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1  | INTRODUC TION

Oxidative stress (OS) plays a major role in the neurodegenera-
tive process.1,2 Retinal cell survival involves redox signaling and 
a balance between reactive oxygen species (ROS) and antioxidant 
scavengers to counteract OS injury.3–5 The retina is susceptible 
to OS due to its elevated oxygen consumption and exposure to 
visible light, which can potentiate cellular damage caused by ROS.6 
Elevated OS levels determine dramatic changes that lead to visual 
impairment. Age-related macular degeneration (AMD), diabetic 

retinopathy (DR), and glaucoma are ocular disorders that can lead 
to visual loss, and for which the involvement of ROS has been 
evoked.7 Moreover, OS is thought to induce a deficiency of cone 
photoreceptors in rare inherited retinopathies.8 High ROS levels 
can cause lipid peroxidation which is found at elevated amounts 
in the photoreceptor cell membrane.9 It is noteworthy that prod-
ucts of the oxidation of docosahexaenoic acid (DHA)–contain-
ing lipids (CEP-EPs) are observed at elevated levels both in the 
eyes and in serum of AMD patients compared with age-matched 
controls9,10 and are reported as activators of Toll-like receptor 2 
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Abstract
Retinal disorders are leading causes of blindness and are due to an imbalance between 
reactive oxygen species and antioxidant scavenger (in favor of pro-oxidant species) 
or a disruption of redox signaling and control. Indeed, it is well known that oxidative 
stress is one of the leading causes of retinal degenerative diseases. Different ap-
proaches using nutraceuticals resulted in protective effects in these disorders. This 
review will discuss the impact of oxidative stress in retinal neurodegenerative dis-
eases and the potential strategies for avoiding or counteracting oxidative damage in 
retinal tissues, with a specific focus on taurine. Increasing data indicate that taurine 
may be effective in slowing down the progression of degenerative retinal diseases, 
thus suggesting that taurine can be a promising candidate for the prevention or as 
adjuvant treatment of these diseases. The mechanism by which taurine supplemen-
tation acts is mainly related to the reduction of oxidative stress. In particular, it has 
been demonstrated to improve retinal reduced glutathione, malondialdehyde, su-
peroxide dismutase, and catalase activities. Antiapoptotic effects are also involved; 
however, the protective mechanisms exerted by taurine against retinal damage re-
main to be further investigated.
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(TLR2) in AMD and in other retinal diseases where ROS exert a 
role in pathology.11 The retina is endowed with an efficient innate 
immune system that activates three essential pathways: migration 
of microglia, stimulation of the complement system, and inflam-
masome assembly in the retinal pigment epithelium (RPE).12 For 
this response, retinal cells are endowed with a variety of immune 
receptors and mediators such as microbial sensors (TLRs), NOD-
like receptors-NLRs, RIG-1 like helicases, cytokines, chemokines, 
and complement components; all these players are in charge to 
help the cells to eliminate the insult.13 Under OS, the activation of 
this immune pathway aims to repair tissue homeostasis. Still, under 
continual stress, the inflammatory system's chronic hyperactiva-
tion can determine dramatic tissue changes and damage, resulting 
in irreversible retinal pathologies, including AMD or DR.14,15

The role of ROS as a crucial cause of pathogenic inflammation 
in chronic disorders has been validated.2,16 In fact, it has been re-
ported that pro-inflammatory cytokines, including TNF-α, inter-
leukin-1β, or interferon-γ, determine ROS increase in RPE cells. 
Indeed, these pro-inflammatory cytokines appear to increase in 
patients’ eyes affected by glaucoma, AMD, DR, or retinal vein 
occlusion.3,17

Taurine (2-aminoethanesulfonic acid) is a non-essential amino 
acid, mostly consumed with the diet.18 It is highly present in the eyes, 
but its physiological role is still uncertain.19 Although its role in the 
retina is unclear, numerous events have been attributed to taurine, 
involving osmoregulation, antioxidant defense, stress responses, 
and protein stabilization.20 Taurine deficiency leads to photorecep-
tor degeneration but also to RGC loss. Cone photoreceptors and 
RGCs appear as the most sensitive cells to taurine deficiency.21

It has been reported that taurine levels in animals decrease with 
aging, and specific electroretinogram changes in rats can be associ-
ated with these decreased tissue levels, suggesting that the retina 
has a reduced capability to counteract the OS.22 Exogenous tau-
rine administration may be helpful in counteracting and preventing 
age-related alterations in the retina.22

Numerous potential targets have been proposed for the neuro-
protective effects of taurine, including the restoration of the expres-
sion of anti- and pro-apoptotic proteins, its high antioxidant activities, 
the reduction of calcium influx through voltage-gated calcium chan-
nels, and the reduction of glutamate-induced excitotoxicity.19,23–25

Based on the shreds of evidence exposed, this review discusses 
the role of OS in retinal disorders and the approaches for preventing 
or counteracting oxidative injuries in retinal tissues, with a particular 
focus on a promising candidate for their prevention, the taurine.

2  | THE ORGANIZ ATION OF THE RETINA

As an extension of the central nervous system, the retina displays 
similarities to the brain and spinal cord in terms of functionality, 
anatomy, and immunology.26 For instance, the eye shows unique 
structures and different surface molecules and cytokines and has 
a specialized immune system similar to those of the brain and spinal 

cord.26 Moreover, in terms of anatomy both the retina and the brain 
present a barrier that impede circulating pathogens or toxins that 
could induce infections, but at the same time regulate the passage of 
vital nutrients.26 Blood flow alterations in the brain, due to ischemia 
for example, are strictly related to blood flow alterations occurring 
in the eye following by visual impairments.27,28

Visual processing starts in the retina: a thin, multilayered tis-
sue composed of light-sensitive neurons lining the back of the 
vertebrate eye.29 The retina elaborates the light produced from 
visual images through transduction (transferring energy from one 
form to another) and transfers these data to the brain for the per-
ceptual appreciation of the images.30 All vertebrate retinas are 
composed of three layers of nerve cell bodies, the outer nuclear 
layer (ONL), the inner nuclear layer (INL), and the ganglion cell 
layer; and two layers of synapses.31,32 ONL is composed of nuclei 
of photoreceptor cells, which are of two types: rods and cones; 
the rods and cones synapse with the bipolar cells are in the second 
layer. INL contains the nuclei and cell bodies of the bipolar, hor-
izontal, and amacrine cells, as well as Müller glial cells.32 Bipolar 
cells spread their extremities to transmit with both the first and 
third layers. Müller cells are the principal glial cell of the retina 
and stretch radially across the thickness of the retina. They are 
responsible for the homeostatic and metabolic support of retinal 
neurons31 (Figure 1).

Rods work mostly in dim light and create no-colored images. 
Cones operate in well-light circumstances and permit the percep-
tion of colors and for high-awareness vision utilized for tasks like 
reading. The third type of light-sensitive cells, the ganglion cells, 
is essential for the entrainment of circadian rhythms and reflexive 
reactions.31,33

Neural signals from the rods and cones are processed by other 
neurons, whose output brings action potentials in RGCs whose axons 
generate the optic nerve.34 The axons of RGCs in the retina's third 
layer convey the visual data as coded by the retina to the follow-
ing synapse point in the visual pathway through the optic nerve.35 
Amacrine and horizontal cells situated in the INL participate in visual 
information processing through lateral contacts.36 These lateral con-
tacts regulate data transmission through the retina synaptic layers, 
between the first and second layer and the second and third layer. 
This intricate system of neurons collects the transduced visual data 
and processes them by compression, encoding, convergence, and 
integration.30

3  | OXIDATIVE STRESS IN RETINAL 
DEGENER ATIVE DISE A SES

Aging, gene alterations, and excessive exposure to exogenous oxida-
tive stressors (eg, a light exposure) increase oxidative stress in the 
eye. The relationship between oxidative stress and retinal disorders 
has been established.6,7,22 Oxidative stress shows a crucial role in 
the onset and progression of retinal disorders, comprising DR, AMD, 
and glaucoma.6,8
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3.1 | Diabetic retinopathy

DR is one of the leading causes of visual impairment and is one 
of the most common microvascular complications of diabetes.37 
The polyol pathway is one of the high glucose-induced metabolic 
alterations in DR. It converts the glucose in sorbitol, and the re-
action is catalyzed by aldose reductase. Sorbitol is then oxidized 
to produce fructose by sorbitol dehydrogenase. Enhanced polyol 
pathway in diabetes increases the OS because aldose reductase 
needs NADPH.38 This event may reduce the availability of NADPH 
for stimulating the intracellular antioxidant, GSH.39,40 The pro-
duction of advanced glycation end products (AGEs) is another 
pathway causing the detrimental consequences of glucose. AGEs 
are generated from potent glycating dicarbonyl elements, that 
is, methylglyoxal and glyoxal.41 Chronic hyperglycemia supports 
enzymatic and non-enzymatic glycation, inducing altered func-
tions and degradation of intracellular and extracellular proteins 
by chemical rearrangement and cross-linking. AGEs are created 
on amino groups of proteins, lipids, and DNA, leading to intra-
molecular and intermolecular cross-links.41 In diabetic conditions, 
the accumulation of AGEs and its receptor, RAGE, are increased 
in retinal capillary cells.42 In the later phases of DR, AGEs are ir-
reversibly generated and deposited in the retinal microvascula-
ture.42,43 AGEs enhance nitrative stress in the capillary cells and 
trigger apoptosis events leading to retinal capillary cell death and 
pathological consequences.44,45

The activation of protein kinase C (PKC) pathway is also involved 
in the pathogenesis of DR.46–48 High glucose levels enhance ROS 
levels, and the synthesis of diacylglycerol, inducing PKC activation.49 
Activated PKC can determine numerous alterations typical of DR, 
including enhancing vessel permeability, blood flow, endothelial 
proliferation, apoptosis, altered hormone and growth factor recep-
tor recycling, increased neovascularization, and regulating various 

factors as vascular endothelial growth factor, insulin-like growth 
factor-1, and transforming growth factor β.44,50 Inhibition of PKC 
by PKCβ specific inhibitor (LY53331) was able to avoid diabetes-in-
duced OS.44,51 Ohshiro and colleagues showed that lack of PKCβ 
isoform in mice protected them from diabetes-induced OS.52 These 
studies linked OS and PKC supported PKC's role in ROS-mediated 
diabetic problems.

In diabetes, glucose oxidation is enhanced, generating an ele-
vated voltage gradient across the mitochondrial membrane.17 One 
of the ROS-induced impairments in mitochondria is the reduced 
antioxidant defense that may increase retinal cells’ sensitivity to 
OS. The isoform of SOD in the mitochondria, MnSOD, and GSH 
are inhibited in diabetic patients and high glucose-cultured reti-
nal mitochondria.53 Mitochondrial impairment also involves injury 
to mitochondrial DNA,2 which also occurs in the diabetic retina.54 
Enhanced swelling of mitochondrial lipid membranes is detected in 
the retina of diabetic mice.54 The inner mitochondrial membrane in-
cludes numerous soluble proteins, including cytochrome c. The re-
lease of cytochrome c from mitochondria to the cytoplasm and Bax 
translocation from the cytosol to mitochondria are enhanced in cap-
illary cells and in the retina in diabetic conditions, events that lead to 
apoptosis.55 Therefore, it is clear that OS can regulate mitochondria 
activity, causing higher apoptosis in retinal microvasculature; fur-
ther investigations to define the role of OS-induced mitochondrial 
impairments in DR are necessary. Antioxidants may act at various 
levels; they may prevent ROS formation or scavenge free radicals or 
enhance antioxidant defenses.

3.2 | Age-related macular degeneration

AMD is a multifactorial disorder,56 and its pathogenesis re-
mains unclear. Evidence indicates that an intricate interaction of 

F I G U R E  1   Organization of the mature 
retina. ONL: outer nuclear layer; INL: 
inner nuclear layer; and GCL: ganglion 
cell layer. In the ONL resides the rod 
and cone photoreceptor cells. The INL 
contains the amacrine cells, the horizontal 
cells, and the bipolar cells. The Müller cell 
body is in this layer, while the processes 
of the develop into the contiguous layers, 
expanding all through the thickness of the 
retina. The GCL mostly contains of the 
ganglion cells which send their axons out 
of the eye via the optic disk
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environmental, genetic, and metabolic factors contributes to the 
pathology of AMD.57 AMD is the main reason for visual impair-
ment in the elderly. AMD initially alters the RPE and gradually 
leads to secondary loss of photoreceptor cells.58,59 It is character-
ized by the degeneration of the macula, described by high num-
ber of cone photoreceptors responsible for visual perception and 
color vision. In AMD, three stages have been recognized: the early 
stage, the intermediate stage, and the late stage (based on the 
most recent Three Continent AMD Consortium Severity Scale60 
and Clinical Classification61). The early stage (mild and moderate 
or severe) is marked by the development of several small drusen 
or a few medium-sized drusen62; the intermediate stage is charac-
terized by some pigmentary abnormalities and large drusen; and 
the late stage with several large drusen is characterized by two 
forms: non-exudative (“dry form”) and an exudative/neovascular 
(“wet form”).63 The “dry form” is characterized by atrophic altera-
tions in the macula and, clinically, has better conservation of visual 
acuity than “wet form”.62 “Wet” AMD is characterized by atypi-
cal blood vessels in the choriocapillaris, which is the formation of 
new through Bruch's membrane. These vessels lead to bleeding 
and leakage into the macula and ultimately induce irreversible 
damage to photoreceptors if untreated.62 The “wet form” leads to 
significant incidence of substantial visual impairment.64 End-stage 
macular degeneration is the last and irreversible stage, and the pa-
tients show visual loss and cannot be longer treated with surgery 
or ocular injections.

Different pathways are involved in AMD, including OS, apop-
tosis, the formation of drusen and RPE aberration, immune system 
activation, senescent failure of homeostatic control, and Bruch's 
membrane defects.64 During aging, antioxidant decreases, and 
ROS level increases, supporting OS.2,65 Furthermore, glutathione 
S-transferase-1 expression level,66 macular carotenoids level,67 and 
vitamin E level68 are reduced. On the other hand, lipid peroxidation 
is enhanced,69 and lipofuscin,70,71 altered mitochondrial DNA in the 
retina,72 and advanced lipid peroxidation and glycation end prod-
ucts73 are enhanced. To date, there is no therapy accessible for the 
“dry type” AMD. In the Age-Related Eye Disease Study (AREDS), 
nutraceuticals (AREDS and AREDS2), comprising vitamins C and E, 
β-carotene, and zinc, counteracted the disease progression from in-
termediate to advanced AMD by about 25%.74 However, AREDS and 
AREDS2 supplements do not prevent AMD onset. AREDS investi-
gators followed participants for an additional five years (ten year in 
total).75–77

For the “wet-type,” the anti-vascular endothelial growth factor 
(VEGF) antibody is generally used as standard therapy able to ame-
liorate patients’ visual function.78,79 The route of administration is 
intravitreal injection80; but this procedure is invasive and is related 
to the possibility of infection.81,82 Also, the anti-VEGF antibody is 
costly; consequently, it is crucial to develop new therapeutic ap-
proaches for this pathology.

On light of the pathways involved in AMD, it has been sug-
gested that antioxidant supplement may counteract cellular dam-
age in the retina by reacting with free radicals that are produced 

in the process of light absorption, thus reducing the risk and pro-
gression of AMD.83

3.3 | Glaucoma

Another disorder that leads to irreversible blindness is glaucoma. 
Open-angle glaucoma (OAG) is the most common form. OAG is char-
acterized by degeneration of the trabecular meshwork (TM) which 
rises the intraocular pressure, which in turn, lead to altered axons 
of RGCs forming the optical nerve, and then progressive concen-
tric damage of the RGCs.84–86 Degeneration of these cells results 
in a typical form of the optic disk (cupping) and visual impairment. 
Furthermore, it is characterized by retinal nerve fiber layer varia-
tions and typical visual field defects.87 The biological mechanism of 
glaucoma is poorly recognized, and the factors supporting its pro-
gress have not been entirely described.84,88 One of the leading risk 
factors for glaucoma advancement, and the only adaptable factor, is 
elevated intraocular pressure.89 Even if the mechanism is still uncer-
tain, early neuroinflammation is indicated as an underlying trigger 
of glaucoma pathology.90,91 Like AMD, glaucoma is also associated 
with OS.92,93 Indeed, it has been reported that the progressive loss 
of TM cells in glaucoma patients may be attributed to the long-term 
effects of oxidative injury induced by free radicals.94,95 This hypoth-
esis was then supported by in vitro and in vivo studies. Human TM 
in vitro upon hydrogen peroxide showed loss of cellular integrity 
and reduced cell adhesion.96 In vivo, calf TM treated with hydrogen 
peroxide showed altered the mechanism of drainage of the aqueous 
humor from the anterior chamber of the eye.97 Combined treatment 
with trophic and antioxidant factors was able to prevent the RGCs 
death in rats with elevated IOP.98 Also, it has been reported that oxi-
dative damage to DNA is considerably higher in the TM of glaucoma-
tous patients compared to controls.99 Additionally, in patients, IOP 
increase and visual impairment are proportional to the amount of 
oxidative DNA damage affecting TM cells.100 In addition, the plasma 
level of glutathione, an important antioxidant, resulted reduced in 
glaucoma patients.101,102 On light of the exposed evidence, antioxi-
dant therapies could help counteract or reduce this pathology.

4  | TAURINE IN THE RETINA AND 
RETINAL DISORDERS

In the retina of mammals, taurine is the most copious amino acid dur-
ing development and adulthood.25 Moreover, the retina appears to 
be the taurine richest organ,19 with concentrations higher than any 
other ocular structures or the brain,103 reaching up to 50 mmol/g 
tissue in rats. Retinal taurine is provided by Müller cells and RPE, 
which generally collect taurine and transfer it to photoreceptor 
cells.104 Photoreceptor cells are significantly rich in taurine, and all 
retinal cells use taurine from the extracellular environment. High- 
and low-affinity Na+ and Cl−-dependent taurine transporters have 
been reported in the retina. Also, it has been reported that taurine 
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treatment can avoid or counteract retinal neurodegeneration.23 
Thus, photoreceptors require a sufficient amount of extracellular 
taurine, depending on their transporter for osmoregulation.20,105 
However, its function in the retina is still uncertain.

In humans, chronic parenteral nutrition absent of taurine re-
sulted in reduced plasma taurine concentrations and atypical elect-
roretinograms in children and conceivably in adults.25,106

A research group investigated if light exposure exacerbated ret-
inal neuronal loss induced by taurine depletion.107 As a model, they 
used albino rats receiving β-alanine (which causes taurine deple-
tion) in the drinking water, and after one month of treatment, 50% 
of the rats were subjected to white light (3000 lux).107 The results 
indicated that light exposure under taurine depletion increased 
photoreceptor degeneration, suggesting that taurine is essential 
for retinal survival and for light-induced photoreceptor degener-
ation.107 Consequently, the taurine supplement may counteract 
degeneration of the retina, particularly S-cone degeneration or can 
be useful for the treatment of pathologies for which light may rep-
resent an etiologic feature.

One of the main cytoprotective effects of taurine includes its 
antioxidant activity, mediated by three different processes. First, 
taurine counteracts the neutrophil oxidant, hypochlorous acid. The 
product of the reaction between taurine and hypochlorous acid, tau-
rine chloramine, also hinders with the inflammatory pathway.108,109 
Second, taurine reduces the production of superoxide by mitochon-
dria.25,110 Third, mitochondrial ROS can impair antioxidant enzyme 
activity in balancing OS.3,110 Because some antioxidant enzymes are 
receptive to oxidative injury, taurine may counteract OS by avoiding 

this enzyme impairment. As mentioned above, taurine deficiency 
leads to photoreceptor degeneration and also to retinal ganglion cell 
loss21,111; thus, taurine therapy may exert an essential role in pre-
venting retinal degeneration106 (Figure 2).

RGC degeneration appears in several retinal disorders lead-
ing to visual loss, either as a primary process like in glaucoma or 
secondary to photoreceptor loss.86 However, to date, there is no 
available treatment directly targeting RGCs neuroprotection. As 
we mentioned above, taurine seems to be essential for photore-
ceptors’ survival since its deprivation is related to retinal death. 
Froger et al111 studied the taurine effect on RGCs in vitro models 
and various animal models of RGC degeneration. Taurine protec-
tive effects were evaluated in vitro on primary RCG cultures in 
serum-free conditions and on N-methyl-D-aspartate (NMDA)-
treated retinal explants from adult rats. In vivo, two glaucomatous 
models (mice and rats with vein occlusion) and a model of RP with 
secondary RGC degeneration (P23H rats) were used. Taurine was 
administered in the drinking water for 6 days.111 Notably, taurine 
significantly improved RGC survival (+68%) in vitro and partly 
prevented NMDA-induced RGC excitotoxicity. In vivo, taurine 
administration was also able to increase RGC densities in both 
animal models compared to control groups. This study indicated 
that enriched taurine nutrition could directly maintain RGC sur-
vival, reducing the OS, positively affecting retinal degenerative 
disorders.111

Furthermore, it has been reported that taurine supplementa-
tion may be protective and promising therapeutic approach for reti-
nopathies with a chronic cycle, for example, retinitis pigmentosa, an 

F I G U R E  2   Schematic representation 
regarding the potential effects of taurine 
supplement on retinal degenerative 
disorders. Due to its potential in 
modulating the oxidative stress, reducing 
reactive retinal gliosis, and increasing RGC 
survival as well as sodium pump activity, 
taurine supplement may represent a 
therapeutic approach for pathologies like 
glaucoma, DR, and AMD
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inherited disorder characterized by a progressive degeneration of 
rod photoreceptors.112 Indeed, in a mouse model of N-methyl-N-
nitrosourea (MNU)-induced retinal degeneration, intravenous tau-
rine therapy broadly improved the retinal taurine concentration. 
Morphological experiments revealed that taurine ameliorated the reti-
nal disorganization in the MNU-induced animals. Furthermore, taurine 
was able to ameliorate the vision loss in the MNU-induced animals, 
as demonstrated by functional analyses (ie, electroretinogram and op-
tokinetic test). Immunostaining analyses showed that taurine amelio-
rated both M-cone and S-cone populations in the degenerative retinas. 
Regarding the mechanism, the OS and photoreceptor apoptosis in the 
degenerative retina were strongly reduced by taurine.113

In another interesting study, Arfuzir et al114 evaluated taurine 
neuroprotective properties against glaucoma. In particular, they used 
endothelin-1 (ET-1)-induced retinal and optic nerve damage. ET-1 was 
administered intravitreally to Sprague-Dawley rats, and taurine was in-
jected as pre-, co-, or post-treatment.114 This study suggested that the 
treatment with taurine, particularly in a preventive regimen, prevented 
apoptosis of retinal cells induced by ET-1 and prevented the changes in 
the morphology of the retina and optic nerve. The protective effect of 
taurine was also associated with reduced retinal OS. In particular, tau-
rine was able to improve retinal reduced glutathione, malondialdehyde, 
superoxide dismutase, and catalase activities.114

Another group examined the consequences and the main taurine 
mechanisms on hyperglycemia-induced variations of Müller cells’ 
glutamate degradation and uptake. A decreased capability of Müller 
cells to eliminate glutamate from the extracellular space is critical in 
the disruption of glutamate homeostasis that appears in the diabetic 
retina. Taurine substantially reduced the high glucose-induced re-
ductions in glutamate uptake and counteracted OS induced by high 
glucose, increasing the antioxidant enzyme events. These results 
indicate that taurine might control Müller cells’ glutamate uptake 
and degradation under diabetic conditions through its antioxidant 
activity.115

Recently, Fan et al investigated the role and mechanisms of 
taurine supplementation (intraperitoneally or intragastrically) in 
early diabetic retinas using an eight-week-old streptozotocin (STZ)-
induced diabetic rats. Taurine protected retinal cone cells as well as 
RGCs from diabetic attacks by activating retinal taurine transporter, 
reducing reactive retinal gliosis, enhancing retinal synaptic connec-
tions, and reducing retinal cell apoptosis.116

Another study examined the chronic taurine treatment vs. a 
mixture of vitamin E and selenium on biochemical retinal alterations 
caused by diabetes at different disease stages. STZ-diabetic rats 
were treated for 4 months, and taurine was able to significantly re-
duce retinal OS and to enhance sodium pump activity in experimen-
tal diabetes in a dose- and time-dependent manner.117 Overall, these 
findings strengthen the hypothesis that taurine could represent a 
novel approach for DR.

A recent study evaluated taurine's effects in a family with taurine 
deficiency (homozygous amino acid substitution in the third trans-
membrane domain of the taurine transporter SLC6A6). In particu-
lar, the authors evaluated taurine levels in the blood and analyzed 

the fundus and macular with optical coherence tomography after 
2 years of taurine supplementation. Interestingly, the retinal degen-
eration was counteracted, and the vision was clinically ameliorated 
mostly in the youngest patients (6 years old).118

5  | DISCUSSION AND CONCLUSIONS

It is well known that OS is one of the leading causes of neurode-
generation and retinal degenerative disorders. Indeed, different ap-
proaches using antioxidants resulted in protective effects in these 
disorders.119–121 Researchers focused on the effects of taurine in 
retinal disorders. In this review, we reported evidence of the protec-
tive role of taurine against retinal functional and morphological inju-
ries in animal and in in vitro retinal disease models, thus implying that 
taurine may have a therapeutic potential in the treatment of retinal 
and degenerative disorders. Indeed, increasing data indicate that 
taurine may be effective in slowing down the progression of retinal 
diseases, thus suggesting that taurine can be a promising candidate 
for the prevention or as adjuvant treatment of these diseases. The 
mechanism by which taurine supplementation acts is mainly reduc-
ing the OS, even also antiapoptotic effects are involved; however, 
the protective effects of taurine against retinal damage still unclear. 
Further investigations should focus on the way in which taurine pro-
tects cells against oxidative stress and toxicity at cellular level and 
determine whether other treatments can trigger these neuropro-
tective pathways. Along with other antioxidant molecules, taurine 
should therefore be strongly reconsidered as a potential treatment 
for retinal diseases.

6  | METHODS

Extensive bibliographic research was conducted using the PubMed 
National Library of Medicine (NIH), Web of Science platform, Google 
Scholar, and Clinical Key databases. Examples of the search terms 
used were ‘‘Taurine” ‘‘oxidative stress’’, ‘‘retina’’, ‘‘therapies’’, ‘‘in 
vitro’’, ‘‘in vivo’’ “health retina” “retinal degeneration”. For screening, 
a restriction was made to those articles published in the last 10 years 
and preferably in English. Priority was given to prospective studies 
and reviews with a clear and well-described methods section. In ad-
dition, a secondary search of the bibliography of the articles finally 
selected was carried out to detect possible omissions. For the analy-
sis of all relevant publications, consensus meetings were held with 
all the authors.
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