided. Scale bar, 20 mm. All the data is 

representative of at least three independent experiments, and the data in b and c represent the 

mean of the experiments ± standard deviation (error bars).

Hutchison et al. Page 19

J Antivir Antiretrovir. Author manuscript; available in PMC 2019 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2a: 
The HTLV-1+ SLB1 lymphoma T-cell-line was treated with the Vehicle control, or 

increasing concentrations (10 mg/ml, 50 mg/ml, and 100 mg/ml) of the N. oleander extract 

or oleandrin compound for 72 h and then the virus-containing supernatants were collected 

and used to directly infect primary huPBMCs. The Vehicle control, N. oleander extract, or 

oleandrin were also included in the culture media for the huPBMCs. After 72 h, the culture 

supernatants were collected and the relative amounts of extracellular virus particles 

produced were quantified by performing Anti-HTLV-1 p19Gag ELISAs.
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Figure 2b: 
The cytotoxic effects of the Vehicle control, N. oleander extract, and the oleandrin 

compound were assessed by treating primary huPBMCs for 72 h as in a, and then the 

cultures were stained with Annexin V-FITC and PI. The relative percentages of apoptotic 

(i.e., Annexin V-FITC and/or PI-positive) cells were quantified by fluorescence-microscopy 

and counting triplicate visual fields using a 20x objective lens. The total numbers of cells 

were determined using DIC phase-contrast microscopy. Cyclophosphamide (50 mM)-treated 

cells were included as a positive control for apoptosis. NA, the number of cells in this 

sample was too low for accurate assessment due to higher toxicity. The data in a and b 

represent the mean ± standard deviation (error bars) from three independent experiments.
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Figure 3a: 
Primary huPBMCs were co-cultured with mitomycin C-treated HTLV-1+ SLB1 lymphoma 

T-cells which were pre-treated for either 15 min or 3 h with the Vehicle control, or 

increasing concentrations (10 mg/ml, 50 mg/ml, and 100 mg/ml) of the N. oleander extract 

or oleandrin compound. The Vehicle control, extract, and compound were also present in the 

co-culture media. After 72 h, the supernatants were collected and the amounts of 

extracellular virus particles released were quantified by performing Anti-HTLV-1 p19Gag 

ELISAs. The data represent the mean ± standard deviation (error bars) from three 

independent experiments.
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Figure 3b: 
A GFP-expressing HTLV-1+ SLB1 T-cell-line was generated by transducing SLB1 

lymphoma T-cells with a pLenti-6.2/V5-DEST-GFP vector with selection on blasticidin (5 

mg/ml; Life Technologies) for two weeks. The GFP-positive clones were screened by 

fluorescence-microscopy (top panels) and immunoblotting (lower panels), and expanded and 

repeatedly passaged. The DIC phase-contrast image is provided for comparison.
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Figure 3c: 
The formation of virological synapses between huPBMCs and the mitomycin C-treated 

HTLV-1+ SLB1/pLenti-GFP lymphoblasts (green cells) that had been pre-treated for 3 h 

with the Vehicle control or increasing amounts (10 μg/ml, 50 μg/ml, and 100 μg/ml) of the 

N. oleander extract or oleandrin compound were visualized by fluorescence-microscopy. 

Virus transmission was assessed by quantifying the relative percentages of infected (i.e., 

HTLV-1 gp21-positive, red) huPBMCs (GFP-negative) in 20 visual fields (n=20) by 

fluorescence-microscopy using a 20x objective lens (see arrows in the Vehicle control panels 

in c). The averaged data with standard deviation (error bars) are shown in d.
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