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Abstract
The analysis of equilibrium points is of great importance in evolutionary game theory
with numerous practical ramifications in ecology, population genetics, social sci-
ences, economics and computer science. In contrast to previous analytical approaches
which primarily focus on computing the expected number of internal equilibria, in
this paper we study the distribution of the number of internal equilibria in a multi-
player two-strategy random evolutionary game. We derive for the first time a closed
formula for the probability that the game has a certain number of internal equilibria,
for both normal and uniform distributions of the game payoff entries. In addition,
using Descartes’ rule of signs and combinatorial methods, we provide several univer-
sal upper and lower bound estimates for this probability, which are independent of
the underlying payoff distribution. We also compare our analytical results with those
obtained from extensive numerical simulations.Many results of this paper are applica-
ble to a wider class of random polynomials that are not necessarily from evolutionary
games.
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1 Introduction

1.1 Motivation

Evolutionary Game Theory (EGT) (Maynard Smith and Price 1973) has become one
of the most diverse and far reaching theories in biology finding its applications in
a plethora of disciplines such as ecology, population genetics, social sciences, eco-
nomics and computer science (Maynard Smith 1982; Axelrod 1984; Hofbauer and
Sigmund 1998; Nowak 2006; Broom and Rychtář 2013; Perc and Szolnoki 2010;
Sandholm 2010; Han et al. 2017), see also recent reviews (Wang et al. 2016; Perc
et al. 2017). For example, in economics, EGT has been employed to make predictions
in situations where traditional assumptions about agents’ rationality and knowledge
may not be justified (Friedman 1998; Sandholm 2010). In computer science, EGT
has been used extensively to model dynamics and emergent behaviour in multiagent
systems (Helbing et al. 2015; Tuyls and Parsons 2007; Han 2013). Furthermore, EGT
has provided explanations for the emergence and stability of cooperative behaviours
which is one of the most well-studied and challenging interdisciplinary problems in
science (Pennisi 2005; Hofbauer and Sigmund 1998; Nowak 2006). A particularly
important subclass in EGT is random evolutionary games in which the payoff entries
are random variables. They are useful to model social and biological systems in which
very limited information is available, or where the environment changes so rapidly
and frequently that one cannot describe the payoffs of their inhabitants’ interactions
(May 2001; Fudenberg and Harris 1992; Han et al. 2012; Gross et al. 2009; Galla and
Farmer 2013).

Similar to the foundational concept of Nash equilibrium in classical game theory
(Nash 1950), the analysis of equilibrium points is of great importance in EGT. It
provides essential understanding of complexity in a dynamical system, such as its
behavioural, cultural or biological diversity (Haigh 1988, 1990; Broom et al. 1997;
Broom2003;Gokhale andTraulsen 2010, 2014;Han et al. 2012;Duong andHan2015,
2016; Broom and Rychtář 2016). A large body of literature has analysed the number
of equilibria, their stability and attainability in concrete strategic scenarios such as
the public goods game and its variants, see for example Broom et al. (1997), Broom
(2000), Pacheco et al. (2009), Souza et al. (2009), Peña (2012), Peña et al. (2014)
and Sasaki et al. (2015). However, despite their importance, equilibrium properties
in random games are far less understood with, to the best of our knowledge, only
a few recent efforts (Gokhale and Traulsen 2010, 2014; Han et al. 2012; Galla and
Farmer 2013; Duong and Han 2015, 2016; Broom and Rychtář 2016). One of the
most challenging problems in the study of equilibrium properties in random games
is to characterise the distribution of the number of equilibria (Gokhale and Traulsen
2010; Han et al. 2012):

What is the distribution of the number of (internal) equilibria in a d-player
random evolutionary game and how can we compute it?

This question has been studied in the literature to some extent. For example, inGokhale
and Traulsen (2010, 2014) andHan et al. (2012), the authors studied this question with
a small number of players (d ≤ 4) and only focused on the probability of attaining the
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maximal number of equilibrium points, i.e. pd−1, where pm (0 ≤ m ≤ d − 1) is the
probability that a d-player game with two strategies has exactly m internal equilibria.
These works use a direct approach by analytically solving a polynomial equation,
expressing the positivity of its zeros as domains of conditions for the coefficients and
then integrating over these domains to obtain the corresponding probabilities. How-
ever, it is impossible to extend this approach to games with a large or arbitrary number
of players as in general, a polynomial of degree five or higher is not analytically solv-
able (Abel 1824). In more recent works (Duong and Han 2015, 2016; Duong et al.
2017), we have established the links between random evolutionary games, random
polynomial theory (Edelman and Kostlan 1995) and classical polynomial theory (par-
ticularly Legendre polynomials), employing techniques from the latter to study the
expected number of internal equilibria, E . More specifically, we provided closed form
formulas for E , characterised its asymptotic limits as the number of players in the game
tends to infinity and investigated the effect of correlation in the case of correlated pay-
off entries. On the one hand, E offers useful information regarding the macroscopic,
average behaviour of the number of internal equilibria a dynamical systemmight have.
On the other hand, E cannot provide the level of complexity or the number of different
states of biodiversity that will occur in the system. In these situations, details about
how the number of internal equilibrium points distributed is required. Furthermore, as
E can actually be derived from pm using the formula E =∑d−1

m=0 mpm , a closed form
formula for pm would make it possible to compute E for any d, hence filling in the
gap in the literature on computing E for large d (d ≥ 5). Therefore, it is necessary to
estimate pm .

1.2 Summary of main results

In this paper, we address the above question by providing a closed-form formula for
the probability pm (0 ≤ m ≤ d − 1). Our approach is based on the links between
random polynomial theory and random evolutionary game theory established in our
previous work (Duong and Han 2015, 2016). That is, an internal equilibrium in a
d-player game with two strategies can be found by solving the following polynomial
equation (detailed derivation in Sect. 2),

d−1∑

k=0

βk

(
d − 1
k

)

yk = 0, (1)

where βk = Ak − Bk , with Ak and Bk being random variables representing the entries
of the game payoff matrix. We now summarise the main results of this paper. Detailed
derivations and proofs will be given in subsequent sections. The first main result is an
explicit formula for the probability distribution of the number of internal equilibria.

Theorem 1 (The distribution of the number of internal equilibria in a d-player two-
strategy random evolutionary game) Suppose that the coefficients {βk} in (1) are either
normally distributed, uniformly distributed or the difference of uniformly distributed
random variables. The probability that a d-player two-strategy random evolutionary
game has m, 0 ≤ m ≤ d − 1, internal equilibria, is given by
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pm =
� d−1−m

2 �∑

k=0

pm,2k,d−1−m−2k, (2)

where pm,2k,d−1−m−2k are given in (13), (14) and (15), respectively.

This theorem, which is stated in detail in Theorem 4 in Sect. 3, is derived from a more
general theorem, Theorem 3, where we provide explicit formulas for the probability
pm,2k,n−m−2k that a random polynomial of degree n has m (0 ≤ m ≤ n) positive, 2k
(0 ≤ k ≤ � n−m

2 �) complex and n − 2m − 2k negative roots. Note that results from
Theorem 3 are applicable to a wider class of general random polynomials, i.e. beyond
those derived from evolutionary random games considered in this work.

Theorem 1 is theoretically interesting and can be used to compute pm , 0 ≤ m ≤
d − 1 for small d. We use it to compute all the probabilities pm , 0 ≤ m ≤ d − 1, for
d up to 5, and compare the results with those obtained through extensive numerical
simulations (for validation). However, when d is larger it becomes computationally
expensive to compute these probabilities using formula (2) because one needs to
calculate all the probabilities pm,2k,d−1−2k , 0 ≤ k ≤ � n−m

2 �, which are complex
multiple integrals. To overcome this issue, in Sect. 5, we develop our second main
result, Theorem 2 below, which offers simpler explicit estimates of pm in terms of
d and m. The main idea in developing this result is employing the symmetry of the
coefficients βk . Specifically, we consider two cases

Case 1: P(βk > 0) = P(βk < 0) = 1

2
,

Case 2: P(βk > 0) = α and P(βk < 0) = 1 − α,

for all k = 0, . . . , d − 1 and for some 0 ≤ α ≤ 1. Note here that Case 1 is an instance
of Case 2 when α = 1

2 and can be satisfied when ak and βk are exchangeable (see
Lemma 1 below). Interestingly, the symmetry of βk allows us to obtain a much simpler
treatment. The general case allows us to move beyond the exchangeability condition
capturing the fact that different strategies might have different payoff properties.

Theorem 2 We have the following upper-bound estimate for pm

pm ≤
∑

k≥m
k−m even

pk,d−1, (3)

where pk,d−1 = 1
2d−1

(
d − 1
k

)

if α = 1
2 , in this case the sum on the right hand side

of (3) can be computed explicitly in terms of m and d. For the general case, it can
be computed explicitly according to Theorem 7. The estimate (3) has several useful
implications, leading to explicit bounds for pd−2 and pd−1 as well as the following
assertions:

(1) For d = 2: p0 = α2 + (1 − α)2 and p1 = 2α(1 − α);
(2) For d = 3: p1 = 2α(1 − α).
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This theorem is a summary of Theorems 6, 7 and 8 in Sect. 4 that are derived using
Descartes’ rule of signs and combinatorial methods. We note that results of the afore-
mentioned theorems are applicable to a wider class of random polynomials that are
not necessarily from random games.

1.3 Organisation of the paper

The rest of the paper is organised as follows. In Sect. 2, we recall and summarise
the replicator dynamics for multi-player two-strategy games. The main contributions
of this paper and the detailed analysis of the main results described above will be
presented in subsequent sections. Section 3 is devoted to the proof of Theorem 1 on
the probability distribution. The proof of Theorem 2 will be given in Sect. 4. In Sect. 5
we show some numerical simulations to demonstrate analytical results. In Sect. 6,
further discussions are given. Finally, Appendix 1 contains proofs of technical results
from previous sections.

2 Replicator dynamics

A fundamental model of evolutionary game theory is replicator dynamics (Taylor
and Jonker 1978; Zeeman 1980; Hofbauer and Sigmund 1998; Schuster and Sig-
mund 1983; Nowak 2006), describing that whenever a strategy has a fitness larger
than the average fitness of the population, it is expected to spread. For the sake of
completeness, below we derive the replicator dynamics for multi-player two-strategy
games.

Consider an infinitely large population with two strategies, A and B. Let x , 0 ≤
x ≤ 1, be the frequency of strategy A. The frequency of strategy B is thus (1− x). The
interaction of the individuals in the population is in randomly selected groups of d
participants, that is, they play and obtain their fitness from d-player games. The game
is defined through a (d − 1)-dimensional payoff matrix (Gokhale and Traulsen 2010),
as follows. Let Ak (respectively, Bk) be the payoff that an A-strategist (respectively,
a B-strategist) obtained when playing with a group of d − 1 players that consists of
k A-strategists. In this paper, we consider symmetric games where the payoffs do
not depend on the ordering of the players. Asymmetric games will be studied in a
forthcoming paper. In the symmetric case, the probability that an A strategist interacts
with k other A strategists in a group of size d − 1 is

(
d − 1
k

)

xk(1 − x)d−1−k . (4)

Thus, the average payoffs of A and B are, respectively

πA =
d−1∑

k=0

Ak

(
d − 1
k

)

xk(1 − x)d−1−k, πB =
d−1∑

k=0

Bk

(
d − 1
k

)

xk(1 − x)d−1−k .
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The replicator equation of a d-player two-strategy game is given by (Hofbauer and
Sigmund 1998; Sigmund 2010; Gokhale and Traulsen 2010)

ẋ = x(1 − x)
(
πA − πB

)
.

Since x = 0 and x = 1 are two trivial equilibrium points, we focus only on internal
ones, i.e. 0 < x < 1. They satisfy the condition that the fitnesses of both strategies
are the same, i.e. πA = πB , which gives rise to

d−1∑

k=0

βk

(
d − 1
k

)

xk(1 − x)d−1−k = 0,

where βk = Ak − Bk . Using the transformation y = x
1−x , with 0 < y < +∞,

dividing the left hand side of the above equation by (1−x)d−1 we obtain the following
polynomial equation for y

P(y) :=
d−1∑

k=0

βk

(
d − 1
k

)

yk = 0. (5)

Note that this equation can also be derived from the definition of an evolutionarily
stable strategy (ESS), an important concept in EGT (Maynard Smith 1982), see e.g.,
Broom et al. (1997). Note however that, when moving to random evolutionary games
with more than two strategies, the conditions for ESS are not the same as for those of
stable equilibrium points of replicator dynamics. As in Gokhale and Traulsen (2010),
Duong and Han (2015, 2016), we are interested in random games where Ak and Bk

(thus βk), for 0 ≤ k ≤ d − 1, are random variables.
In Sect. 3 where we provide estimates for the number of internal equilibria in a

d-player two-strategy game, we will use the information on the symmetry of βk . The
following lemma gives a necessary condition to determine when the difference of two
random variables is symmetrically distributed.

Lemma 1 (Duong et al. 2017, Lemma 3.5) Let X and Y be two exchangeable
random variables, i.e. their joint probability distribution fX ,Y (x, y) is symmetric,
fX ,Y (x, y) = fX ,Y (y, x). Then Z = X − Y is symmetrically distributed about 0, i.e.,
its probability distribution satisfies fZ (z) = fZ (−z). In addition, if X and Y are i.i.d
then they are exchangeable.

For the sake of completeness, the proof of this Lemma is provided in Sect. 1.

3 The distribution of the number of positive zeros of random
polynomials and applications to EGT

This section focuses on deriving the distribution of the number of internal equilibria of
a d-player two-strategy randomevolutionary game.We recall that an internal equilibria
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is a real and positive zero of the polynomial P(y) in (5).We denote by κ the number of
positive zeros of this polynomial. For a given m, 0 ≤ m ≤ d − 1, we need to compute
the probability pm that κ = m. To this end, we first adapt a method introduced
in Zaporozhets (2006) (see also Butez and Zeitouni 2017; Götze et al. 2017 for its
applications to other problems) to establish a formula to compute the probability that
a general random polynomial has a given number of real and positive zeros. Then we
apply the general theory to the polynomial P .

3.1 The distribution of the number of positive zeros of a random polynomial

Consider a general random polynomial

P(t) = ξ0t
n + ξ1t

n−1 + · · · + ξn−1t + ξn . (6)

We use the following notations for the elementary symmetric polynomials

σ0(y1, . . . , yn) = 1,

σ1(y1, . . . , yn) = y1 + · · · + yn,

σ2(y1, . . . , yn) = y1y2 + · · · + yn−1yn,

...

σn−1(y1, . . . , yn) = y1y2 . . . yn−1 + · · · + y2y3 . . . yn,

σn(y1, . . . , yn) = y1 . . . yn, (7)

and denote by

Δ(y1, . . . , yn) =
∏

1≤i< j≤n

|yi − y j | (8)

the Vandermonde determinant.

Theorem 3 Assume that the random variables ξ0, ξ1, . . . , ξn have a joint density
p(a0, . . . , an). Let 0 ≤ m ≤ d−1 and 0 ≤ k ≤ � n−m

2 �. The probability pm,2k,n−m−2k
that P has m positive, 2k complex and n − m − 2k negative zeros is given by

pm,2k,n−m−2k = 2k

m!k!(n − m − 2k)!
∫

Rm+

∫

Rn−m−2k−

∫

Rk+

∫

[0,π ]k

∫

R

r1 . . . rk p(aσ0, . . . , aσn)|anΔ| da dα1 . . . dαkdr1 . . . drkdx1 . . . dxn−2k, (9)

where

σ j = σ j
(
x1, . . . , xn−2k, r1eiα1 , r1e−iα1 , . . . , rkeiαk , rke−iαk

)
, (10)

Δ = Δ
(
x1, . . . , xn−2k, r1eiα1 , r1e−iα1 , . . . , rkeiαk , rke−iαk

)
. (11)

As consequences,
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(1) The probability that P has m positive zeros is

pm =
� n−m

2 �∑

k=0

pm,2k,n−m−2k .

(2) In particular, the probability that P has the maximal number of positive zeros is

pn = 2k

k!(n − 2k)!
∫

Rn+

∫

R
p(aσ0, . . . , aσn) |an Δ| dadx1 . . . dxn,

where

σ j = σ j (x1, . . . , xn), Δ = Δ(x1, . . . , xn).

Proof The reference (Zaporozhets 2006, Theorem 1) provides a formula to compute
the probability that the polynomial P has n − 2k real and 2k complex roots. In the
present paper, we need to distinguish between positive and negative real zeros.We now
sketch and adapt the proof of Theorem 1 of Zaporozhets (2006) to obtain the formula
(9) for the probability that the polynomialP hasm positive, 2k complex and n−m−2k
negative roots. Consider a (n + 1)-dimensional vector space V of polynomials of the
form

Q(t) = a0t
n + a1t

n−1 + · · · + an−1t + an,

and a measure μ on this space defined as the integral of the differential form

dQ = p(a0, . . . , an) da0 ∧ · · · ∧ dan . (12)

Our goal is to find μ(Vm,2k) where Vm,2k is the set of polynomials having m positive,
2k complex and n − m − 2k negative roots. Let Q ∈ Vm,2k . Denote all zeros of Q as

z1 = x1, . . . , zn−2k = xn−2k, zn−2k+1 = r1e
iα1 , zn−2k+2 = r1e

−iα1 , . . . ,

zn−1 = rke
iαk , zn = rke

−iαk ,

where

0 < x1, . . . , xm < ∞; −∞ < xm+1, . . . , xn−2k < 0; 0 < r1, . . . , rk < ∞;
0 < α1, . . . , αk < π.

To find μ(Vm,2k) we need to integrate the differential form (12) over the set Vm,2k .
The key idea in the proof of Theorem 1 of Zaporozhets (2006) is to make a change of
coordinates (a0, . . . , an) 	→ (a, x1, . . . , xn−2k, r1, . . . , rk, α1, . . . , αk), with a = a0,
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and find dQ in the new coordinates. The derivation of the following formula is carried
out in detail in Zaporozhets (2006):

dQ = 2kr1 . . . rk p
(
a, aσ1

(
x1, . . . , xn−2k, r1e

iα1 , r1e
−iα1 , . . . , rke

iαk , rke
−iαk

)
,

. . . aσn

(
x1, . . . , xn−2k, r1e

iα1 , r1e
−iα1 , . . . , rke

iαk , rke
−iαk

))

×
∣
∣
∣anΔ

((
x1, . . . , xn−2k, r1e

iα1 , r1e
−iα1 , . . . , rke

iαk , rke
−iαk

))∣
∣
∣

× dx1 ∧ · · · ∧ dxn−2k ∧ dr1 ∧ · · · ∧ drk ∧ dα1 ∧ · · · ∧ dαk ∧ da.

Now we integrate this equation over all polynomials Q that have m positive zeros,
n − m − 2k negative zeros and k complex zeros in the upper half-plane. Since there
are m! permutations of the positive zeros, (n −m − 2k)! permutations of the negative
zeros, and k! permutations of the complex zeros, after integrating each polynomial in
the left-hand side will occur m!k!(n − m − 2k)! times. Hence the integral of the left-
hand side is equal to m!k!(n −m − 2k)! pm,2k,n−m−2k . The integral on the right-hand
side equals

2k
∫

Rm+

∫

Rn−m−2k−

∫

Rk+

∫

[0,π ]k

∫

R
r1 . . . rk p(aσ0, . . . , aσn)|anΔ| da dα1 . . . dαk

dr1 . . . drkdx1 . . . dxn−2k,

hence the assertion (9) follows. ��

3.2 The distribution of the number of internal equilibria

Next we apply Theorem 3 to compute the probability that a random evolutionary game
has m, 0 ≤ m ≤ d − 1, internal equilibria. We derive formulas for the three most
common cases (Han et al. 2012):

(C1) {β j , 0 ≤ j ≤ d − 1} are i.i.d. standard normally distributed,
(C2) {β j } are i.i.d. uniformly distributed with the common distribution f j (x) =

1
21[−1,1](x),

(C3) {Ak} and {Bk} are i.i.d. uniformly distributed with the common distribution
f j (x) = 1

21[−1,1](x).
The main result of this section is the following theorem (cf. Theorem 2).

Theorem 4 The probability that a d-player two-strategy random evolutionary game
has m (0 ≤ m ≤ d − 1) internal equilibria is

pm =
� d−1−m

2 �∑

k=0

pm,2k,d−1−m−2k,

where pm,2k,d−1−m−2k is given below for each of the cases above:
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– For the case (C1)

pm,2k,d−1−m−2k

= 2k

m!k!(d − 1 − m − 2k)!
Γ
(
d
2

)

(π)
d
2
∏d−1

i=0 δi

∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k
r1 . . . rk

(
d−1∑

i=0

σ 2
i

δ2i

)− d
2

Δ dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k, (13)

where σi , for i = 0, . . . , d − 1, and Δ are given in (10)–(11) and δi =
(
d − 1
i

)

.

– For the case (C2)

pm,2k,d−1−m−2k = 2k+1−d

d m! k! (d − 1 − m − 2k)!∏d−1
i=0 δi

∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

r1 . . . rk
(
min

{|δi/σi |
})d

Δ dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k . (14)

– For the case (C3)

pm,2k,d−1−m−2k = 2k+1(−1)d

m!k!(d − 1 − m − 2k)!∏d−1
j=0 δ2j

∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

r1 . . . rk

d−1∏

j=0

|σ j |
d∑

i=0

(−1)i
Ki

2d − i

(
min

{|δi/σi |
})2d−i

Δ dα1 . . . dαkdr1 . . . drk

dx1 . . . dxd−1−2k . (15)

In particular, the probability that a d-player two-strategy random evolutionary
game has the maximal number of internal equilibria is:

(1) for the case (C1)

pd−1 = 1

(d − 1)!
Γ
(
d
2

)

(π)
d
2
∏d−1

i=0 δi

∫

Rd−1+
q(σ0, . . . , σd−1) dx1 . . . dxd−1;

(16)

(2) for the case (C2)

pd−1 = 21−d

d!∏d−1
i=0 δi

∫

Rd−1+

(
min

{|δi/σi |
})d

Δ dx1 . . . dxd−1; (17)
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(3) for the case (C3)

pd−1 = 2(−1)d

(d − 1)!∏d−1
j=0 δ2j

∫

Rd−1+

d−1∏

j=0

|σ j |
d∑

i=0

(−1)i
Ki

2d − i

(
min

{|δi/σi |
})2d−i

Δ

dx1 . . . dxd−1. (18)

Note that in formulas (16)–(18) above

σ j = σ j (x1, . . . , xd−1), Δ = Δ(x1, . . . , xd−1).

Proof (1) Since {β j , 0 ≤ j ≤ d − 1} are i.i.d. standard normally distributed, the joint

distribution p(y0, . . . , yd−1) of

{(
d − 1

j

)

β j , 0 ≤ j ≤ d − 1

}

is given by

p(y0, . . . , yd−1) = 1

(2π)
d
2
∏d−1

i=0

(
d − 1
i

) exp

⎡

⎢
⎢
⎢
⎣

−1

2

d−1∑

i=0

y2i
(
d − 1
i

)2

⎤

⎥
⎥
⎥
⎦

= 1

(2π)
d
2 |C| 12

exp

[

−1

2
yT C−1y

]

,

where y = [y0 y1 . . . yd−1]T and C is the covariance matrix

Ci j =
(
d − 1
i

)(
d − 1

j

)

δi j .

Therefore,

p(aσ0, . . . , aσd−1) = 1

(2π)
d
2 |C| 12

exp

(

− a2

2
σ T C−1 σ

)

, (19)

where σ = [σ0 σ1 . . . σd−1]T . Using the following formula for moments of a normal
distribution,

∫

R
|x |n exp (− αx2

)
dx = Γ

( n+1
2

)

α
n+1
2

,

we compute

∫

R
|a|d−1 exp

(

− a2

2
σ T C−1 σ

)

da =
Γ
(
d
2

)

(
σ T C−1σ

2

) d
2

=
2

d
2 Γ
(
d
2

)

(
σ T C−1σ

) d
2

.
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Applying Theorem 3 to the polynomial P given in (5) and using the above identity
we obtain

pm,2k,d−1−m−2k

= 2k

m!k!(d − 1 − m − 2k)!
∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

∫

R

r1 . . . rk p(aσ0, . . . , aσd−1)|a|d−1Δ da dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

= 2k

m!k!(d − 1 − m − 2k)!
1

(2π)
d
2 |C| 12

2
d
2 Γ
(d

2

) ∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

r1 . . . rk
(
σ T C−1σ

)− d
2 Δ dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

= 2k

m!k!(d − 1 − m − 2k)!
Γ
(
d
2

)

(π)
d
2 |C| 12

∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

r1 . . . rk
(
σ T C−1σ

)− d
2 Δ dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k,

which is the desired equality (13) by definition of C and σ .

(2) Now since {β j } are i.i.d. uniformly distributed with the common distribution
f j (x) = 1

21[−1,1](x), the joint distribution p(y0, . . . , yd−1) of

{(
d − 1

j

)

β j , 0 ≤ j ≤ d − 1

}

is given by

p(y0, . . . , yd−1) = 1

2d
∏d−1

i=0 δi
1×d−1

i=0 [−δi ,δi ](y0, . . . , yd−1) where δi =
(
d − 1
i

)

.

Therefore,

p(aσ0, . . . , aσd−1) = 1

2d
∏d−1

i=0 δi
1×d−1

i=0 [−δi ,δi ](aσ0, . . . , aσd−1).

Since 1×d−1
i=0 [−δi ,δi ](aσ0, . . . , aσd−1) = 1 if and only if aσi ∈ [−δi , δi ] for all i =

0, . . . , d − 1, i.e., if and only if

a ∈
d−1⋂

i=0

[− |δi/σi |, |δi/σi |
] =

[

− min
i∈{0,...,d−1}

{|δi/σi |
}
, min
i∈{0,...,d−1}

{|δi/σi |
}
]

,

we have (for simplicity of notation, in the subsequent computations we shorten
mini∈{0,...,d−1} by min)

123



On the distribution of the number of internal equilibria. . . 343

p(aσ0, . . . , aσd−1) =
{ 1

2d
∏d−1

i=0 δi
, if a ∈ [− min

{|δi/σi |
}
,min

{|δi/σi |
}]

,

0, otherwise.

Therefore,

∫

R
|a|d−1 p(aσ0, . . . , aσd−1) da = 1

2d
∏d−1

i=0 δi

∫ min
{
|δi /σi |

}

−min
{
|δi /σi |

} |a|d−1 da

= 1

d 2d−1
∏d−1

i=0 δi

(
min

{|δi/σi |
})d

.

Similarly as in the normal case, using this identity and applying Theorem 3 we obtain

pm,2k,d−1−m−2k

= 2k

m!k!(d − 1 − m − 2k)!
∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

∫

R

r1 . . . rk p(aσ0, . . . , aσd−1)|a|d−1Δ da dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

= 2k+1−d

d m! k! (d − 1 − m − 2k)!∏d−1
i=0 δi

∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

r1 . . . rk
(
min

{|δi/σi |
})d

Δ da dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k .

(3) Now we assume that A j and Bj are i.i.d. uniformly distributed with the common
distribution γ (x) = 1

21[−1,1](x). Since β j = A j − Bj , its probability density is given
by

γβ(x) =
∫ +∞

−∞
f (y) f (x + y) dy = (1 − |x |)1[ − 1, 1](x).

The probability density of δ jβ j is

γ j (x) = 1

δ j

(

1 − |x |
δ j

)

1[−1,1](x/δ j ) = δ j − |x |
δ2j

1[−δ j ,δ j ](x),

and the joint distribution p(y0, . . . , yd−1) of
{
δ jβ j , 0 ≤ j ≤ d − 1

}
is given by

p(y0, . . . , yd−1) =
d−1∏

j=0

δ j − |y j |
δ2j

1×d−1
i=0 [−δi ,δi ](y0, . . . , yd−1).

Therefore

p(aσ0, . . . , aσd−1) =
d−1∏

j=0

δ j − |aσ j |
δ2j

1×d−1
i=0 [−δi ,δi ](aσ0, . . . , aσd−1).
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We compute

∫

R
|a|d−1 p(aσ0, . . . , aσd−1) da

= 1
∏d−1

j=0 δ2j

∫ min
{
|δi /σi |

}

−min
{
|δi /σi |

} |a|d−1
d−1∏

j=0

(δ j − |aσ j |) da

= 2
∏d−1

j=0 δ2j

∫ min
{
|δi /σi |

}

0
ad−1

d−1∏

j=0

(δ j − a|σ j |) da

= 2(−1)d
d−1∏

j=0

|σ j |
δ2j

∫ min
{
|δi /σi |

}

0
ad−1

d−1∏

j=0

(

a − δ j

|σ j |
)

da

= 2(−1)d
d−1∏

j=0

|σ j |
δ2j

d∑

i=0

(−1)i Ki

∫ min
{
|δi /σi |

}

0
a2d−1−i da

= 2(−1)d
d−1∏

j=0

|σ j |
δ2j

d∑

i=0

(−1)i
Ki

2d − i

(
min

{|δi/σi |
})2d−i

,

where Ki = σi (δ0/|σ0|, . . . , δd−1/|σd−1|) for i = 0, . . . , d.
Therefore,

pm,2k,d−1−m−2k

= 2k

m!k!(d − 1 − m − 2k)!
∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

∫

R

r1 . . . rk p(aσ0, . . . , aσd−1)|a|d−1Δ da dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

= 2k+1(−1)d

m!k!(d − 1 − m − 2k)!∏d−1
j=0 δ2j

∫

Rm+

∫

Rd−1−2k−m−

∫

Rk+

∫

[0,π ]k

r1 . . . rk

d−1∏

j=0

|σ j |
d∑

i=0

(−1)i
Ki

2d − i

(
min

{|δi/σi |
})2d−i

Δ dα1 . . . dαkdr1 . . . drk

dx1 . . . dxd−1−2k .

��

Corollary 1 The expected numbers of internal equilibria and stable internal equilibria,
E(d) and SE(d), respectively, of a d-player two-strategy game, are given by

E(d) =
d−1∑

m=0

mpm, SE(d) = 1

2

d−1∑

m=0

mpm .
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Note that this formula for E(d) is applicable for non-normal distributions, which is in
contrast to the method used in previous works (Duong and Han 2015, 2016) that can
only be used for normal distributions. The second part, i.e. the formula for the expected
number of stable equilibrium points, was obtained based on the following property
of stable equilibria in multi-player two-strategy evolutionary games, as shown in Han
et al. (2012, Theorem 3): SE(d) = 1

2 E(d).

Remark 1 In Theorem 4 for the case (C1), the assumption thatβk’s are standard normal
distributions, i.e. having variance 1, is just for simplicity. Suppose that βk’s are normal
distributions with mean 0 and variance η2. We show that the probability pm , for
0 ≤ m ≤ d − 1, does not depend on η. In this case, the formula for p is given by (19)
but with C being replaced by η2C. To indicate its dependence on η, we write pη. We
use a change of variable a = ηã. Then

ad−1 pη(aσ0, . . . , aσd−1) da

= ηd−1ãd−1 1

(
√
2πη)d

∏d−1
j=0

(
d − 1

j

) exp

⎡

⎢
⎢
⎢
⎣

− ã2

2

d−1∑

j=0

σ 2
j

(
d − 1

j

)2

⎤

⎥
⎥
⎥
⎦

η dã

= ãd−1 1

(
√
2π)d

∏d−1
j=0

(
d − 1

j

) exp

⎡

⎢
⎢
⎢
⎣

− ã2

2

d−1∑

j=0

σ 2
j

(
d − 1

j

)2

⎤

⎥
⎥
⎥
⎦

dã

= ãd−1 p1(ãσ0, . . . , ãσd−1),

from which we deduce that pm does not depend on η. Similarly for the other cases,
the uniform interval can be 1

2α [−α, α] for some α > 0.

For illustration of the application of Theorem 4, the following examples show
explicit calculations for d = 3 and 4 for the case of normal distributions, i.e. (C1).
Further numerical results for d = 5 and also for other distributions, i.e. (C2) and
(C3), are provided in Fig. 1. The integrals in these examples were computed using
Mathematica.

3.3 Examples for d = 3, 4

Example 1 (Three-player two-strategy games: d = 3) (1) One internal equilibria:
p1 = p1,0,1. We have

m = 1, k = 0, σ0 = 1, σ1 = x1 + x2, σ2 = x1x2, Δ = |x2 − x1|,
q(σ0, σ1, σ2) = 1

(
1 + x21 x

2
2 + 1

4 (x1 + x2) 2
)
3/2

|x2 − x1|.
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Substituting these values into (13) we obtain the probability that a three-player two-
strategy evolutionary game has 1 internal equilibria

p1 = 1

4π

∫

R+

∫

R−

1
(
1 + x21 x

2
2 + 1

4 (x1 + x2) 2
)
3/2

|x2 − x1| dx1 dx2 = 0.5.

(2) Two internal equilibria: p2 = p2,0,0. We have

m = 2, k = 0, σ0 = 1, σ1 = x1 + x2, σ2 = x1x2, Δ = |x2 − x1|,
q(σ0, σ1, σ2) = 1

(
1 + x21 x

2
2 + 1

4 (x1 + x2) 2
)
3/2

|x2 − x1|.

The probability that a three-player two-strategy evolutionary game has 2 internal
equilibria is

p2 = 1

8π

∫

R2+

1
(
1 + x21 x

2
2 + 1

4 (x1 + x2) 2
)
3/2

|x2 − x1| dx1 dx2 ≈ 0.134148.

(20)

(3) No internal equilibria: the probability that a three-player two-strategy evolutionary
game has no internal equilibria is p0 = 1− p1− p2 ≈ 1−0.5−0.134148 = 0.365852.

Example 2 (Four-player two-strategy games: d = 4)

(1) One internal equilibria: p1 = p1,0,2 + p1,2,0.

We first compute p1,0,2. In this case,

m = 1, k = 0, σ0 = 1, σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3,

Δ = |x2 − x1| |x3 − x1| |x3 − x2|.

Substituting these into (13) we get

p1,0,2 = 1

18π2

∫

R−

∫

R−

∫

R+

(

1 + (x1 + x2 + x3)2

9
+ (x1x2 + x1x3 + x2x3)2

9
+ (x1x2x3)

2
)−2

×|x2 − x1| |x3 − x1| |x3 − x2| dx1 dx2 dx3 ≈ 0.223128.

Next we compute p1,2,0. In this case,

m = 1, k = 1, σ0 = 1,

σ1 = σ1

(
x1, r1e

iα1 , r1e
−iα1

)
= x1 + r1e

iα1 + r1e
−iα1 = x1 + 2r1 cos (α1),

σ2 = σ2

(
x1, r1e

iα1 , r1e
−iα1

)
= x1

(
r1e

iα1 + r1e
−iα1

)
+ r21 = 2x1r1 cos (α1) + r21 ,

σ3 = σ3

(
x1, r1e

iα1 , r1e
−iα1

)
= x1r

2
1 ,

123



On the distribution of the number of internal equilibria. . . 347

Δ = Δ
(
x1, r1e

iα1 , r1e
−iα1

)
=
∣
∣
∣r1e

iα1 − x1
∣
∣
∣
∣
∣
∣r1e

−iα1 − x1
∣
∣
∣
∣
∣
∣r1e

iα1 − r1e
−iα1

∣
∣
∣

=
∣
∣
∣r21 − 2x1r1 cos (α1) + x21

∣
∣
∣ |2r1 sin (α1)|.

Substituting these into (13) yields

p1,2,0 = 2

9π2

∫

R+

∫

[0,π ]

∫

R+
r1

(

1 + (x1 + 2r1 cos(α1))
2

9
+ (2x1r1 cos(α1) + r21 )2

9
+ (x1r

2
1 )2

)−2

× |r21 − 2x1r1 cos(α1) + x21 ||2r1 sin(α1)| dx1dr1dα1da ≈ 0.260348.

Therefore, we obtain that

p1 = p1,0,2 + p1,2,0 ≈ 0.223128 + 0.260348 = 0.483476.

(2) Two internal equilibria: p2 = p2,0,1

m = 2, k = 0, σ0 = 1, σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3,

σ3 = x1x2x3,Δ = |x2 − x1| |x3 − x1| |x3 − x2|.

The probability that a four-player two-strategy evolutionary game has 2 internal equi-
libria is

p2 = 1

18π2

∫

R+

∫

R+

∫

R−

(

1 + (x1 + x2 + x3)2

9
+ (x1x2 + x1x3 + x2x3)2

9
+ (x1x2x3)

2
)−2

× |x2 − x1| |x3 − x1| |x3 − x2| dx1 dx2 dx3 ≈ 0.223128. (21)

(3) Three internal equilibria: p3 = p3,0,0

m = 3, k = 0, σ0 = 1, σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3,

σ3 = x1x2x3, Δ = |x2 − x1| |x3 − x1| |x3 − x2|.

The probability that a four-player two-strategy evolutionary game has 3 internal equi-
libria is

p3 = 1

54π2

∫

R3+

(

1 + (x1 + x2 + x3)2

9
+ (x1x2 + x1x3 + x2x3)2

9
+ (x1x2x3)

2
)−2

× |x2 − x1| |x3 − x1| |x3 − x2| dx1 dx2 dx3 ≈ 0.0165236.

(4) No internal equilibria: the probability that a four-player two-strategy evolutionary
game has no internal equilibria is: p0 = 1 − p1 − p2 − p3 ≈ 1 − 0.483476 −
0.223128 − 0.0165236 = 0.276872.
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4 Universal estimates for pm

In Sect. 3, we have derived closed-form formulas for the probability distributions
pm (0 ≤ m ≤ d − 1) of the number of internal equilibria. However, it is com-
putationally expensive to compute these probabilities since it involves complex
multiple-dimensional integrals. In this section, using Descartes’ rule of signs and
combinatorial techniques, we provide universal estimates for pm . Descartes’ rule of
signs is a technique for determining an upper bound on the number of positive real
roots of a polynomial in terms of the number of sign changes in the sequence formed
by its coefficients. This rule has been applied to random polynomials before in the
literature (Bloch and Pólya 1932); however this paper only obtained estimates for the
expected number of zeros of a random polynomial.

Theorem 5 (Descartes’ rule of signs, see e.g., Curtiss 1918) Consider a polynomial
of degree n, p(x) = anxn + · · · + a0 with an �= 0. Let v be the number of variations
in the sign of the coefficients an, an−1, . . . , a0 and n p be the number of real positive
zeros. Then (v − n p) is an even non-negative integer.

We recall that an internal equilibrium of a d-player two-strategy game is a positive
root of the polynomial P given in (5). We will apply Descartes’ rule of signs to find
an upper bound for the probability that a random polynomial has a certain number
of positive roots. This is a problem that is of interest in its own right and may have
applications elsewhere; therefore we will first study this problem for a general random
polynomial of the form

p(y) :=
n∑

k=0

ak y
k, (22)

and then apply it to the polynomial P . It turns out that the symmetry of {ak}will be the
key: the asymmetric case requires completely different treatment from the symmetric
one.

4.1 Estimates of pm: symmetric case

We first consider the case where the coefficients {ak} in (22) are symmetrically dis-
tributed. The main result of this section will be Theorem 6 that provides several upper
and lower bounds for the probability that a d-player two strategy game has m internal
equilibria. Before stating Theorem 6, we need the following auxiliary lemmas.

Proposition 1 Suppose that the coefficients ak, 0 ≤ k ≤ n in the polynomial (22) are
i.i.d. and symmetrically distributed. Let pk,n, 0 ≤ k ≤ n, be the probability that the
sequence of coefficients (a0, . . . , an) has k changes of signs. Then

pk,n = 1

2n

(
n
k

)

. (23)

Proof See Appendix 2. ��
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The next two lemmas on the sum of binomial coefficients will be used later on.

Lemma 2 Let 0 ≤ k ≤ n be positive integers. Then it holds that

n∑

j=k
j :even

(
n
j

)

= 1

2

⎡

⎣
n−k∑

j=0

(
n
j

)

+ (−1)k
(
n − 1
k − 1

)
⎤

⎦,

n∑

j=k
j :odd

(
n
j

)

= 1

2

⎡

⎣
n−k∑

j=0

(
n
j

)

− (−1)k
(
n − 1
k − 1

)
⎤

⎦,

where it is understood that

(
n
j

)

= 0 if j < 0. In particular, for k = 0, we get

n∑

j=0
j :even

(
n
j

)

=
n∑

j=0
j :odd

(
n
j

)

= 2n−1. (24)

Proof See Appendix 3. ��
The following lemma provides estimates on the sum of the first k binomial
coefficients.

Lemma 3 Let n and 0 ≤ k ≤ n be positive integers. We have the following estimates
(MacWilliams and Sloane 1977, Lemma 8 and Corollary 9, Chapter 10; Gottlieb et al.
2012)

2nH
(
k
n

)

√
8k
(
1 − k

n

) ≤
k∑

j=0

(
n
j

)

≤ δ2nH
(
k
n

)

if 0 ≤ k <
n

2
, and (25)

2n − δ2nH
(
k
n

)

≤
k∑

j=0

(
n
j

)

≤ 2n − 2nH
(
k
n

)

√
8k
(
1 − k

n

) if
n

2
≤ k ≤ n, (26)

where δ = 0.98 and H is the binary entropy function

H(x) = −x log2(x) − (1 − x) log2(1 − x), (27)

where 0 log2 0 is taken to be 0. In addition, if n = 2n′ is even and 0 ≤ k ≤ n′, we also
have the following estimate (Lovász et al. 2003, Lemma 3.8.2)

k−1∑

j=0

(
2n′
j

)

≤ 22n
′−1
(
2n′
k

)/(2n′
n′
)

. (28)
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We now apply Proposition 1 and Lemmas 2 and 3 to derive estimates for the
probability that a d-player two-strategy evolutionary game has a certain num-
ber of internal equilibria. The main theorem of this section is the following.

Theorem 6 Suppose that the coefficients {βk} in (5) are symmetrically distributed. Let
pm, 0 ≤ m ≤ d − 1, be the probability that the d-player two-strategy random game
has m internal equilibria. Then the following assertions hold

(a) Upper-bound for pm, for all 0 ≤ m ≤ d − 1,

pm ≤ 1

2d−1

∑

j : j≥m
j−m even

(
d − 1

j

)

= 1

2d

⎡

⎣
d−1−m∑

j=0

(
d − 1

j

)

+
(
d − 2
m − 1

)
⎤

⎦ (29)

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2d

[

δ2(d−1)H
(

m
d−1

)

+
(
d − 2

m − 1

)]

if d−1
2 < m ≤ d − 1,

1
2d

[

2d−1 − 2
(d−1)H

(
m

d−1

)

8m
(
1− m

d−1

) +
(
d − 2

m − 1

)]

if 0 ≤ m ≤ d−1
2 .

(30)

As consequences, 0 ≤ pm ≤ 1
2 for all 0 ≤ m ≤ d−1, pd−1 ≤ 1

2d−1 , pd−2 ≤ d−1
2d−1

and limd→∞ pd−1 = limd→∞ pd−2 = 0.
In addition, if d − 1 = 2d ′ is even and 0 ≤ m ≤ d ′ then

pm ≤ 1

2d

[

2d−2
(
d − 1
m − 1

)/(d − 1
d ′
)

+
(
d − 2
m − 1

)]

. (31)

(b) Lower-bound for p0 and p1:

p0 ≥ 1

2d−1 and p1 ≥ d − 1

2d−1 . (32)

(c) For d = 2: p0 = p1 = 1
2 .

(d) For d = 3: p1 = 1
2 .

Proof (a) This part is a combination of Decartes’ rule of signs, Proposition 1 and
Lemmas 2 and 3. In fact, as a consequence of this rule and by Proposition 1, we
have

pm ≤
∑

j : j≥m
j−m: even

p j,d−1 = 1

2d−1

∑

j : j≥m
j−m: even

(
d − 1

j

)

,
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which is the inequality part in (29). Next, applying Lemma 2 for k = m and n = d−1
and then Lemma 3, we obtain

1

2d−1

∑

k:k≥m
k−m: even

(
d − 1
k

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2d

[
∑d−1−m

j=0

(
d − 1

j

)

+ (−1)m
(
d − 2

m − 1

)]

if m is even

1
2d

[
∑d−1−m

j=0

(
d − 1

j

)

− (−1)m
(
d − 2

m − 1

)]

if m is odd

= 1

2d

[∑d−1−m

j=0

(
d − 1

j

)

+
(
d − 2
m − 1

)]

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2d

[

δ2(d−1)H
(

m
d−1

)

+
(
d − 2

m − 1

)]

if d−1
2 < m ≤ d − 1,

1
2d

[

2d−1 − 2
(d−1)H

(
m

d−1

)

8m
(
1− m

d−1

) +
(
d − 2

m − 1

)]

if 0 ≤ m ≤ d−1
2 .

This proves the equality part in (29) and (30). As a result, the estimate pm ≤ 1
2 for

all 0 ≤ m ≤ d − 1 is followed from (29) and (24); the estimates pd−1 ≤ 1
2d−1 and

pd−2 ≤ d−1
2d−1 are special cases of (29) for m = d − 1 and m = d − 2, respec-

tively.
Finally, the estimate (31) is a consequence of (29) and (28).

(b) It follows from Decartes’ rule of signs and Proposition 1 that

p0 ≥ p0,d−1 = 1

2d−1 and p1 ≥ p1,d−1 = d − 1

2d−1 .

(c) For d = 2: from parts (a) and (b) we have

1

2
≤ p0, p1 ≤ 1

2
,

which implies that p0 = p1 = 1
2 as claimed.

(d) Finally, for d = 3: also from parts (a) and (b) we get

1

2
≤ p1 ≤ 1

2
,

so p1 = 1
2 . This finishes the proof of Theorem 6. ��

Remark 2 Note that in Theorem 6 we only assume that βk are symmetrically dis-
tributed but do not require that they are normal distributions. When {βk} are normal
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distributions, we have derived (Duong and Han 2015, 2016) a closed formula for
the expected number E(d) of internal equilibria, which can be computed effi-
ciently for large d. Since E(d) = ∑d−1

m=0 mpm , we have pm ≤ E(d)/m for all
1 ≤ m ≤ d − 1. Therefore, when {βk} are normal, we obtain an upper bound for
pm as the minimum between E(d)/m and the bound obtained in Theorem 6. The
comparison of the new bounds with E(d)/m in Fig. 2 shows that the new ones
do better for m closer to 0 or d − 1 but worse for intermediate m (i.e. closer to
(d − 1)/2).

4.2 Estimates of pm: general case

In the proof of Proposition 1 the assumption that {ak} are symmetrically distributed is
crucial. In that case, all the 2n binary sequences constructed are equally distributed,
resulting in a compact formula for pk,n . However, when {ak} are not symmetrically
distributed, those binary sequences are no longer equally distributed. Thus computing
pk,n becomes much more intricate. We now consider the general case where

P(ai > 0) = α, P(ai < 0) = 1 − α for all i = 0, . . . , n.

Note that the general case allows us to move beyond the usual assumption in the
analysis of random evolutionary games that all payoff entries ak’s and bk’s have the
same probability distribution resulting in α = 1/2 (see Lemma 1). In the general
case it only requires that all ak’s have the same distribution and all bk’s have the
same distribution, capturing the fact that different strategies, i.e. A and B in Sect. 2,
might have different payoff properties (e.g., defectors always have a larger payoff than
cooperators in a public goods game).

The main results of this section will be Theorem 7 and Theorem 8. The former
provides explicit formulas for pk,n while the latter consists of several upper and lower
bounds for pm . We will need several technically auxiliary lemmas whose proofs will
be given in Appendix 1. We start with the following proposition that provides explicit
formulas for pk,n for k ∈ {0, 1, n − 1, n}.
Proposition 2 The following formulas hold:

• p0,n = αn+1 + (1 − α)n+1, p1,n =
{

n
2n if α = 1

2 ,

2α(1 − α)
(1−α)n−αn

1−2α if α �= 1
2 ;

• pn−1,n =
⎧
⎨

⎩

nα
n
2 (1 − α)

n
2 if n even,

α
n+1
2 (1 − α)

n+1
2

[
n+1
2

(
α

1−α
+ 1−α

α

)
+ (n − 1)

]

if n odd;

• pn,n =
{

α
n
2 (1 − α)

n
2 if n is even,

2α
n+1
2 (1 − α)

n+1
2 if n is odd.

In particular, if α = 1
2 , then p0,n = p1,n = 1

2n and p1,n = pn−1,n = n
2n .

Proof See Appendix 4. ��
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The computations of pk,n for other k aremore involved.Wewill employ combinatorial
techniques and derive recursive formulas for pk,n . We define

uk,n = P(there are k variations of signs in {a0, . . . , an}
∣
∣an > 0),

vk,n = P(there are k variations of signs in {a0, . . . , an}
∣
∣an < 0).

We have the following lemma.

Lemma 4 The following recursive relations hold:

uk,n = αuk,n−1 + (1 − α)vk−1,n−1 and vk,n = αuk−1,n−1 + (1 − α)vk,n−1. (33)

Proof See Appendix 5. ��
We can decouple the recursive relations in Lemma 4 to obtain recursive relations for
{uk,n} and vk,n separately as follows:

Lemma 5 The following recursive relations hold

uk,n = α(1 − α)(uk−2,n−2 − uk,n−2) + uk,n−1,

vk,n = α(1 − α)(vk−2,n−2 − vk,n−2) + vk,n−1.

Proof See Appendix 6. ��
Using the recursive equations for uk,n and vk,n we can also derive a recursive relation
for pk,n .

Proposition 3 {pk,n} satisfies the following recursive relation.

pk,n = α(1 − α)(pk−2,n−2 − pk,n−2) + pk,n−1. (34)

Proof See Appendix 7. ��
Remark 3 Proposition 3 provides a second-order recursive relation for the probabil-
ities {pk,n}. This relation resembles the well-known Chu–Vandermonde identity for

binomial coefficients,
{
bk,n :=

(
n
k

)}
, which is that, for 0 < m < n,

bk,n =
k∑

j=0

(
m
j

)

bk− j,n−m .

Particularly for m = 2 we obtain

bk,n = bk,n−2 + 2bk−1,n−2 + bk−2,n−2

= bk−2,n−2 − bk,n−2 + 2(bk,n−2 + bk−1,n−2)

= bk−2,n−2 − bk,n−2 + 2bk,n−1,
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where the last identity is Pascal’ rule for binomial coefficients.
On the other hand, the recursive formula pk,n for α = 1

2 becomes

pk,n = 1

4
(pk−2,n−2 − pk,n−2) + pk,n−1.

Using the transformation ak,n := 1
2n pk,n as in the proof of Theorem 7, then

ak,n = ak−2,n−2 − ak,n−2 + 2ak,n−1,

which is exactly theChu–Vandermonde identity form = 2 above. Then it is no surprise
that in Theorem 7 we obtain that ak,n is exactly the same as the binomial coefficient

ak,n =
(
n
k

)

.

In the next main theoremwewill find explicit formulas for {pk,n} from the recursive
formula in the previous lemma using the method of generating functions. The case
α = 1

2 will be a special one.

Theorem 7 pk,n is given explicitly by: for α = 1
2 ,

pk,n = 1

2n

(
n
k

)

.

For α �= 1
2 :

(i) if k is even, k = 2k′, then

pk,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
m=� n

2 �
n−k+1
2m−n+1

(
m

k′, n − k′ − m, 2m − n

)

(−1)n−k′−m(α(1 − α))n−m

if n even,

∑n
m=� n

2 �
n−k+1
2m−n+1

(
m

k′, n − k′ − m, 2m − n

)

(−1)n−k′−m(α(1 − α))n−m

+ 2

(
� n−1

2 �
k′

)

(−1)� n−1
2 �−k′+1(α(1 − α))

n+1
2 if n odd;

(ii) if k is odd, k = 2k′ + 1, then

pk,n = 2
n∑

m=� n−1
2 �

(
m

k′, n − k′ − m − 1, 2m − n + 1

)

(−1)n−k′−m−1(α(1 − α))n−m .

Proof See Appendix 8. ��
Example 3 Below we provide explicit formulas for {pk,n} for 0 ≤ k ≤ n ≤ 4:

• n = 1: p0,1 = α2 + (1 − α)2; p1,1 = 2α(1 − α);
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• n = 2: p0,2 = α3 + (1 − α)3, p1,2 = 2α(1 − α), p2,2 = α(1 − α);
• n = 3: p0,3 = α4 + (1 − α)4, p1,3 = 2α(1 − α)(α2 − α + 1),

p2,3 = 2α(1 − α)(α2 − α + 1), p3,3 = 2α2(1 − α)2;
• n = 4: p0,4 = α5 + (1 − α)5, p1,4 = 2α(1 − α)(2α2 − 2α + 1),

p2,4 = 3α(1 − α)(2α2 − 2α + 1), p3,4 = 4α2(1 − α)2, p4,4 = α2(1 − α)2.

Direct computations verify the recursive formula for k = 2, n = 4

p2,4 = α(1 − α)(p0,2 − p2,2) + p2,3.

We now apply Theorem 7 to the polynomial P in (5) to obtain estimates for pm, 0 ≤
m ≤ d − 1, which is the probability that a d-player two-strategy random evolutionary
game has m internal equilibria. This theorem extends Theorem 6 for α = 1/2 to the
general case although we do not achieve an explicit upper bound in terms of d as in
Theorem 6.

Theorem 8 The following assertions hold

(i) Upper-bound for pm

pm ≤
∑

k≥m
k−m even

pk,d−1,

where pk,d−1 can be computed explicitly according to Theorem 7with n replaced
by d − 1.

(ii) Lower-bound for p0: p0 ≥ αd + (1 − α)d ≥ 1
2d−1 .

(iii) Lower-bound for p1: p1 ≥
{

d−1
2d−1 if α = 1

2 ,

2α(1 − α)
(1−α)d−1−αd−1

1−2α if α �= 1
2 .

(iv) Upper-bound for pd−2:

pd−2 ≤
⎧
⎨

⎩

(d − 1)α
d−1
2 (1 − α)

d−1
2 if d odd,

α
d
2 (1 − α)

d
2

[
d
2

(
α

1−α
+ 1−α

α

)
+ (d − 2)

]

if d even,

≤ d − 1

2d−1 when d ≥ 3.

(v) Upper-bound for pd−1:

qd−1 ≤
{

α
d−1
2 (1 − α)

d−1
2 if d is odd,

2α
d
2 (1 − α)

d
2 if d is even,

≤ 1

2d−1 .
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As consequences:

(a) For d = 2: p0 = α2 + (1 − α)2 and p1 = 2α(1 − α).
(b) For d = 3, p1 = 2α(1 − α).

Proof We will apply Decartes’ rule of signs, Proposition 2 and Theorem 7 for the
random polynomial (5). It follows from Decartes’ rule of signs that

pm ≤
∑

k≥m
k−m even

pk,d−1,

where pk,d−1 is given explicitly in Theorem 7 with n replaced by d − 1. This proves
the first statement. In addition, we can also deduce from Decartes’ rule of signs and
Proposition 2 the following estimates for special cases m ∈ {0, 1, d − 2, d − 1}:

• p0 ≥ p0,d−1 = αd + (1 − α)d ≥ min
0≤α≤1

[αd + (1 − α)d ] = 1

2d−1 ;

• p1 ≥ p1,d−1 =
{

d−1
2d−1 if α = 1

2 ,

2α(1 − α)
(1−α)d−1−αd−1

1−2α if α �= 1
2 ;

• pd−2 ≤ pd−2,d−1 =
⎧
⎨

⎩

(d − 1)α
d−1
2 (1 − α)

d−1
2 if d odd,

α
d
2 (1 − α)

d
2

[
d
2

(
α

1−α
+ 1−α

α

)
+ (d − 2)

]

if d even,

=
{

(d − 1)(α(1 − α))
d−1
2 if d odd,

d
2 (α(1 − α))d/2−1 − 2(α(1 − α))d/2 if d even,

≤
{

(d − 1)(1/4)
d−1
2 = d−1

2d−1 if d odd,

max0≤β≤ 1
4
f (β) = d−1

2d−1 if d ≥ 3 even;

where, β :=α(1 − α), f (β) := d

2
βd/2−1 − 2βd/2, and to obtain the last inequality

we have used the fact that 0 ≤ β = α(1 − α) ≤ 1

4
and

f ′(β) = dβd/2−2
(d

4
− 1

2
− β
)

≥ 0 when 0 ≤ β ≤ 1

4
and d ≥ 3.

• pd−1 ≤ pd−1,d−1 =
{

α
d−1
2 (1 − α)

d−1
2 if d is odd,

2α
d
2 (1 − α)

d
2 if d is even,

≤
{

(1/4)
d−1
2 = 1

2d−1 if d is odd,

2(1/4)
d
2 = 1

2d−1 if d is even.

These computations establish the estimates (i i)–(v) of the theorem. For the conse-
quences: for d = 2, in this case the above estimates (i i)–(v) respectively become:
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p0 ≥ α2 + (1 − α)2, p1 ≥
{

1
2 if α = 1

2 ,

2α(1 − α) if α �= 1
2

= 2α(1 − α), and

p0 ≤ α(1 − α)
[ α

1 − α
+ 1 − α

α

]
= α2 + (1 − α)2, q1 ≤ 2α(1 − α),

which imply that p0 = α2 + (1 − α)2, p1 = 2α(1 − α).
Similarly for d = 3, estimates (i i) and (i i i) respectively become

p1 ≥
{

1
2 if α = 1

2 ,

2α(1 − α)if α �= 1
2

= 2α(1 − α), and p1 ≤ 2α(1 − α),

from which we deduce that p1 = 2α(1 − α). ��

5 Numerical simulations

In this section, we perform several numerical (sampling) simulations and calculations
to illustrate the analytical results obtained in previous sections. Figure 1 shows the
values of {pm} for d ∈ {3, 4, 5}, for the three cases studied in Theorem 4, i.e., when βk

are i.i.d. standard normally distributed (GD), uniformly distributed (UD1) and when
βk = ak − bk with ak and βk being uniformly distributed (UD2). We compare results
obtained from analytical formulas in Theorem 4 and from samplings. The figure shows
that they are in accordancewith each other agreeing to at least 2 digits after the decimal
points. Figure 2 compares the new upper bound obtained in Theorem 6 with that of
E(d)/m. The comparison indicates which formulas should be used to obtain a stricter
upper bound of pm .

6 Further discussions and future research

In this paper, we have provided closed-form formulas and universal estimates for the
probability distribution of the number of internal equilibria in a d-player two-strategy
random evolutionary game. We have explored further connections between evolu-
tionary game theory and random polynomial theory as discovered in our previous
works (Duong and Han 2015, 2016; Duong et al. 2017). We believe that the results
reported in the present work open up a new exciting avenue of research in the study
of equilibrium properties of random evolutionary games. We now provide further dis-
cussions on these issues and possible directions for future research.

Computations of probabilities {pm}. Although we have found analytical formulas for
pm it is computationally challenging to deal with them because of their complexity.
Obtaining an effective computational method for {pm} would be an interesting prob-
lem for future investigation.
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(b) Simulation

Fig. 1 Numerical versus simulation calculations of the probability of having a concrete number (m) of
internal equilibria, pm , for different values of d. The payoff entries ak and bk were drawn from a normal
distribution with variance 1 and mean 0 (GD) and from a standard uniform distribution (UD2). We also
study the case where βk = ak − bk itself is drawn from a standard uniform distribution (UD1). Results
are obtained from analytical formulas (Theorem 2) (a) and are based on sampling 106 payoff matrices (b)
where payoff entries are drawn from the corresponding distributions. Analytical and simulations results are
in accordance with each other. All results are obtained using Mathematica

Quantification of errors in the mean-field approximation theory (Schehr and Majum-
dar 2008). Consider a general polynomialP as given in (6)with dependent coefficients,
and let Pm([a, b], n) be the probability that P has m real roots in the interval [a, b]
(recall that n is the degree of the polynomial, which is equal to d − 1 in Equation (1)).
The mean-field theory (Schehr andMajumdar 2008) neglects the correlations between
the real roots and simply considers that these roots are randomly and independently
distributed on the real axis with some local density f (t) at point t , with f (t) being the
density that can be computed from the Edelman–Kostlan theorem (Edelman and Kost-
lan 1995). Within this approximation in the large n limit, the probability Pm([a, b], n)

is given by a non-homogeneous Poisson distribution, see Schehr andMajumdar (2008,
Section 3.2.2 and Equation (70)). By applying the mean-field theory one can approx-
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Fig. 2 Comparison of the new upper bounds of pm derived in Theorem 6 with that of E(d)/m: a for the
bound in (36) and b for the bound in (37). Black areas indicate when the former ones are better and the
grey areas otherwise. Clearly the bound in (a) is stricter/better than that of (b). For small d, the new bounds
are better. When d is sufficiently large, we observe that for any d, the new bounds are worse than E(d)/m
when m is intermediate while better otherwise. Overall, this comparison indicates which formulas should
be used to obtain a stricter upper bound of pm

imate the probability pm that a random d-player two-strategy evolutionary game has
m internal equilibria by a simpler and computationally feasible formula. However, it
is unclear to us how to quantify the errors of approximation. We leave this topic for
future research.

Extensions to multi-strategy games. We have focused in this paper on random games
with two strategies (with an arbitrary number of players). The analysis of games with
more than two strategies is much more intricate since in this case one needs to deal
with systems of multi-variate random polynomials. We have provided (Duong and
Han 2015, 2016) a closed formula for the expected number of internal equilibria for
a multi-player multi-strategy games for the case of normal payoff entries. We aim
to extend the present work to the general case in future publications. In particular,
Decartes’ rule of signs for multi-variate polynomials (Itenberg and Roy 1996) might
be used to obtain universal estimates, regardless of the underlying payoff distribu-
tion.
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Appendix

In this appendix, we present proofs of technical results in previous sections.

Proof of Lemma 1

The probability distribution, fZ , of Z = X − Y can be found via the joint probability
distribution fX ,Y as

fZ (z) =
∫ ∞

−∞
fX ,Y (x, x − z) dx =

∫ ∞

−∞
fX ,Y (y + z, y) dy.

Therefore, using the symmetry of fX ,Y we get

fZ (−z) =
∫ ∞

−∞
fX ,Y (x, x + z) dx =

∫ ∞

−∞
fX ,Y (x + z, x) dx = fZ (z).

If X and Y are i.i.d with the common probability distribution f then

fX ,Y (x, y) = f (x) f (y),

which is symmetric with respect to x and y, i.e., X and Y are exchangeable.

Proof of Proposition 1

We take the sequence of coefficients (a0, . . . , an) and move from the left starting from
a0 to the right ending at an . When there is a change of sign, we write a 1 and write a 0
when there is not. Then the changes of signs form a binary sequence of length n. There
are 2n of them in total. Thereby pk,n is the probability that there are exactly k number

1s in the binary sequence. There are

(
n
k

)

such sequences. Since {βk} are independent
and symmetrically distributed, each sequence has a probability 1

2n of occurring. From
this we deduce (23).

Proof of Lemma 2

Since
∑n

j=0

(
n
j

)

(−1) j = (1 + (−1))n = 0, we have

n∑

j=k

(
n
j

)

(−1) j = −
k−1∑

j=0

(
n
j

)

(−1) j .
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According to Duong and Tran (2018, Lemma 5.4)

k−1∑

j=0

(
n
j

)

(−1) j = (−1)k−1
(
n − 1
k − 1

)

.

Therefore,

n∑

j=k

(
n
j

)

(−1) j = (−1)k
(
n − 1
k − 1

)

,

or equivalently:

n∑

j=k
j : even

(
n
j

)

−
n∑

j=k
j : odd

(
n
j

)

= (−1)k
(
n − 1
k − 1

)

.

Define S̄k,n := ∑n
j=k

(
n
j

)

and Sk,n := ∑k
j=0

(
n
j

)

. Then using the property that
(
n
j

)

=
(

n
n − j

)

we get S̄k,n = Sn−k,n and

n∑

j=k
j :even

(
n
j

)

= 1

2

[

S̄k,n + (−1)k
(
n − 1
k − 1

)]

= 1

2

[

Sn−k,n + (−1)k
(
n − 1
k − 1

)]

,

n∑

j=k
j :odd

(
n
j

)

= 1

2

[

S̄k,n − (−1)k
(
n − 1
k − 1

)]

= 1

2

[

Sn−k,n − (−1)k
(
n − 1
k − 1

)]

.

This finishes the proof of this lemma.

Proof of Proposition 2

The four extreme cases k ∈ {0, 1, n − 1, n} are special because we can characterise
explicitly the events that the sequence {a0, . . . , an} has k changes of signs. We have

p0,n = P
{
a0 > 0, . . . , an > 0} + P{a0 < 0, . . . , an < 0)

}

= αn+1 + (1 − α)n+1.

p1,n = P
{

∪n−1
k=0 {a0 > 0, . . . ak > 0, ak+1 < 0, . . . , an < 0}

∪ {a0 < 0, . . . ak < 0, ak+1 > 0, . . . , an > 0}
}
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=
n−1∑

k=0

(
αk+1(1 − α)n−k + (1 − α)k+1αn−k

)

= α(1 − α)n
n−1∑

k=0

(
α

1 − α

)k
+ αn(1 − α)

n−1∑

k=0

(
1 − α

α

)k

=

⎧
⎪⎨

⎪⎩

n
2n if α = 1

2 ,

α(1 − α)n
1−
(

α
1−α

)n

1− α
1−α

+ αn(1 − α)
1−
(

1−α
α

)n

1− 1−α
α

if α �= 1
2

=
{

n
2n if α = 1

2 ,

2α(1 − α)
(1−α)n−αn

1−2α if α �= 1
2 .

pn,n = P
{
{a0 > 0, a1 < 0, . . . , (−1)nan > 0} ∪ {a0 < 0, a1 > 0, . . . , (−1)nan < 0}

}

=
{

α
n+2
2 (1 − α)

n
2 + (1 − α)

n+2
2 α

n
2 if n is even,

2α
n+1
2 (1 − α)

n+1
2 if n is odd

=
{

α
n
2 (1 − α)

n
2 if n is even,

2α
n+1
2 (1 − α)

n+1
2 if n is odd.

It remains to compute pn−1,n .

pn−1,n =
n−1∑

k=0

P
{
ak and ak+1 have the same signs and there are n − 1 changes of signs in

(a0, . . . , ak, ak+1, . . . , an)
}

=:
n−1∑

k=0

γk .

We now compute γk . This depends on the parity of n and k. If both n and k are even,
then

γk = P
(
a0 > 0, a1 < 0, . . . , ak > 0, ak+1 > 0, . . . an < 0

)

+ P
(
a0 < 0, a1 > 0, . . . , ak < 0, ak+1 < 0, . . . an > 0

)

= (1 − α)
n
2 α

n+2
2 + (1 − α)

n+2
2 α

n
2 .

If n is even and k is odd, then

γk = P
(
a0 > 0, a1 < 0, . . . , ak < 0, ak+1 < 0, . . . an < 0

)

+ P
(
a0 < 0, a1 > 0, . . . , ak > 0, ak+1 > 0, . . . an > 0

)

= α
n+2
2 (1 − α)

n
2 + (1 − α)

n+2
2 α

n
2 .
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Therefore, in both cases, i.e., if n is even we get

γk = α
n
2 (1 − α)

n
2 .

From this we deduce pn−1,n = nα
n
2 (1 − α)

n
2 . Similarly if n is odd and k is even

γk = P
(
a0 > 0, a1 < 0, . . . , ak > 0, ak+1 > 0, . . . an > 0

)

+ P
(
a0 < 0, a1 > 0, . . . , ak < 0, ak+1 < 0, . . . an < 0

)

= (1 − α)
n+3
2 α

n−1
2 + (1 − α)

n−1
2 α

n+3
2 .

If both n and k are odd

γk = P
(
a0 > 0, a1 < 0, . . . , ak < 0, ak+1 < 0, . . . an > 0

)

+ P
(
a0 < 0, a1 > 0, . . . , ak > 0, ak+1 > 0, . . . an < 0

)

= α
n+1
2 (1 − α)

n+1
2 + (1 − α)

n+1
2 α

n+1
2 .

Then when n is odd, we obtain

pn−1,n = n + 1

2

[
(1 − α)

n+3
2 α

n−1
2 + (1 − α)

n−1
2 α

n+3
2

]
+ (n − 1)α

n+1
2 (1 − α)

n+1
2

= α
n+1
2 (1 − α)

n+1
2

[
n + 1

2

(
α

1 − α
+ 1 − α

α

)

+ (n − 1)

]

.

In conclusion,

pn−1,n =
⎧
⎨

⎩

nα
n
2 (1 − α)

n
2 if n even,

α
n+1
2 (1 − α)

n+1
2

[
n+1
2

(
α

1−α
+ 1−α

α

)
+ (n − 1)

]

if n odd.

Proof of Lemma 4

Applying the law of total probability

P(A|B) = P(A|B,C)P(C |B) + P(A|B, C̄)P(C̄ |B),

we have:

P
(
k sign switches in {a0, . . . , an}

∣
∣an > 0

)

= P
(
k sign switches in {a0, . . . , an}

∣
∣an > 0, an−1 > 0)P(an−1 > 0|an > 0

)

+ P
(
k sign switches in {a0, . . . , an}

∣
∣an > 0, an−1 < 0)P(an−1 < 0|an > 0

)
.
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Since an−1 and an are independent, we have P(an−1 > 0
∣
∣an > 0) = P(an−1 > 0)

and P(an−1 < 0
∣
∣an > 0) = P(an−1 < 0). Therefore,

P
(
k sign switches in {a0, . . . , an}

∣
∣an > 0

)

= P
(
k sign switches in {a0, . . . , an}

∣
∣an > 0, an−1 > 0

)
P(an−1 > 0)

+ P
(
k sign switches in {a0, . . . , an}

∣
∣an > 0, an−1 < 0

)
P(an−1 < 0)

= P
(
k sign switches in {a0, . . . , an−1}

∣
∣an−1 > 0

)
P(an−1 > 0)

+ P
(
k − 1 sign switches in {a0, . . . , an−1}

∣
∣an−1 < 0

)
P(an−1 < 0).

Therefore we obtain the first relationship in (33). The second one is proved similarly.

Proof of Lemma 5

From (33), it follows that

vk−1,n−1 = uk,n − αuk,n−1

1 − α
, vk,n−1 = uk+1,n − αuk+1,n−1

1 − α
. (35)

Substituting (35) into (33) we obtain

uk+1,n+1 − αuk+1,n

1 − α
= αuk−1,n−1 + (1 − α)

uk+1,n − αuk+1,n−1

1 − α
,

which implies that

uk+1,n+1 = (1 − α)αuk−1,n−1 + (1 − α)(uk+1,n − αuk+1,n−1) + αuk+1,n

= (1 − α)αuk−1,n−1 − α(1 − α)uk+1,n−1 + uk+1,n .

Re-indexing we get uk,n = (1−α)α(uk−2,n−2−uk,n−2)+uk,n−1. Similarly we obtain
the recursive formula for vk,n .

Proof of Proposition 3

From Lemmas 4 and 5 we have

pk,n = αuk,n + (1 − α)vk,n

= α[α(1 − α)(uk−2,n−2 − uk,n−2) + uk,n−1]
+ (1 − α)[α(1 − α)(vk−2,n−2 − vk,n−2) + vk,n−1]

= α(1 − α)[α(uk−2,n−2 − uk,n−2) + (1 − α)(vk−2,n−2 − vk,n−2)]
+ αuk,n−1 + (1 − α)vk,n−1

= α(1 − α)(pk−2,n−2 − pk,n−2) + pk,n−1.
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This finishes the proof.

Proof of Theorem 7

Set 1/A2 := α(1−α). By the Cauchy–Schwarz inequality α(1−α) ≤ (α+1−α)2

4 = 1
4 ,

it follows that A2 ≥ 4. Define ak,n := An pk,n . Substituting this relation into (34) we
get the following recursive formula for ak,n

ak,n = ak−2,n−2 − ak,n−2 + Aak,n−1.

According to Proposition 2

a0,n = An p0,n = An
(
αn+1 + (1 − α)n+1

)
= α

(
α

1 − α

) n
2 + (1 − α)

(
1 − α

α

) n
2

,

(36)

a1,n = An p1,n =
{
n if α = 1

2 ,

2α(1−α)
1−2α

[( 1−α
α

) n
2 − ( α

1−α

) n
2
]
.

(37)

Also ak,n = 0 for k > n. Let F(x, y) be the generating function of ak,n , that is

F(x, y) :=
∞∑

k=0

∞∑

n=0

ak,nx
k yn .

Define

g(x, y) =
∞∑

n=0

a0,n y
n +

∞∑

n=0

a1,nxy
n .

From (36) and (37) we have: for α = 1
2

g(x, y) =
∞∑

n=0

yn + xy
∞∑

n=0

nyn−1 = 1

1 − y
+ xy

d

dy

(
1

1 − y

)

= 1 − y + xy

(1 − y)2
,

and for α �= 1
2

g(x, y)

=
∞∑

n=0

[

α

(
α

1 − α

) n
2 + (1 − α)

(
1 − α

α

) n
2
]

yn + 2α(1 − α)x

1 − 2α

∞∑

n=1

[(
1 − α

α

) n
2 −

(
α

1 − α

) n
2
]

yn

=
[

α − 2α(1 − α)x

1 − 2α

] ∞∑

n=0

(
α

1 − α

) n
2

yn +
[

1 − α + 2α(1 − α)x

1 − 2α

] ∞∑

n=0

(
1 − α

α

) n
2

yn
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=
[

α − 2α(1 − α)x

1 − 2α

] ∞∑

n=0

(αA)n yn +
[

1 − α + 2α(1 − α)x

1 − 2α

] ∞∑

n=0

((1 − α)A)n yn

=
[

α − 2α(1 − α)x

1 − 2α

]
1

1 − αAy
+
[

1 − α + 2α(1 − α)x

1 − 2α

]
1

1 − (1 − α)Ay

= (α(1 − 2α) − 2α(1 − α)x) (1 − (1 − α)Ay) + ((1 − α)(1 − 2α) + 2α(1 − α)x) (1 − αAy)

(1 − 2α)(1 − αy)(1 − (1 − α)Ay)

= 1 − 2y
A + 2xy

A

1 − Ay + y2
.

Note that in the above computations we have the following identities

1

A2
=α(1 − α),

α

1 − α
=(αA)2,

1 − α

α
=(1 − α)2A2, (1 − αAy)(1 − (1 − α)Ay)=1 − Ay + y2.

Now we have

F(x, y) =
∞∑

k=0

∞∑

n=0

ak,nx
k yn

= g(x, y) +
∞∑

k=2

∞∑

n=2

(ak−2,n−2 − ak,n−2 + Aak,n−1)x
k yn

= g(x, y) +
∞∑

k=2

∞∑

n=2

ak−2,n−2x
k yn −

∞∑

k=2

∞∑

n=2

ak,n−2x
k yn + A

∞∑

k=2

∞∑

n=2

ak,n−1x
k yn

(38)

= g(x, y) + (I ) + (I I ) + (I I I ). (39)

We rewrite the sums (I), (II) and (III) as follow. For the first sum

(I ) =
∞∑

k=2

∞∑

n=2

ak−2,n−2x
k yn = x2y2

∞∑

k=0

∞∑

n=0

ak,nx
k yn = x2y2F(x, y).

For the second sum

(I I ) =
∞∑

k=2

∞∑

n=2

ak,n−2x
k yn =

∞∑

k=0

∞∑

n=2

ak,n−2x
k yn −

∞∑

n=2

a0,n−2y
n −

∞∑

n=2

a1,n−2xy
n

= y2
∞∑

k=0

∞∑

n=0

ak,nx
k yn − y2

∞∑

n=0

a0,n y
n − y2

∞∑

n=1

a1,nxy
n

= y2(F(x, y) − g(x, y)).

And finally for the last sum

(I I I ) =
∞∑

k=2

∞∑

n=2

ak,n−1x
k yn = y(F(x, y) − g(x, y)).
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Substituting these sums back into (39) we get

F(x, y)=g(x, y) + x2y2F(x, y)−y2(F(x, y) − g(x, y))+Ay(F(x, y) − g(x, y)),

which implies that

F(x, y) = g(x, y)(1 − Ay + y2)

(1 − Ay + y2 − x2y2)
.

For α = 1
2 , we get

F(x, y) = 1 − y + xy

(1 − y)2
(1 − y)2

(1 − y)2 − x2y2
= 1

1 − y − xy

=
∞∑

n=0

(1 + x)n yn

=
∞∑

n=0

n∑

k=0

(
n
k

)

xk yn,

which implies that αk,n =
(
n
k

)

. Hence for the case α = 1
2 , we obtain pk,n = 1

2n

(
n
k

)

.

For the case α �= 1
2 we obtain

F(x, y) = 1 − 2y
A + 2xy

A

1 − Ay + y2
1 − Ay + y2

1 − Ay + y2 − x2y2
= 1 − 2y

A + 2xy
A

1 − Ay + y2 − x2y2
.

Finding the series expansion for this case is much more involved than the previous
one. Using the multinomial theorem we have

1

1 − Ay + y2 − x2y2
=

∞∑

m=0

(x2y2 − y2 + Ay)m

=
∞∑

m=0

∑

0≤i, j,l≤m
i+ j+l=m

(
m

i, j, l

)

(x2y2)i (−y2) j (Ay)l

=
∞∑

m=0

∑

0≤i, j,l≤m
i+ j+l=m

(
m

i, j, l

)

(−1) j Al x2i y2i+2 j+l

=
∞∑

m=0

∑

0≤i,l≤m
i+l≤m

(
m

i,m − i − l, l

)

(−1)m−i−l Al x2i y2m−l .
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Therefore

F(x, y) = 1

A
(A − 2y + 2xy)

∞∑

m=0

∑

0≤i,l≤m
i+l≤m

(
m

i,m − i − l, l

)

(−1)m−i−l Al x2i y2m−l

=
∞∑

m=0

∑

0≤i,l≤m
i+l≤m

(
m

i,m − i − l, l

)

(−1)m−i−l Al−1
(
Ax2i y2m−l − 2x2i y2m−l+1

+ 2x2i+1y2m−l+1
)
. (40)

From this we deduce that:
If k is even, k = 2k′, then to obtain the coefficient of xk yn on the right-hand side

of (40), we select (i,m, l) such that

(i = k′ & 2m − l = n & 0 ≤ i, l ≤ m) or (i = k′ & 2m − l + 1 = n & 0 ≤ i, l ≤ m).

Then we obtain

ak,n =
n∑

m=� n
2 �

(
m

k′,m − k′ − (2m − n), 2m − n

)

(−1)m−k′−(2m−n)A2m−n

+ 2
n∑

m=� n−1
2 �

(
m

k′,m − k′ − (2m − n + 1), 2m − n + 1

)

(−1)m−k′−(2m−n+1)+1A2m−n

=
n∑

m=� n
2 �

(
m

k′, n − k′ − m, 2m − n

)

(−1)n−k′−m A2m−n

+ 2
n∑

m=� n−1
2 �

(
m

k′, n − k′ − m − 1, 2m − n + 1

)

(−1)n−k′−m A2m−n

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
m=� n

2 �

[(
m

k′, n − k′ − m, 2m − n

)

+ 2

(
m

k′, n − k′ − m − 1, 2m − n + 1

)]

×(−1)n−k′−m A2m−n if n even,

∑n
m=� n

2 �

[(
m

k′, n − k′ − m, 2m − n

)

+ 2

(
m

k′, n − k′ − m − 1, 2m − n + 1

)]

×(−1)n−k′−m A2m−n + 2

(
� n−1

2 �
k′

)

(−1)� n−1
2 �−k′+1A−1 if n odd

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
m=� n

2 �
n−k+1
2m−n+1

(
m

k′, n − k′ − m, 2m − n

)

(−1)n−k′−m A2m−n if n even,

∑n
m=� n

2 �
n−k+1
2m−n+1

(
m

k′, n − k′ − m, 2m − n

)

(−1)n−k′−m A2m−n

+ 2

(
� n−1

2 �
k′

)

(−1)� n−1
2 �−k′+1A−1 if n odd.
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Similarly, if k is odd, k = 2k′ + 1, then to obtain the coefficient of xk yn on the
right-hand side of (40), we select (i,m, l) such that

(i = k′ & 2m − l + 1 = n & 0 ≤ i, l ≤ m),

and obtain

ak,n = 2
n∑

m=� n−1
2 �

(
m

k′, n − k′ − m − 1, 2m − n + 1

)

(−1)n−k′−m−1A2m−n .

From ak,n we compute pk,n using the relations pk,n = ak,n
An and A2 = 1

α(1−α)
and

obtain the claimed formulas. This finishes the proof of this theorem.

Remark 4 We can find ak,n by establishing a recursive relation. We have

1

F(x, y)
= 1 − Ay + y2 − x2y2

1 − 2y
A + 2xy

A

= − Axy

2
− Ay

2
+ A2

4
+ 1 − A2/4

1 − 2y
A + 2xy

A

= − Axy

2
− Ay

2
+ A2

4
+ (1 − A2/4)

∞∑

n=0

(
2y

A
(1 − x)

)n

= − Axy

2
− Ay

2
+ A2

4
+ (1 − A2/4)

∞∑

n=0

(
2

A

)n
(1 − x)n yn

= − Axy

2
− Ay

2
+ A2

4
+ (1 − A2/4)

∞∑

n=0

n∑

k=0

(−1)kCk,n

(
2

A

)n
xk yn

= 1 +
(
2

A
− A

)

y − 2

A
xy + (1 − A2/4)

∞∑

n=2

n∑

k=0

(−1)kCk,n

(
2

A

)n
xk yn

=:
∞∑

n=0

n∑

k=0

bk,nx
k yn := B(x, y).

where

b0,0 = 1, b0,1 = 2

A
− A, b1,1 = − 2

A
and

bk,n = (1 − A2/4)(−1)kCk,n

( 2

A

)n
for 0 ≤ k ≤ n, n ≥ 2.

Using the relation that

F(x, y)B(x, y) =
( ∞∑

n=0

∞∑

k=0

ak,nx
k yn
)( ∞∑

n′=0

∞∑

k′=0

bk′n′xk
′
yn

′
)

= 1,
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we get the following recursive formula to determine aK ,N

a0,0 = 1

b0,0
= 1, a0,N = −

N−1∑

n=0

a0,nb0,N−n, aK ,N = −
K−1∑

k=0

N−1∑

n=0

ak,nbK−k,N−n .

It is not trivial to obtain an explicit formula from this recursive formula. However, it is
easily implemented using a computational software such as Mathematica or Mathlab.
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