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Abstract

A large proportion of patients with cancer are unresponsive to treatment with immune checkpoint 

blockade and other immunotherapies. Here, we report a mathematical model of the time-course 

of tumour responses to immune-checkpoint inhibitors. The model takes into account intrinsic 

tumour-growth rates, the rates of immune activation and of tumour–immune-cell interactions, 

and the efficacy of immune-mediated tumour killing. For 124 patients, four cancer types and 

two immunotherapy agents, the model reliably described the immune responses and final tumour 
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burden across all different cancers and drug combinations examined. In validation cohorts from 

four clinical trials of checkpoint inhibitors (with a total of 177 patients), the model accurately 

stratified the patients according to reduced or increased long-term tumour burden. We also 

provide model-derived quantitative measures of treatment sensitivity for specific drug–cancer 

combinations. The model can be used to predict responses to therapy and to quantify specific 

drug–cancer sensitivities in individual patients.

Immunotherapy has shown great promise in the fight against cancer. Activation of 

the immune system against a patient’s tumours through various mechanisms, including 

the administration of cytokines or vaccination to increase desired T-cell counts, the 

administration of immune checkpoint inhibitor agents, of co-stimulator receptor agonists, 

of oncolytic viruses, or of adoptive-activated T-cell and natural-killer-cell therapy, has been 

shown to stimulate favourable cytotoxic effector-cell activation against tumour cells 1,2. By 

activating the body’s own immune system, this next-generation set of cancer therapies offers 

the potential for highly targeted cancer treatment with significant clinical efficacy, reduced 

negative side effects (relative to traditional cancer therapies), and improved treatment of 

some types of cancer that are known to have poor responses to other treatment methods. 

For example, the checkpoint inhibitor ipilimumab (alone or in combination with nivolumab) 

has shown great success in treating late-stage melanoma, a disease that previously had high 

mortality rates and poor response to traditional treatment strategies 2,3, and atezolizumab has 

shown strong potential for the treatment of urothelial cell carcinoma (UCC) 4.

Despite significant advances, immunotherapy still presents notable challenges. 

Immunotherapy has been shown to be highly effective against certain types of cancer, 

while at the same time ineffective at treating others, with over 50% of all patients failing 

to respond to immunotherapy treatment 5. In patients that do respond, it often occurs more 

slowly than when more traditional treatment regimens are used, resulting in new challenges 

towards identification of patients with favourable prognosis (or, perhaps of greater clinical 

urgency, identification of patients that are not responding and require a different clinical 

approach) 6. To date, several promising biomarkers for immunotherapy response have 

been identified, including intratumoural programmed death ligand 1 (PD-L1) expression 

levels and immune presence (e.g., tumour infiltrating lymphocytes 7,8), blood cell counts 

(e.g., neutrophils, lymphocytes, and CD8+ T cells 9–11), serum markers (e.g., LDH, VEGF, 

and IL-6 12–14), and genetic mutation markers 15,16. However, these biomarkers are often 

specific to a certain family of drug and disease combinations, presenting a significant 

clinical challenge due to the potential necessity for extensive and invasive diagnostic testing. 

For example, PD-L1 levels and genetic mutations may vary significantly within the same 

tumour and between primary and secondary tumours 3,17,18, and blood cell and serum 

markers are often specific to certain drug or cancer types 14,19. As such, identification of 

reliable prognostic biomarkers of immunotherapy response that may be broadly applied 

across many cancer and treatment types to provide timely identification of the most effective 

immunotherapy treatment protocol remains a significant clinical need.

Clinically, lesion response is often assessed using the RECIST v1.1 criteria 20 to evaluate 

the change in lesion volume after treatment initiation, as quantified by the sum of indexed 
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lesion diameters measured at a lesion’s widest cross-section. Under these criteria, patient 

response is categorized as 1) progressive disease: > 20% summed diameter increase; 2) 

partial response: > 30% summed diameter decrease; 3) stable disease: sum of diameters 

remains stable, crossing neither threshold for progressive disease or partial response; and 

4) complete response: lesion disappearance (longest diameter < 5mm) 20. These definitions, 

while useful, are limited to only the spatial scale while neglecting the time scale, which 

may add valuable resolution in prognostic decisions and may be further indicative of 

the aggressiveness of the disease or the efficacy of the treatment and associated disease 

response (e.g., how fast the tumour grows or shrinks). These limitations, combined with 

the previously discussed limitations of current biomarkers for predicting immune response, 

further suggest the need for improved patient stratification methodologies.

Mathematical modelling has been extensively used in many areas of cancer research, 

including disease initiation, progression, and treatment (see 21–28 for further discussions). 

Likewise, mathematical modelling of immunotherapy has also demonstrated value through 

the prediction of treatment efficacy and validation with both experimental and clinical 

data, using many different modelling techniques, including time dependent continuum 

descriptions (ordinary differential equations) 29, hybridized spatial and temporal continuum 

descriptions (partial differential equations) 30, and agent-based modelling 31–33. See 

Supplemental Materials for discussion of some interesting immunotherapy modelling work; 

for a more exhaustive review of these and other exciting advances, the interested reader is 

referred to 34,35. Efforts are being undertaken with the goal of stratifying patient outcome 

from immunotherapy treatment based on important biological parameters such as neoantigen 

fitness 36 and autophagy compartments 37. However, these modelling approaches rely on 

specific cell-level information that must be obtained invasively, which is not always easy 

or cost-effective to obtain for rapid transition to the clinic as a prognostic tool. Moreover, 

they are dependent on measured heterogeneities at the cell or subcellular scale within the 

tumour that may not be easily determined or accurately represented by minimally invasive 

clinical techniques (e.g., needle biopsy, which may only provide information at a specific 

region within a single tumour, and may not accurately represent tumour or system-wide 

heterogeneities) 38. Unfortunately, mathematical modelling has yet to emerge as a powerful, 

predictive bedside tool to assist the physician, as these modelling efforts face significant 

challenges for transition to bedside use.

To address the pressing need for better assessment of patient outcome under immunotherapy, 

we have developed a mechanistic mathematical model for describing patient tumour burden 

over time under checkpoint-inhibitor treatment; details of the model can be found in 

Methods. We present here the parameterization of the model against data obtained from the 

literature using anti PD-1/PD-L1 checkpoint inhibitors (n = 124), which is further validated 

against patient cohorts from four in-house clinical trials (NCT02239900, n = 93, using the 

anti-CTLA4 agent ipilimumab; a basket-study patient cohort (n = 28); NCT02444741, n 
= 35 patients with non-small cell lung carcinoma (NSCLC) treated with pembrolizumab; 

and lastly a cohort from the Institutional Review Board (IRB)-approved MD Anderson 

Melanoma Database, MelCore, of n = 21 patients with melanoma metastatic to the brain 

treated with ipilimumab, nivolumab, or a combination of both; see Methods) in order to 

gain quantitative, mechanistic insights into effective immunotherapy. It is worth noting that 
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the specific approach our model has taken offers the valuable advantage of using only 

measured tumour dimensions from CT/MR imaging data (although we are also currently 

developing histological and blood marker surrogates for model calibration), which is already 

obtained non-invasively as part of the standard of care protocol, and that this model is not 

limited to the unique molecular mechanism of a specific checkpoint. This will help facilitate 

the process of translating the model into a clinically useful prospective tool for predicting 

patient outcome. Here, we briefly describe the model derivation and its key equations, 

and then focus on the quantification and validation of the model for predicting long-term 

patient responses to immunotherapy using only readily measurable diagnostic information. 

Our results provide evidence that two model parameters that quantify 1) a combination of 

the anti-tumour immune state and tumour cell kill rates and 2) tumour growth rate at first 

restaging (used individually or in combination) may function as universal biomarkers of 

immunotherapy response, independently of specific disease or drug.

Results

Details of the literature-derived patient cohort for model calibration and our in-house clinical 

trial patient cohorts for model validation are provided in Methods. A flowchart of the 

model calibration (including model fitting and parameterization) and validation processes is 

provided in Fig. S1. An example subset of model fitting results (chosen from all four tumour 

types in the literature-derived calibration cohort to show a wide range of possible tumour 

burden changes under immunotherapy and the associated model behaviour) is presented in 

Fig. 1.

Model parameters stratify patient response

Figure 2 shows the distributions of Λ×μ and αimaging for all patients measured. We note 

that in this paper, we will refer to patients with last reported measured (via CT or MRI) 

and normalized (by tumour burden at start of treatment, e.g., t = 0) tumour burden (e.g., 

ρmeasured
∞ ) larger than baseline (ρmeasured

∞ > 1.0) as non-responders, and patients with reduced 

total tumour burden (ρmeasured
∞ < 1.0) as responders; thus summing all RECIST v1.1 20 

classifications into only two possible categories for the purposes of our analysis. Under 

these definitions, responder patients in the literature-derived calibration cohort (58 of 

124 patients) were found to have significantly higher values of Λ×μ but lower values of 

αimaging (Fig. 2A,B; P < 0.001 by two-tail Wilcoxon rank sum) compared to non-responders 

(66 of 124 patients). This trend was confirmed in our IPI clinical trial cohort obtained 

from NCT02239900 (Fig. 2E,F), the NSCLC clinical cohort from NCT02444741 (Fig. 

2G,H), and the brain mets clinical cohort (Fig. 2I,J); however, in the basket-study cohort, 

while αimaging showed significant separation between response types, Λ×μ did not show 

significant separation (Fig. 2C,D; this is likely due to high patient heterogeneity and small 

sample size in this cohort). Consistent results were also observed with ρpredicted
∞  (P < 0.01 for 

all patient cohorts; this is shown in Fig. S6).

ROC (i.e., receiver operator characteristic) analysis showed high accuracy of patient 

separation between response types in all patient cohorts examined (Fig. 3, Tables 1, S5) 

using both Λ×μ and αimaging as binary classifiers (this was also found to be true for 
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ρpredicted
∞ , see Fig. S7). In the literature-derived calibration cohort, parameter Λ×μ was 

found to have unique optimal cutoff values for each cancer-drug combination examined 

(determined by maximizing Youden’s J statistic), while optimal cutoff for αimaging was 

consistently found to be 0.0 (having a biological meaning of tumour growing or shrinking 

at first restaging). Based on these finding, the cutoff value for Λ×μ was determined 

individually for all validation cohorts as described above, while the cutoff value for αimaging 

was assigned to be 0.0. This result was supported in all validation sets, were ROC analysis 

revealed a cutoff value of 0.0 for αimaging significantly separated patient response (P = 

0.0095 for the basket-study cohort, with overall accuracy 0.821; and P < 0.001 for the IPI 

cohort from NCT02239900 with overall accuracy 0.849, P < 0.001 with overall accuracy 

for the NSCLC clinical cohort NCT02444741 of 0.800, and P = 0.0491 with overall 

accuracy for the brain mets cohort of 0.714; Figs. 2, 3, Table 1, S5). Uniquely identified 

cutoff values for Λ×μ also showed high accuracy of separating patient response in these 

validation cohorts, although with slightly reduced accuracy relative to αimaging (basket-study 

cohort: accuracy = 0.714; IPI clinical trial cohort: accuracy = 0.763; NSCLC clinical cohort: 

accuracy = 0.743; brain mets clinical cohort: accuracy = 0.810; Table S5).

Model predictions of treatment outcome correlate with patient data

Model parameter ρpredicted
∞  (projected long-term tumour burden) was found to significantly 

correlate with the final measured tumour burden (ρmeasured
∞ ) for all tumour and drug types 

together (Fig. 4A; P < 0.001, Pearson = 0.723), as well as individually for each cancer and 

drug type (Fig. 4B,C). This allows us to use ρpredicted
∞  as a reliable surrogate for measured 

tumour at last restaging in our analysis. Correlation analysis between retrospectively 

determined tumour growth rate after immunotherapy treatment (αretro) and the prospective 

measure of tumour growth rate calculated at first restaging (αimaging) revealed similar 

results, with significant correlation between all values within the calibration cohort (Fig. 

4D; P < 0.001, Pearson = 0.762), as well as when isolated on a per-tumour and per-

drug basis (Fig. 4D–F). Accordingly, we may use our prospective measure αimaging as a 

reasonable surrogate for the long-term value αretro. The interested reader may also refer to 

Supplemental Materials for additional correlation analysis between αimaging and ρpredicted
∞

(Fig. S8).

Model parameters quantify treatment sensitivity for each drug-disease combination 
examined

In order to quantify the sensitivity of drug-induced immune response as a function of drug-

disease combination, linear regression analysis of long-term tumour burden ρpredicted
∞  against 

the inverse of our measure of strength of immune response 1/(Λ×μ) was performed for all 

drug and disease subsets within the literature-derived cohort, revealing unique sensitivity 

to drug treatment for each drug-disease combination examined. These are shown in Fig. 

5A–C (note that all show the same data, but are colour coded by A) response, B) disease, 

and C) drug types). Larger slopes indicate greater sensitivity of that specific disease to the 

drug administered; i.e., with high sensitivity, smaller changes in 1/(Λ×μ) result in larger 

changes in tumour growth or reduction (αretro) than in cases with lower sensitivity. In 
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all cases, to be clinically relevant, we set the y-intercept of the linear best fit to zero, as 

total long-term tumour burden (ρpredicted
∞ ) goes to zero when tumour kill is complete (i.e., 

αretro − μ
Λ × μ = − 1, equation (3)); thus our measure of sensitivity represents the magnitude of 

the change in post-treatment tumour growth rate (αretro) as a function of change in strength 

of immunotherapy-mediated tumour response (Λ×μ). We thus estimated the relationship 

between ρpredicted
∞  and 1/(Λ×μ) in the form of y = kx, where slope k represents how sensitive 

the treatment outcome (i.e., ρpredicted
∞ ) is to immunotherapy in each case; values for k and 

associated R2 for each fit are shown in Table 2. Finally, we repeated this analysis using 

the exact tumour burden measured at last restaging (ρmeasured
∞ ) on the y-axis; however the 

strength of correlation was further reduced in this case (Fig. 5D–F, Table 2).

We find that, with respect to cancer type in the literature-derived calibration cohort, 

sensitivity to immunotherapy treatment was found to be greatest in melanoma, followed by 

NSCLC, UCC and then RCC in decreasing order based on our analysis using ρpredicted
∞ . With 

respect to drug type, treatment sensitivity was found to be higher with atezolizumab relative 

to nivolumab. Comparison of model parameters obtained from the clinical validation sets 

revealed that the outcome sensitivity to treatment estimated as y = kx was consistent with 

the values obtained for the specific cancer-drug combinations examined from the literature-

derived cohort (Table 2). Within the validation cohorts, our results revealed that tumours 

treated with ipilimumab (IPI trial cohort; n = 93) were most sensitive to therapy (Table 2; k 
= 0.007836), followed by melanoma metastatic to the brain treated with ipilimumab and/or 

nivolumab (k = 0.007007), then by our basket study cohort (k = 0.002563), and lastly by the 

NSCLC clinical cohort (k = 0.002498) when sensitivity was estimated using ρpredicted
∞ . We 

note that, because of the low correlation strength observed between ρmeasured
∞  and 1/(Λ×μ), 

we have focused only on ρpredicted
∞  here; this is due to the difference between measured 

(at last restaging) and predicted (to long-term) final tumour burden, where truncation in 

measured follow-up times may prevent the capture of behaviour that would be observed 

(and that the model predicts) if follow-up times were extended, and is further explored in 

Discussion.

Moreover, the drug-disease combination specific measure of sensitivity for immunotherapy 

response 1/(Λ×μ) (Fig. 5) suggests a critical threshold for immunotherapy-mediated lesion 

volume reduction (i.e., the weakest immune response that may result in reduction of tumour 

burden) for each cancer and treatment type in the literature-derived calibration cohort; these 

are indicated by dashed lines in Fig. 5 (statistics are provided in Table 3; found to range 

from 136.73–802.52, depending on the cancer and treatment type). Taking the lower end 

of the identified cutoff range (e.g., 1/(Λ×μ) = 136.73, representing the strongest immune 

response cutoff we have identified for the calibration cohort) to be the critical threshold, we 

examined how well this single cutoff value would perform across all patients irrespective 

of drug or cancer type. In the calibration cohort, this threshold performed well to sort 

patients by response in all cancer and drug types examined (patient response was identified 

correctly with >80% success rate in all cases). When applied to the validation cohorts, the 
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patient response sensitivity threshold value identified in the calibration cohort (1/(Λ×μ) = 

136.73) was found to sort patient response in all cohorts with satisfactory results, but was 

found to have higher success rates identifying responders than non-responders (correctly 

identifying 90% of responders vs. 69% of non-responders in the clinical trial cohort, 83% 

of responders vs. 64% of non-responders in the basket-study cohort, 87% of responders vs. 

35% of non-responders in the NSCLC clinical cohort, and 75% of responders vs. 67% of 

non-responders in the brain mets clinical cohort; Table 3). More detailed analyses of how 

individual model parameters relate to tumour response are shown in Figs. S3–S5, where we 

observed that ρpredicted
∞  decreases with increasing μ and Λ across all cohorts examined, but 

increases with A, as expected based on equation (2a).

Discussion

We have presented the validation and analysis of a mathematical model of immunotherapy 

efficacy to mechanistically examine the time-course of patient responses to immunotherapy 

and to predict total long-term patient tumour burden. Model calibration was performed on 

a literature-derived cohort of 124 patients with 4 different cancer types treated with one of 

two different immunotherapy agents, and further validated against four additional in-house 

patient cohorts. The model parameter representing tumour growth rate at first restaging 

(αimaging) was found to significantly sort patient response with a similar accuracy as the 

retrospectively determined strength of immune response (Λ×μ; see Figs. 2,3 and Table 1), 

and both are shown to be quantifiable with only CT/MR imaging data that are already 

obtained as standard-of-care. By including the time scale, we believe that our prognostic 

model can be more precise than a pure spatial-scale assessment (that is, tumour volume-only 

prognostics, e.g., RECIST), which we hope will serve to inspire the community at large to 

consider how inclusion of additional dimensions into response criteria can improve response 

assessment precision. Further, as αimaging may be measured no later than first restaging, 

it may serve as a prognostic clinical tool to identify patient response to treatment on a 

per-patient basis, which may be possible at earlier times than with RECIST, especially in 

patients that demonstrate delayed progression or response.

We have shown a model-derived method for quantifying the sensitivity of a cancer type 

to a specific drug, which may provide a quantitative tool to help select optimal drug 

choices based on the specific disease and immune health of a patient. The treatment 

sensitivities identified were further found to be in satisfactory agreement with literature-

reported objective response for the drug-disease combinations examined (this is explored 

further in Supplemental Materials). Interestingly, we found that the strength of immune 

response (Λ×μ) necessary to achieve tumour reduction was unique for each drug-disease 

combination examined, while the sign of tumour growth rate at first restaging (αimaging) 

performed well to identify patient response in all cases examined. As such, (αimaging) may 

perform as a universal indicator of response across all patient cohorts examined herein, 

while Λ×μ may be applied on a per drug/disease basis in cases where further resolution 

is needed. However, our examination of treatment sensitivity via 1/(Λ×μ) revealed that a 

single threshold value can perform satisfactorily across multiple drug and tumour types 

(Fig. 5), suggesting that a more universally-applicable guideline based on drug sensitivity 
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may be discovered. This method of predicting cancer-drug sensitivity was found to be more 

indicative of the model projected long-term tumour burden than the final measured tumour 

burden in many cases, indicating that our model may be capturing long-term outcome 

that may not always be observed clinically (due to patient dropout, changes in treatment 

interventions, or other events that reduce the duration of patient follow-up), potentially 

providing additional information that may not be directly observed in standard clinical 

practice.

Our model analysis demonstrates that the change in tumour growth kinetics from before and 

after treatment (included in our model but not in RECIST) may be important to consider 

when evaluating the immunotherapy outcome for each individual patient. Even if a patient 

was identified to have stable disease on immunotherapy by RECIST criteria (an outcome 

that might be considered clinically favourable in current standard of care), it could be of 

clinical benefit for the patient to discontinue the current treatment protocol, or to take 

a revised protocol that includes additional treatment methods. Indeed, there persists an 

imperative need for improved clinical prognostic tools to assist physicians in the cases where 

RECIST fails to distinguish patient response. Our mathematical model will help make this 

valuable distinction, sort patients in this grey area at early times in the treatment protocol, 

and quantify strength of the immune response under immunotherapy, ultimately giving 

clinicians a valuable tool to predict and assess treatment efficacy, even in cases that are 

difficult to assess under current clinical practice.

We note that while we are able to fully quantify αimaging prospectively at time of first 

restaging using only CT/MR imaging, the analysis of Λ×μ as presented here is dependent 

on retrospective quantification, using the full time-history of patient CT images. In our 

calibration cohort, estimation of tumour volumes from digitization of publication plots has 

likely resulted in differences in our lesion volume estimates vs. those measured directly from 

clinical CT/MRI scans. While potential errors in tumour burden data obtained in this way 

will result in slight variation of model parameter values, the spread of model parameters 

and the overall trends demonstrated herein remain consistent with data obtained directly 

from CT/MRI scans, as we have demonstrated with the four in-house validation cohorts. 

We note that variations in imaging protocols among different institutions and in tumour 

boundary identification among radiologists have not been investigated at this stage. Despite 

this challenge, we are encouraged that the model differentiated between patient response 

groups in all cohorts examined.

The threshold values for prediction of patient response via Λ×μ and as related to treatment 

sensitivity via 1/(Λ×μ) we have shown are likely only specific to the drug and disease 

combinations examined here, and may change as we obtain larger patient data sets. This is 

further complicated because our calibration cohort was collected from a range of clinical 

trial phases (phase I 3, phase I expansion 39, phase II 40, and phase III 41), and the 

therapeutic protocols received by this cohort were not always reflective of current clinical 

standard-of-care. However, the model application to a wide variety of drug doses and 

dosing schedules presented here indicates that our model is robust to handle potential 

interpatient variations in drug delivery dosages and dosing schedules, as well as potential 

future changes to standard checkpoint inhibitor therapeutic protocols as the field advances. 
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The use of αimaging as a broadly-applicable indicator independent of tumour or drug type 

should also be further examined in additional patient cohorts. However, we present the 

results herein as significant evidence that these thresholds likely exist in other cancer and 

drug combinations, and, when identified, can be broadly applied to identify optimal drug 

selections for other cancer types. Moreover, as these are built on known biological quantities 

(see Methods, Supplemental Materials), we are currently working on methods of quantifying 

them prospectively in our laboratory. Because we measure response as a rate (αimaging; that 

is, volume change is normalized by time between restagings) instead of a scalar quantity 

(e.g., RECIST), our early-time predictor of patient response was shown to perform reliably 

even in the presence of significant variation in time to first restaging (ranges 5–230 days in 

the data herein), which is often unavoidable in clinical practice due to a variety of factors 

(e.g., patient travel schedules, changes in patient health status, etc.).

The predictive power of any prognostic clinical measure is dependent on the quality 

and accuracy of the relevant measured biological parameters by which it is informed, 

and we expect this will also be true for model parameters μ and Λ×μ. Because these 

parameters are built upon known biophysical factors, they should be calculable from 

measurements of this underlying biology, likely at early times in treatment. Towards this 

end, we are currently investigating additional measures which may help determine model 

parameters, including intratumoural receptor status (e.g., intratumoural PD-L1 staining) and 

drug dosing and dosing schedules for μ, and blood markers (e.g., CTLA4+ lymphocyte 

counts, neutrophil to lymphocyte ratio), genetic markers (e.g., microsatellite instability), 

tumour infiltrating lymphocyte (TIL) counts within the tumour microenvironment, and 

nanomechanical measures of the tumour microenvironment (e.g., tumour phenotype counts, 

distribution and aggressiveness, immune cell counts before treatment and influx due 

to treatment, and tumour-immune cell interactions 42) for Λ and Λ×μ. We are also 

developing new methodologies of more accurately estimating μ and Λ×μ through inclusion 

of information about blood perfusion in the tumour, under the hypothesis that both drug and 

immune cells (and thus their therapeutic availability) are primarily delivered to the tumour 

through the blood supply. This assumption is supported by our previous modelling work on 

chemotherapy treatment 43, which will also provide an additional validation mechanism for 

the new model presented here. In particular, by obtaining accurate measures of tumour blood 

supply perfusion via atomic force microscopy-obtained nanomechanical measurements of 

tumour biopsies (we have previously demonstrated that tissue nanostiffness is indicative of 

blood supply 42), we will be able to further refine our quantification of μ and Λ×μ for 

model-facilitated prediction of treatment outcome at or before the start of treatment. The 

results we have presented herein represent key model validation, testing, and calibration 

steps towards this ongoing project.

Clinically, many cancer therapies often cause significant side effects and patient discomfort, 

and often therapies are ramped up from least to most aggressive based on the strength 

of patient response, especially towards end of life in patients with poor prognosis 44. 

Unfortunately, this approach may often select for more aggressive cancer phenotypes when 

only incomplete tumour cell kill is achieved 45, as the weaker ones may be eliminated 

by the first round(s) of treatment. A better approach would be to identify the strength of 

treatment intervention necessary to eliminate the disease on a patient-specific basis (based 
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on mechanistic principles and the patient’s individual, quantifiable growth kinetics) and 

adjust the treatment plan accordingly early in the course of clinical intervention. Here, we 

have shown a method to quantify this phenomenon using only readily-available standard of 

care clinical information, potentially providing a much-needed bedside tool for clinicians 

that can easily be implemented alongside other standard of care protocols, as we have come 

to realize our model will likely perform best when used alongside other clinical diagnostics. 

Many of the patients examined herein received numerous treatments prior to immunotherapy 

intervention, which is common in clinical practice, as immunotherapy is often used as a “last 

line of defence” after traditional therapy proves ineffective. Clinically, measures are taken to 

reduce potential detrimental effects of these prior therapies before immunotherapy treatment 

(e.g., ensuring patient immune system is rebounded); however, these confounding effects are 

often unavoidable in real world practice, and our model reliably provides prognostic insights 

on immunotherapy response despite this diversity.

Biologically, the term Λ×μ is proportional to the ratio of tumour volume to immunotherapy 

efficacy (multiplicative combination of immunotherapy dosing, immune cell fitness, and 

immunotherapy kill rate). Importantly, these parameters may all either be measured (tumour 

volume, cell kill rate) or affected clinically (dosing and immune cell fitness, which may 

be modified through processes like radiotherapy-induced increase in PD-1 expression 
46). Because this parameter is composed of only values which may be readily obtained 

or modified in the clinic on a per-patient basis, it can provide clinicians a powerful 

tool to guarantee effective immunotherapy results: through maximization of μ (and thus 
minimization of αimaging) and Λ×μ, immunotherapy may be tuned in a patient-specific way 
to maximize clinical efficacy using only clinically accessible parameters. Therefore, we 

believe that this tool will help physicians design individualized treatment plans, increasing 

the efficacy of immunotherapy and overall patient survival.

Methods

Mathematical model of immunotherapy response

Our model mechanistically describes the tumour-immune interaction process in order to 

better understand the effects of immunotherapy on the time-course of patient lesion burden 

and outcome. It was built using our significant experience gained from previous successes 

in modelling tumour kill by chemotherapy, which have been validated against patients with 

multiple varied cancer types, including glioblastoma, colorectal cancer metastatic to the 

liver, and hepatocellular carcinoma 43,47–60. The final form of our model description of 

tumour burden over time during immunotherapy treatment is:

dρ
dt = ρ αbaseline − μ + Λμ + ρ2 −Λμ , (1)

where ρ is the normalized tumour volume (normalized by the patient’s tumour volume at t = 

0; thus ρ(0) = 1 for all patients) as a function of time, αbaseline is the intrinsic tumour growth 

kinetic (a measure of the tumour growth rate prior to and independent from any clinical 

intervention), μ represents the kill rate of cancer cells by immune cells (e.g., the effect of 

immunotherapy activation of immune cells), and Λ is the intratumoural immune state under 
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immunotherapy intervention, representing the health of the immune system (mathematically, 

this is the ratio of tumour to immune cells within the tumour, scaled by a “fitness” factor 

representing the number of cancer cells each immune cell can kill). We note that Λ and 

μ are both representative of a combination of several biological factors; these, as well as 

the full derivation of the model, including underlying assumptions and immune factors and 

mechanisms included, and the system of equations that leads to our master equation, are 

given in Supplemental Materials. In words, equation (1) states that the change in tumour 

volume over time is due to the intrinsic growth of the tumour, reduced by the kill rate of 

cancer cells due to immunotherapy treatment, as dependent on the ratio of initial tumour 

cells to immune cells, the number of immune cells required to kill one tumour cell, and the 

efficacy of immune cell activation.

Through making substitutions:

A = αbaseline − μ + Λμ, (2a)

B = − Λμ, (2b)

the long-term solution, ρ∞, and time-dependent solution, ρ t , are found to be

ρ∞ = − A
B = αbaseline − μ

Λμ + 1, (3)

and

ρ t = ρ∞

1 − 1 − ρ∞ e−At , (4)

respectively. We further denote αretro the long-term tumour growth rate after 

immunotherapy; this is calculated retrospectively by subtracting tumour kill rate (μ) from 

the intrinsic tumour growth rate (αbaseline):

αretro = αbaseline − μ . (5)

We also designate the short-term solution (e.g., the tumour growth rate shortly after start of 

treatment) as

ρ t ≈ e αimaging · t, (6)

where αimaging is determined between time of treatment start (baseline) and first restaging 

(t1) from CT-derived imaging data according to

αimaging = log ρ t1 /t1 . (7)

By substituting αretro into equation (3), which describes total long-term tumour burden 

as a function of post-treatment growth rate, immune-mediated tumour cell kill rates, and 

Butner et al. Page 11

Nat Biomed Eng. Author manuscript; available in PMC 2021 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intratumoural immune state, the overall patient response may be observed at early times 

during treatment from the sign of αretro:

ρ∞ = αretro
Λμ + 1 . (8)

A complete synopsis of all model parameters and their biological definitions has been 

provided in Table S1, and examination of the model parameter space is provided in Figs. 

S9, S10. In the work presented here, equation (4) was fit numerically to time-course tumour 

burden data from one literature-derived cohort and four in-house clinical trial cohorts to 

quantify model parameters, which were then analyzed to determine their distinct signatures 

of disease response. In our analysis, tumour kill rate weighted by the patient immune state 

(i.e., Λ×μ) was found to significantly sort patients by response. Further, we demonstrate that 

αimaging (equation (7)) may serve an acceptable substitute for the full model fit parameter 

αretro, and thus function as a prospective measure of patient response with high accuracy by 

the time of first restaging.

Data acquisition

The model was calibrated against time-course tumour burden datasets obtained from 

literature-reported measurements of tumour burden volume over time for 124 patients with 

either metastatic renal cell carcinoma (RCC) 40, advanced nonsquamous non-small-cell lung 

cancers (NSCLC) 41, or melanoma 3, both during and after treatment with nivolumab, as 

well as urothelial cell carcinoma (UCC) treated with atezolizumab 39 (details shown in Table 

S3), together representing more than 6.5 years of clinical trials and forming our literature-

derived calibration cohort. All patients had advanced disease (stage IIIB-IV) and were often 

significantly pretreated with a variety of traditional and targeted therapies (many having 

received more than 3 pretreatments; see discussion), thus composing a representative sample 

of highly aggressive and treatment-resistant cases. Combined, the dataset demonstrates 

the capability of immunotherapy in treating several clinically challenging cases, spans a 

range of potential patient tumour burden time-course profiles, and serves as a diverse 

and robust foundation on which to quantify our model across a wide variety of disease 

and immunotherapy treatment conditions. Patient tumour burden over time were extracted 

from published plots using WebPlotDigitizer 61. In all literature-derived cohorts, these 

measurements were converted from measured lesion diameters (i.e., RECIST v1.1) to 

estimations of normalized lesion volume (estimated as 3D spheres, see Supplemental 

Materials).

Four in-house validation cohorts were obtained from patients treated at the University of 

Texas MD Anderson Cancer Center. The first constituted 93 patients with metastatic lesions 

to lung or liver treated with ipilimumab (IPI) at doses of 3 mg/kg every 21 days for a total 

of 4 doses (NCT02239900; 96 were obtained, but 3 were removed due to unavailability 

of pre-treatment lesion measurements). The second included 28 patients from various 

clinical trials treated with various checkpoint inhibitors (referred to as the “basket-study 

cohort” herein; see Table S4) (data for 58 patients were obtained, but 17 were removed 

due to having received non-immune checkpoint inhibitor immunotherapy, 11 were removed 
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due to receiving complementary non-immunotherapy or non-immune checkpoint inhibitor 

immunotherapy treatments concurrently with immune checkpoint inhibitor immunotherapy, 

and two were removed due to lack of pre-treatment measurements needed to quantify 

αbaseline) in a basket-study style cohort representing 18 cancer types and 7 different 

checkpoint inhibitor drugs (details in Table S4). A third in-house validation cohort of 

35 patients with NSCLC treated with pembrolizumab (MK-3475) was also obtained 

(NCT02444741). All tumour measurements in the first 3 validation cohorts (baseline and 

restaging; restagings ranged 1–12, median = 2) were taken on post-contrast CT scans, 

with 2.5 mm thickness slices obtained for post-contrast phases. Selection and follow-up of 

indexed lesions was conducted according to RECIST 1.1 guidelines. At all restagings, long 

and short lesion diameter measurements were obtained, which were averaged and used to 

estimate tumour volume as 3D spheres (see Supplemental Materials for details). We note 

that our basket-study cohort was treated as a single group in this analysis, and is expected 

to display a median behaviour representing an average of the individual disease and drug 

combinations it contains.

Finally, model testing was performed on a fourth validation cohort of 21 patients with 

melanoma metastatic to the brain (referred to as “brain mets”, i.e., brain metastases, herein). 

Patients were included if they were diagnosed with melanoma brain metastasis between 

2016 and 2018, and had a subsequent initial dose of either ipilimumab, nivolumab, or a 

combination of both agents. Of the 21 patients included in this cohort, 13 were treated with 

a combination of nivolumab (1 mg per kilogram of body weight) plus ipilimumab (3 mg 

per kilogram) every 3 weeks for two to four doses (according to tolerance), followed by 

single-agent nivolumab (3 mg per kilogram) every 2 weeks until progression or unacceptable 

toxic effects. The other eight patients were treated with either nivolumab or ipilimumab 

monotherapy. In this cohort post-contrast T1-weighted magnetic resonance (MR) sequences 

acquired longitudinally with at least 1-mm slice thickness were imported into RayStation 

Treatment Planning System. An experienced radiation oncologist volumetrically segmented 

all the brain metastases at each time point (baseline and follow-up restagings ranged 1–9, 

median = 3) for each patient to obtain the total volume of the intracranial metastatic disease.

Model fitting

The time-dependent form of the model (equation (4)) was then fit to the normalized time-

course data for each patient using Mathematica function NonLinearModelFit 62 to obtain the 

best-fit parameters (ρpredicted
∞  and A) specific to each patient. Additionally, short-term tumour 

growth rates after treatment (αimaging) were determined exactly between baseline and first 

restaging (in the literature-derived cohort, this was represented by first available restaging 

data) via equation (7). First restaging times (median [range]) for each cohort were RCC: 

41 days [9–89 days], literature-derived NSLC: 73 days [5–225 days], Melanoma: 55 days 

[44–230 days], UCC: 35 days [17–85 days], IPI clinical trial cohort: 53 days [17–91 days], 

basket-study cohort: 55 days [29–122 days], NSCLC clinical trial cohort: 55 days [25–82 

days], and brain mets clinical cohort: 42 days [15–98 days].

Due to the unavailability of information about tumour growth before treatment initiation in 

the literature cohort, we estimated the intrinsic growth rate αbaseline as being represented 
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by the fastest growing tumours in the dataset. Even though these are also receiving 

immunotherapy treatment, they showed the least (if any) reduction in tumour growth rate; 

thus it appears reasonable to take them to be the closest available representative of tumour 

growth without treatment effects. Along these lines, we estimated the pre-treatment growth 

rate αbaseline as the average growth rate of the fastest 10% of progressing lesions in each 

patient set (estimated analogous to equation (7), but for restaging after treatment start; 

unique αbaseline values were obtained for each of the 4 cancer types examined), measured 

at times no greater than 3 weeks after treatment initiation. Although our selection of the 

fastest 10% of progressing lesions is somewhat arbitrary, patients within this region were 

observed to have consistent tumour growth rates over time, indicating a lack of response to 

treatment; thus, we took the average of this group as a reasonable estimate of the intrinsic 

tumour growth rate. In the IPI clinical trial cohort, basket-study cohort, and, NSCLC clinical 

trial cohort, αbaseline was calculated on a per-patient basis between the immediate restaging 

before start of treatment and restaging at treatment start (t = 0), e.g., equation (7), however 

pre-treatment lesion measurements were unavailable in the brain mets cohort, so αbaseline 

was estimated as in the literature cohort. When combined with ρpredicted
∞  and A obtained 

as described earlier, we were able to obtain unique μ and Λ values (equations (2a, 2b); 

Supplemental Materials equations (S7, S10)) for each patient, and thus their combined effect 

Λ×μ as well (representing tumour kill rate weighted by the patient intratumoural immune 

state). These are shown in Fig. S2 for the same patient subset shown in Fig. 1, as indicated 

by matching colours and symbols.

Model validation

We performed a two-step process (Fig. S1) in order to verify the ability of model parameters 

(Λ×μ and αimaging) to uniquely identify patient response. First, model parameters for each 

patient in each cohort were uniquely determined as described above (Model fitting section), 

and then the values of model parameters that optimally sorted patient response in the 

calibration cohort were identified by optimizing Youden’s J statistic via ROC analysis. Next, 

these threshold values were used to sort patients in each validation cohort based on the 

response predicted by each model parameter value examined. Finally, predicted responses 

were compared to measured responses (by CT at last follow-up) and assessed via calculation 

of sensitivity and specificity. We found that our model parameter Λ×μ provides unique 

prediction threshold values for each cancer-tumour combination, due to variations in the 

mechanistic parameters unique to each combination; in this case, we repeated the process 

of optimizing Youden’s J statistic via ROC analysis to determine the optimal threshold for 

response prediction for each unique cancer-drug combination.

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability.

The authors declare that all data supporting the results in this study are available within the 

paper and its Supplementary Information. The raw, de-identified patient data are available 
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from the corresponding author on reasonable request and subject to Institutional Review 

Board approval.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. 
Example model fits to clinical immunotherapy response. Curves show the time-dependent 

model solution (equation (4)) fit to normalized measured patient tumour burden under 

immunotherapy treatment, obtained from 3,39–41; also see Table S3. Patients that 

experienced high therapy efficacy are seen to have reduced total tumour burden over time 

(and thus ρpredicted
∞ < 1.0) relative to tumour burden at time of patient on study (t = 0), while 

patients with progressive disease are seen to have increased total tumour volume over time. 

The model shows two distinct long-term solution profiles, where tumour burden asymptotes 

either to a stabilized larger or smaller final tumour burden at long-term. Nonlinear fit 

statistics are provided in Table S2.
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Fig. 2 |. 
Distribution of model parameters against immune response (responders: tumour burden 

reduced, or non-responders: tumour burden increased). A–B) Literature cohort (n = 124) 

shows significant separation between both the retrospective measure of immunotherapy 

efficacy Λ×μ and our prospective estimate of tumour growth rate at first restaging αimaging. 

C–D) Analysis of our institutional basket study cohort (n = 28, Table S4) showed significant 

separation of αimaging values between responder and non-responder patients; however, 

separation of Λ×μ was found to be insignificant in this set. E–F) Further analysis of our 

larger and more cohesive IPI clinical trial cohort (n = 93) revealed significant separation 

between both Λ×μ and our measure of growth at first restaging αimaging, suggesting that 

lack of significant separation in panel C is likely due to the small patient sample size in 

this cohort. This was further confirmed in G–H) the NSCLC clinical trial cohort (n = 35) 

and I–J) the brain mets clinical cohort (n = 21). In all panels, per-patient values are shown 

with mean and standard deviations (red and black bars, respectively). Means ± standard 

deviation (responders, non-responders): A) 0.1015 ± 0.0973, 0.0044 ± 0.0079; B) −0.0186 ± 

0.0205, 0.0150 ± 0.0219; C) 0.0176 ± 0.128, 0.0081 ± 0124; D) −0.0056 ± 0.0071, 0.0114 

± 0.0138; E) 0.0366 ± 0.0284, 0.0071 ± 0.0113; F) −0.0047 ± 0.0111, 0.0124 ± 0.0017; 

G) 0.0547 ± 0.0560; 0.0155 ± 0.0169; H) −0.0140 ± 0.0167, 0.0101 ± 0.0135; I) 0.1348 ± 

0.1741, 0.0126 ± 0.0226; J) −0.0228 ± 0.0400, 0.0072 ± 0.0156. Significance of separation 

was determined by Wilcoxon rank sum (two tail). Plots showing distribution of ρpredicted
∞  by 

response category are provided in Fig. S6.
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Fig. 3 |. 
ROC analysis showed high accuracy of patient response classification when sorted by 

A) Λ×μ (retrospective quantification of strength of immune response) and B) αimaging 

(prospective estimate of tumour growth rate after treatment) across all patient cohorts 

examined. Our prospective estimate of tumour response (αimaging) shows consistent 

performance in response assessment with the retrospectively determined value, Λ×μ. Note 

both UCC and Atezolizumab (Atezo) represent the same cohort, and are shown as the same 

curve for clarity. Detailed statistics are provided in Tables 1 and S5, and ROC by ρpredicted
∞

is shown in Fig. S7. Independent patient counts: RCC, n = 23; Lit-derived NSCLC, n = 41; 

Melanoma, n = 17; UCC/Atezo, n = 43; Nivolumab, n = 81; IPI clinical trial cohort, n = 93; 

Basket-study cohort, n = 28; NSCLC clinical cohort, n = 35; Brian mets clinical cohort, n = 

21.
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Fig. 4 |. 
Correlation analysis of literature-derived calibration cohort reveals significant correlation 

between measured values and model-predicted variables. A–C) Model-predicted long-term 

tumour burden ρpredicted
∞  shows significant correlation with measured tumour burden at last 

restaging (ρmeasured
∞ ), sorted by A) response type, B) cancer type, and C) drug type. Data for 

n = 124 patients (calibration cohort) with 4 different cancer types under one of two types 

of immunotherapy treatment are shown (coloured points; see Table S3), and compared to 
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all in-house validation cohorts (black points): basket-cohort (ρp B
∞ ; n = 28), IPI clinical trial 

cohort (ρp IPI
∞ ; n = 93) cohort, NSCLC clinical trial cohort (ρp NSCLC

∞ ; n = 35), and brain 

mets cohort (ρp B . Mets
∞ ; n = 21) in panel A. D–F) Correlation analysis between retrospective 

tumour growth rate after immunotherapy (αretro) and prospective tumour growth rate at 

first restaging (αimaging), again sorted by D) response, E) cancer, and F) drug type, with 

values from basket-study and clinical trial validation cohorts overlaid for comparison in D). 

In all cases, Person correlation coefficient (R) and associated P-values are shown, inset. 

Figure legends: P = predicted, L = literature cohort, B = basket-study cohort, IPI = in-house 

ipilimumab clinical trial cohort, NSCLC = NSCLC in-house clinical cohort, B. Mets = 

brain metastasis in-house clinical cohort. Independent patient counts in B, E): RCC, n = 23; 

NSCLC (Literature), n = 41; Melanoma, n = 17; UCC, n = 43; and in C, F): Nivolumab, 

n = 81; Atezolizumab, n = 43. Additional analysis of tumour growth rate at first restaging 

(αimaging) vs. ρpredicted
∞  is provided in Fig. S8.
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Fig. 5 |. 

Long-term tumour burden predicted by the model (ρpredicted
∞ ; A–C) and measured at last 

restaging (ρmeasured
∞ ; D–F) is plotted against inverse immune response strength 1/(Λ×μ) 

for n = 124 patients (calibration cohort) with 4 different cancer types under one of 

two types of immunotherapy treatment (coloured points; see Table S3), sorted by A,D) 

response type, B,E) cancer type (independent patient counts: RCC, n = 23; NSCLC (lit), 

n = 41; Melanoma, n = 17; UCC = 43), and C,F) immunotherapy drug (independent 

patient counts: Nivo, n = 81; Atezo, n = 43). Maximum measured values for 1/(Λ×μ) 
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with ρ∞ < 1.0 are indicated by dashed lines (colors correspond to figure legend); 515.80 

for RCC, 802.52 for literature(lit)-derived NSCLC, 136.73 for melanoma, and 719.21 for 

UCC; and 802.52 for nivolumab, 719.21 for atezolizumab; more details and statistics are 

provided in Table 3. For all cancer and immunotherapy agent types examined, ρpredicted
∞

shows a linear relationship to strength of immune response (1/(Λ×μ)) by linear regression 

analysis, however this correlation is significantly diminished for and ρmeasured
∞  (see Table 

2). Data from the validation sets (black points) are consistent with the literature-derived 

cohort dataset (Basket-study (ρ∞(B), n = 28; see Table S4), IPI clinical trial (ρ∞(IPI), n = 

93), NSCLC in-house clinical trial (ρ∞(NSCLC), n = 35), and brain metastasis (ρ∞(B. Met), n 
= 21) validation cohorts are shown in A,D). Further breakdown of the relationship between 

ρpredicted
∞  and other model parameters μ, Λ, and A are shown in Figs. S3–S5. Figure legends: 

P = predicted, m=measured, NSCLC (lit) = literature-derived NSCLC cohort, B = basket-

study cohort, IPI = ipilimumab clinical trial cohort, NSCLC = NSCLC clinical trial cohort, 

B. Met = melanoma brain metastasis clinical trial cohort.
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Table 1:

Statistics and (95% confidence intervals) for all patient cohorts. Cutoff values for Λ×μ were identified via 

ROC analysis by maximizing Youden’s J statistic, while cutoffs for αimaging were taken to be 0.0 for all 

cases due to the physical meaning of αimaging = 0.0 separating tumours that are growing or shrinking at first 

restaging. (lit) denotes the literature-derived NSCLC cohort, and NSCLC trial denotes the in-house cohort.

Cancer Type (patient count) Classifier Cutoff AUC Sensitivity * Specificity **

Literature cohorts

RCC (n = 23) Λ×μ 0.0019 1.0 (1.0 – 1.0) 1.0 (1.0 – 1.0) 1.0 (1.0 – 1.0)

RCC (n = 23) α imaging 0.0 0.984 (0.933 – 1.036) 0.909 (0.739 – 1.079) 1.0 (1.0 – 1.0)

NSCLC (lit) (n = 41) Λ×μ 0.0042 0.943 (0.872– 1.013) 0.875 (0.713 – 1.037) 0.800 (0.604 – 0.995)

NSCLC (lit) (n = 41) α imaging 0.0 0.968 (0.904 – 1.031) 0.880 (0.753 – 1.007) 0.875 (0.745– 1.0043)

Melanoma (n = 17) Λ×μ 0.0073 0.867 (0.646 – 1.087) 1.0 (1.0 – 1.0) 0.600 (0.323 – 0.877)

Melanoma (n = 17) α imaging 0.0 0.883 (0.720 – 1.046) 0.800 (0.449 – 1.151) 0.750 (0.370 – 1.129)

UCC (n = 43) Λ×μ 0.0088 0.933 (0.858– 1.009) 0.889 (0.744 – 1.034) 0.920 (0.795 – 1.045)

UCC (n = 43) α imaging 0.0 0.978 (0.928 – 1.027) 0.880 (0.753 – 1.007) 0.944 (0.855 – 1.034)

Validation cohorts

IPI trial* (n = 93) Λ×μ 0.0080 0.904 (0.843 – 0.965) 0.905 (0.779 – 1.031) 0.722 (0.531 – 0.914)

IPI trial* (n = 93) α imaging 0.0 0.896 (0.802 – 0.989) 0.903 (0.834 – 0.971) 0.667 (0.558 – 0.776)

Basket-study** (n = 28) Λ×μ 0.0086 0.740 (0.507 – 0.972) 0.750 (0.326 – 1.174) 0.708 (0.263 – 1.154)

Basket-study** (n = 28) α imaging 0.0 0.917 (0.723 – 1.110) 0.875 (0.743 – 1.007) 0.500 (0.300 – 0.700)

NSCLC trial
†
 (n = 35)

Λ×μ 0.0145 0.793 (0.645 – 0.940) 0.857 (0.674 – 1.040) 0.667 (0.420 – 0.914)

NSCLC trial
†
 (n = 35)

α imaging 0.0 0.888 (0.764 – 1.011) 0.810 (0.642 – 0.977) 0.786 (0.610 – 0.961)

Brain Mets
††

 (n = 21)
Λ×μ 0.0033 0.824 (0.631 – 1.016) 0.916 (0.760 – 1.073) 0.667 (0.400 – 0.933)

Brain Mets
††

 (n = 21)
α imaging 0.0 0.759 (0.552 – 0.966) 0.556 (0.231 – 0.880) 0.833 (0.590 – 1.077)

Drug type (patient count) Classifier Cutoff AUC Sensitivity * Specificity **

Literature cohorts

Nivolumab (n = 81) Λ×μ 0.0063 0.949 (0.898 – 0.999) 0.900 (0.807 – 0.992) 0.854 (0.744 – 0.963)

Nivolumab (n = 81) α imaging 0.0 0.937 (0.881 – 0.993) 0.878 (0.778 – 0.978) 0.875 (0.773 – 0.976)

Atezolizumab (n = 43) Λ×μ 0.0088 0.933 (0.858– 1.009) 0.889 (0.744 – 1.034) 0.920 (0.795 – 1.045)

Atezolizumab (n = 43) α imaging 0.0 0.978 (0.928 – 1.027) 0.880 (0.753 – 1.007) 0.944 (0.855 – 1.034)

Validation cohorts

IPI trial
†

 (n = 93)
Λ×μ 0.0080 0.0.904 (0.843 – 0.965) 0.905 (0.779 – 1.031) 0.722 (0.531 – 0.914)

IPI trial
†

 (n = 93)
α imaging 0.0 0.896 (0.802 – 0.989) 0.903 (0.834 – 0.971) 0.667 (0.558 – 0.776)

Basket-study
††

 (n = 28)
Λ×μ 0.0086 0.740 (0.507 – 0.972) 0.750 (0.326 – 1.174) 0.708 (0.263 – 1.154)

Basket-study
††

 (n = 28)
α imaging 0.0 0.917 (0.723 – 1.110) 0.875 (0.743 – 1.007) 0.500 (0.300 – 0.700)
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NSCLC trial
§
 (n = 35)

Λ×μ 0.0145 0.793 (0.645 – 0.940) 0.857 (0.674 – 1.040) 0.667 (0.420 – 0.914)

NSCLC trial
§
 (n = 35)

α imaging 0.0 0.888 (0.764 – 1.011) 0.810 (0.642 – 0.977) 0.786 (0.610 – 0.961)

Brain Mets
#
 (n = 21)

Λ×μ 0.0033 0.824 (0.631 – 1.016) 0.916 (0.760 – 1.073) 0.667 (0.400 – 0.933)

Brain Mets
#
 (n = 21)

α imaging 0.0 0.759 (0.552 – 0.966) 0.556 (0.231 – 0.880) 0.833 (0.590 – 1.077)

*
Sensitivity: Λ×μ = number or responders identified correctly; αimaging = number of non-responders identified correctly.

**
Specificity: Λ×μ = number or non-responders identified correctly; αimaging = number of responders identified correctly.

†
IPI trial: drug type = ipilimumab, cancer type = metastatic to lung or liver, see Methods

††
Basket-study cohort represents 18 cancer types and 7 drug types (see Table S4)

§
NSCLC trial: drug type = pembrolizumab; cancer type = NSCLC

#
Brain Mets: drug type = ipilimumab, nivolumab, or ipilimumab plus nivolumab (see Methods), cancer type = melanoma metastatic to the brain.
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Table 2:

Best fit parameters for least squares linear regression estimation (in the form of y = kx) of how sensitive a 

certain cancer type is to treatment by the specified drug type; larger k values indicate larger sensitivity. Higher 

coefficients of determination were found when using predicted long-term tumour burden (ρpredicted
∞ ), however 

these were diminished when measured tumour burden at last restaging (ρmeasured
∞ ) was used. P-values for the 

regression models were determined by F-test (right tail). (lit) denotes the literature-derived NSCLC cohort, 

and NSCLC trial denotes the in-house cohort.

ρpredicted
∞ ρmeasured

∞

Cancer type (patient count) k R 2 p k R 2 p

Literature cohorts

RCC (n = 23) 0.00062 0.561326 < 0.001 0.00004 0.137486 0.074

NSCLC (lit) (n = 41) 0.00259 0.486478 < 0.001 0.00031 0.165020 0.008

Melanoma (n = 17) 0.00927 0.992614 < 0.001 0.00140 0.873101 < 0.001

UCC (n = 43) 0.00249 0.552252 < 0.001 0.00039 0.106262 0.031

Validation cohorts

IPI trial
†
 (n = 93)

0.007836 0.284626 < 0.001 0.00048 0.177689 < 0.001

Basket-study
††

 (n = 28)
0.002563 0.226202 < 0.001 0.00054 0.126117 0.059

NSCLC trial
§
 (n = 35)

0.002498 0.666749 < 0.001 0.00011 0.064815 0.134

Brain Mets
#
 (n = 21)

0.007007 0.771479 < 0.001 0.00088 0.434810 < 0.001

Drug type k R 2 p k R 2 p

Literature cohorts

Nivolumab (n = 81) 0.000786 0.324897 < 0.001 0.00006 0.064571 0.021

Atezolizumab (n = 43) 0.002489 0.552252 < 0.001 0.00039 0.106262 0.031

Validation cohorts

IPI trial
†
 (n = 93)

0.007836 0.284626 < 0.001 0.00048 0.177689 < 0.001

Basket-study
††

 (n = 28)
0.002563 0.226202 < 0.001 0.00054 0.126117 0.059

NSCLC trial
§
 (n = 35)

0.002498 0.666749 < 0.001 0.00011 0.064815 0.134

Brain Mets
#
 (n = 21)

0.007007 0.771479 < 0.001 0.00088 0.434810 < 0.001

†
IPI trial: drug type = ipilimumab, cancer type = metastatic to lung or liver, see Methods

††
Basket-study cohort represents 18 cancer types and 7 drug types (see Table S4)

§
NSCLC trial: drug type = pembrolizumab; cancer type = NSCLC

#
Brain Mets: drug type = ipilimumab, nivolumab, or ipilimumab plus nivolumab (see Methods), cancer type = melanoma metastatic to the brain.
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Table 3:

Highest observed values for 1/(Λ×µ) with ρpredicted
∞ < 1.0 (responders) by cancer and treatment type. In each 

case, values above those reported were always found to have unfavorable response to immunotherapy with 

increasing tumour burden over time (non-responders). Threshold values identified in the calibration cohort are 

indicated by dashed lines in Fig. 5B,C, with colours corresponding to cancer and treatment types. Percent 

and total counts of patients sorted correctly by the threshold 1/(Λ×µ) = 136.73 are listed. (lit) denotes the 

literature-derived NSCLC cohort, and NSCLC trial denotes the in-house cohort.

Cancer Type Highest 1/(Λμ) with 

ρpredicted
∞ < 1.0

1/(Λμ) 
threshold

ρpredicted
∞ < 1.0 and below 

threshold

ρpredicted
∞ > 1.0 and above 

threshold

Literature cohorts

RCC (n = 23) 515.80 136.73 92% (11/12) 100% (11/11)

NSCLC (lit) (n = 41) 802.52 136.73 81% (13/16) 84% (21/25)

Melanoma (n = 17) 136.73 136.73 100% (12/12) 100% (5/5)

UCC (n = 43) 719.21 136.73 89% (16/18) 84% (21/25)

Validation cohorts

IPI trial
†
 (n = 93) 235.44 136.73 90% (19/21) 69% (50/72)

Basket-study
††

 (n = 28) 77.81 136.73 83% (5/6) 64% (14/22)

NSCLC trial
§
 (n = 35) 417.17 136.73 87% (13/15) 35% (7/20)

Brain Mets
#
 (n = 21) 1769.94 136.73 75% (9/12) 67% (6/9)

Drug type Highest 1/(Λμ) with 

ρpredicted
∞ < 1.0

1/(Λμ) 
threshold

ρpredicted
∞ < 1.0 and below 

threshold

ρpredicted
∞ > 1.0 and above 

threshold

Literature cohorts

Nivolumab (n = 81) 802.52 136.73 90% (36/40) 90% (37/41)

Atezolizumab (n = 43) 719.21 136.73 89% (16/18) 84% (21/25)

Validation cohorts

IPI trial
†
 (n = 93) 235.44 136.73 90% (19/21) 69% (50/72)

Basket-study
††

 (n = 28) 77.81 136.73 83% (5/6) 64% (14/22)

NSCLC trial
§
 (n = 35) 417.17 136.73 87% (13/15) 35% (7/20)

Brain Mets
#
 (n = 21) 1769.94 136.73 75% (9/12) 67% (6/9)

†
IPI trial: drug type = ipilimumab, cancer type = metastatic to lung or liver, see Methods

††
Basket-study cohort represents 18 cancer types and 7 drug types (see Table S4)

§
NSCLC trial: drug type = pembrolizumab; cancer type = NSCLC

#
Brain Mets: drug type = ipilimumab, nivolumab, or ipilimumab plus nivolumab (see Methods), cancer type = melanoma metastatic to the brain.
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