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Promoter engineering enables 
overproduction of foreign proteins from a single 
copy expression cassette in Bacillus subtilis
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Abstract 

Background:  Bacillus subtilis is developed to be an attractive expression host to produce both secreted and cyto-
plasmic proteins owing to its prominent biological characteristics. Chromosomal integration is a stable expression 
strategy while the expression level is not ideal compared with plasmid expression. Thus, to meet the requirement of 
protein overexpression, promoter, as one of the key elements, is important. It is necessary to obtain an ideal promoter 
for overproduction of foreign proteins from a single copy expression cassette.

Results:  The activity of promoter Pylb was further enhanced by optimizing the − 35, − 10 core region and upstream 
sequence (UP) by substituting both sequences with consensus sequences. The final engineered promoter exhibited 
almost 26-fold in β-galactosidase (BgaB) activity and 195-fold in super-folded green fluorescent protein (sfGFP) inten-
sity than that of WT. The two proteins account for 43% and 30% of intracellular proteins, respectively. The promoter 
was eventually tested by successful extracellular overproduction of Methyl Parathion Hydrolase (MPH) and Chloro-
thalonil hydrolytic dehalogenase (Chd) to a level of 0.3 g/L (144 U/mL) and 0.27 g/L (4.4 U/mL) on shake-flask culture 
condition.

Conclusions:  A strong promoter was engineered for efficient chromosomally integrated expression of heterologous 
proteins.
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Background
Bacillus subtilis, a species of Gram-positive aerobic soil 
bacteria, is an attractive industrial workhorse for pro-
duction of various enzymes and industrial recombinant 
proteins due to its GRAS (generally recognized as safe) 
status, well-characterized protein secretion mechanisms 
and large-scale fermentation processes [1–5]. In addition, 
the bacterium has no significant bias in codon usage and 
efficient genetic manipulation is available [6, 7]. Thus, 
more attention has been paid to its expression systems 
for the purpose of the commercial application and basic 
research.

Plasmid-mediated recombinant production of pro-
teins in bacteria is unstable during the late stage of fer-
mentation [8]. Moreover, the safety concerns and legal 
requirements surrounding the use of antibiotic is another 
bottleneck in food industry. Chromosomal integration 
offers a more stable alternative to maintenance of for-
eign inserted expression cassette. However, the expres-
sion level may not meet the requirement when compared 
with that of multi-copy plasmid expression. Protein pro-
duction was mainly determined by transcription, trans-
lation and post-translation level. To realize efficient 
chromosomally integrated protein expression, promoter 
is of great importance in transcription level because it 
directly affects the efficient synthesis of fundamental 
transcripts. Therefore, a powerful promoter is desirable 
to drive gene overexpression.

Open Access

Microbial Cell Factories

*Correspondence:  yanxin@njau.edu.cn 
Department of Microbiology, College of Life Sciences, Key Laboratory 
for Microbiological Engineering of Agricultural, Environment of Ministry 
of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, 
Nanjing 210095, Jiangsu, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-019-1159-0&domain=pdf


Page 2 of 11Zhou et al. Microb Cell Fact          (2019) 18:111 

Nowadays, existing promoters can be generally divided 
into three major groups: constitutive promoters [9–13], 
inducible promoters [14–25] and stationary phase pro-
moters [26–28]. Recently, a stationary phase promoter 
Pylb [29] was identified. Based on the Pylb promoter, in 
this work, a new strong promoter was developed to real-
ize high level protein expression through single-copy 
expression cassette integration.

Results
Assessment of the WT promoter Pylb
To begin with, WT promoter was compared with com-
monly used constitutive promoter P43 [9], inducible 
promoter PxylA [14], and stationary phase promoter PsrfA 
[27]. The expression level of reporter protein BgaB was 
used to reflect the strength of the promoters. Promoter 
Pylb was prominent for its strength and stationary phase 
(Fig. 1b, c and Additional file 1: Figures S1, S2). During 
the lag phase and the early exponential phase, there was 
little BgaB activity detected. The reporter protein began 
to emerge at the mid-exponential phase; the activity 
sharply increased to the peak value during the transition 
to stationary phase, and remained constant during the 
followed stationary phase (Fig. 1c). Thus, the WT Pylb is 
deserved to be further engineered for overexpression of 
proteins in B. subtilis.

Engineering the core regions to improve transcription
−  35 and −  10 regions were the most important 
sequences in promoter strength and the regions were 
widely engineered to enhance promoter transcrip-
tion [30]. Thus, the −  10 and −  35 regions of Pylb were 
changed into the corresponding consensus sequence sep-
arately or in combination (Fig. 2a). The reporter protein 
BgaB was used to assess the strength of the engineered 

promoters. A promoter with the consensus −  10 hex-
amer (P10) was 0.5-fold stronger than Pylb while the BgaB 
expression level controlled by the P35 promoter resulted 
in a sevenfold increase (Fig.  2b, c). When both changes 
were combined into one single promoter (P3510), its 
activity was enhanced about ninefold (Fig.  2b, c and 
Additional file 1: Figures S3, S4). In addition to − 35 and 
−  10 regions, −  16 and −  22 region will also influence 
promoter strength [30, 31]. Next, −  16 region was also 
changed into the corresponding consensus sequence 
TRTG (where R stands for A or G) based on P3510, gen-
erating P351016 (Fig.  2a). However, BgaB activity could 
not be detected under the control of P351016 (Fig.  2b, 
c and Additional file  1: Figures  S3, S4). The activity of 
promoter with mutation in the −  22 region (Fig.  2a) 
decreased slightly under the control of P351022 (Fig. 2b, 
c and Additional file 1: Figures S3, S4).

Engineering the upstream sequence to improve 
transcription
Since upstream elements could enhance transcription 
initiation in B. subtilis [31, 32], to further enhance the 
promoter P3510, putative UP elements (− 59 to − 38) of 
four rrn operons (rrnO, rrnJ, rrnD, rrnB) controlled by 
tandem promoters (P1 and P2) [33] were introduced to 
replace the native region (Fig.  3a). As shown in Fig.  3b, 
four UP elements showed a distinct activation of the 
transcription as compared to the native UP element. The 
engineered BP3510 and JP3510 was approximately one 
fold stronger than that of the P3510 promoter, demon-
strating the strong stimulation of the promoter activity. 
When the UP element of rrnB was engineered to a con-
sensus sequence [34], −  59 nnAAA(A/T)(A/T)T(A/T)
TTTTnnAAAAnnn −  38, the new UP element was 
mutated to TTA​AAA​ATT​TTT​TTT​AAA​AAAA (Fig. 3a). 
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Fig. 1  a Construction of the integrative plasmid pYBGB. b Comparison of the maximum yield of BgaB under the control of different promoters. All 
cultures were grown in triplicate, and each experiment was performed at least twice. Error bars indicate standard deviations. c The expression level 
and pattern of BgaB measured in strain WBBgaB. During 24 h of cultivation, cells were sampled periodically and analyzed by examining the biomass 
and BgaB activity
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The mutant promoter NBP3510 showed superior activ-
ity to all of the other promoters and the BgaB expression 
was twofold higher than that of the P3510 (Fig. 3b, c and 
Additional file 1: Figures S5, S6) and enhanced by 26-fold 
compared with that of the WT promoter. In addition, the 
native UP region of P3510 was also changed to a consen-
sus sequence (Fig. 3a) and the resulting promoter NP3510 
was enhanced up to 1.7-fold (Fig.  3b, c and Additional 
file  1: Figures  S5, S6). In summary, the strongest pro-
moter NBP3510 allowed intracellular accumulation up to 
about 43% of the total cellular protein. In addition, pro-
moter engineering had no significant effect on bacterial 
growth (Additional file 1: Figures S14, S15 and Table S2). 
Thus, the increased production was mainly due to the 
improved transcription. Western blot results showed that 
BgaB was expressed (Additional file  1: Figures  S11 and 
S13). Furthermore, qRT-PCR was used to verify the tran-
scription level of NBP3510. RNA was extracted after 4, 8, 
12, 16 h. The highest transcription level of NBP3510 was 
340-fold stronger than promoter Pylb (Fig. 3d).

Although the strength of NBP3510 was dramatically 
enhanced at both log phage and stationary phase after 
engineering, it still exhibits the property of “station-
ary phase” (Fig. 1c and Additional file 1: Figures S5, S6). 
Since target gene was also transcribed in the early stage 
of cell growth under the control of stationary-phase pro-
moter. Thus, the kinetics of BgaB production were not fit 
very well with Luedeking and Piret [35] (Additional file 1: 
Figure S17 and Table S3).

Intracellular expression of the sfGFP protein
Another reporter protein sfGFP [36] was used to verify 
if the strong promoter NBP3510 was suitable for highly 
efficient intracellular expression. The NBP3510 showed 
prominent fluorescence by naked-eye detection (Fig. 4a) 
and the fluorescence intensity was enhanced up to 195-
fold than that of the WT promoter (Fig. 4b and Additional 
file 1: Figures S7, S8). The sfGFP expression reached 30% 
of total cellular protein in SDS-PAGE (Fig. 4c). Western 
blot results showed that sfGFP was expressed (Additional 
file  1: Figures  S11 and S13). Together with the BgaB 
expression, these results revealed that the engineered 
promoter NBP3510 was sufficient for efficient chromo-
somally integrated intracellular expression.

Extracellular expression of Methyl Parathion Hydrolase 
(MPH) and Chlorothalonil hydrolytic dehalogenase (Chd) 
by promoter NBP3510
To test whether the engineered promoter was suitable for 
overproduction of extracellular protein, strains WBSMPH 
and WBSChd were cultured in 2 × SR [37] medium. The 
cell growth, MPH activity, Chd activity and protein over-
production were measured throughout cultivation (Fig.  5 
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Fig. 2  Optimization of the core region of the Pylb promoter. a the 
core regions of the Pylb promoter were changed to corresponding 
consensus sequence. The nucleotides in bold italic indicate mutated 
sequences. b The BgaB expression level under the control of Pylb 
derivatives. c SDS-PAGE analysis of the BgaB expression. Equal 
amounts (30 μg) of total protein were loaded into each lane. The 
band corresponding to BgaB was marked. All cultures were grown in 
triplicate, and each experiment was performed at least twice. Error 
bars indicate standard deviations. CK represents the intracellular 
protein of strain WB800
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and Additional file  1: Figures  S9, S10). Mutant strains 
showed no significant difference on bacterial growth com-
pared with strain WB800 (Additional file 1: Figure S16 and 
Table  S2). The extracellular protein displayed stationary 
phase-dependent pattern and the activity was significantly 
increased from the mid-exponential phase to stationary 
phase (Fig. 5a, c). The activity of MPH measured from the 
supernatant was as high as 144 U/ml (Fig. 5a, b) which was 
5.3-fold of that of plasmid pP43NMK-mediated expression 
(P43-mpd cassette) [38]. The yield of MPH was increased 
to 0.3 g/L on shake-flask culture condition. The activity of 

Chd measured from the supernatant was as high as 4.4 U/
mL (Fig. 5c, d) which was 300-fold higher than that of plas-
mid pP43Chd-mediated expression (P43-chd cassette) [39]. 
The yield of Chd was increased to 0.27 g/L on shake-flask 
culture condition. Western blot results showed that MPH 
and Chd were expressed (Additional file  1: Figures  S12, 
S13).
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Fig. 3  Optimization of the upstream region of the P3510 promoter. a the upstream regions of the P3510 promoter were changed to corresponding 
sequence. The nucleotides in bold italic indicate mutated sequences. b The BgaB expression level under the control of P3510 derivatives. c 
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twice. Error bars indicate standard deviations
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Discussion
So far, most promoters reported in B. subtilis were ligated 
to plasmid for protein production [19, 22, 27, 40–43]. 
Only four promoters (cry3Aa [26], amyQ [44], aprE 
[45] and a hybrid promoter [46] consist of P43 [9], Pylb 
[29] and Prha [47] were integrated to express single-copy 
gene. However, detailed protein production level was not 
mentioned except promoter aprE (10% intracellular total 
protein). Since single copy of expression cassette was not 
comparable to plasmid-expression system, it is necessary 
to choose an ideal promoter for stable and efficient pro-
tein production.

To date, promoters could be obtained by three fun-
damental approaches: (1) screening from the microbial 
genome and identification of the promoter [48–52]; (2) 
generating libraries of artificial promoters [36, 53–56]; (3) 
engineering the core region of known promoters [26, 28, 
31, 45]. In this work, existing stationary phase-dependent 
promoter Pylb was engineered to achieve protein overpro-
duction in a single copy cassette.

It is widely recognized that core region and the UP 
element were the key elements that contribute most 
to promoter activity. By engineering the core region to 
consensus sequence, the results indicated −  35 region 
played a pivotal role in promoter activity, which was in 
accordance with previous findings that the promoter 

activity of PaprN and PgroES-groEL were improved by modify-
ing the − 35 region [31, 57]. It is presumably the poorer 
homology of the − 35 motifs than the − 10 region in Pylb 
to δA-dependent consensuses that resulted in the major 
contribution of the −  35 region. The −  16 region was 
reported to have a pronounced effect on transcription 
[31] when changed to consensus sequence TRTG and 
the TRTG motif was shown to stabilizes the transcrip-
tion initiation open complex [58]. However, our result 
was opposed to the report and no BgaB activity was 
detected while engineering the − 16 region. It is probably 
that the native − 16 region is a key sequence involved in 
transcriptional activity. This result may be the most dif-
ference compared with other promoters. The − 22 region 
was also a potential target [31]. The phenomenon that 
the activity of promoter decreased slightly when changed 
from AAT to GGG indicated that “AT base” maybe suit-
able for “G” at positions − 22 region.

The UP element, a component of bacterial promot-
ers located upstream of the −  35 hexamer, increases 
transcription by interacting with the RNA polymerase 
α-subunit [34]. It has been reported that UP element 
could stimulate transcription initiation in B. subtilis 
although UP elements are not crucial for transcription 
of all promoters [32]. Since the major products of all 
cellular transcription in B. subtilis are rRNA and tRNA, 
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Fig. 4  Intracellular expression of sfGFP. a The fluorescence imagines of strains WBGFP (Pylb) and WBSGFP (NBP3510). Strains were cultured for 16 h in 
LB medium and imagines were taken. b The fluorescence intensity controlled by different promoters. c The accumulative sfGFP protein in different 
strains. M, Marker. Lane 1, Strain WB800. Lane 2, Strain WBGFP. Lane 3, Strain WBSGFP. Equal amounts (30 μg) of total protein were loaded into each 
lane. The band corresponding to sfGFP was marked. All cultures were grown in triplicate, and each experiment was performed at least twice. Error 
bars indicate standard deviations
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which constitute more than 95% of the total RNA [59], 
the UP elements from rrn operator may further stimu-
late promoter activity. There are 10 rrn operons in B. 
subtilis, controlled by tandem (P1 and P2) promoters. 
According to previously reported rrn operons [33], we 
chose UPs from four strong rrn operons controlled by 
P1 promoter. While replacing the UP sequence with that 
of rrnB operon, the promoter activity showed the best 
performance compared to other three. This is consistent 
with the report that strong rrnB P1 UP element increased 
the rate of RNAP binding [60]. To further engineering 
the promoter, the UP of rrnB was changed to consensus 
sequence, generating a new UP element consisting of A 
and T only. The UP engineering was verified again that 
the activity of a natural UP element could be improved by 
making it more AT-rich [34].

In this study, two reporter proteins BgaB and sfGFP 
were highly expressed. The intracellular expression level 

(43%) of BgaB was higher than that driven by promoter 
Pgrac in plasmid pHT100 (30%) [31] and the intracellular 
expression level (30%) of sfGFP was comparable to that 
driven by promoter PsrfA in plasmid pBSG3x (28.4%) 
[28]. The expression of two intracellular single-copy 
reporter proteins demonstrated that promoter NBP3510 
was suitable for intracellular protein expression. To fur-
ther exploit the application of NBP3510 promoter in 
B. subtilis, MPH and Chd proteins were extracellular 
expressed. The activity of MPH (144  U/mL) was higher 
than that driven by promoter P43 in plasmid pP43NMK 
(27.1  U/mL) and the expression level (0.3  g/L) was also 
superior to pP43NMK-mediated expression (53  mg/L) 
[9]. The activity of Chd (4.4 U/mL) was higher than that 
driven by promoter P43 in plasmid pP43Chd (14.5  U/L) 
and the expression level (0.27  g/L) was also superior to 
pP43Chd-mediated expression (5.65  mg/L) [39]. All in 
all, all these results indicate that single copy of promoter 
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NBP3510 could be used to overexpress foreign proteins 
in B. subtilis.

Aside from promoter strength, there are still many var-
iables affecting expression levels, including the stability 
of the mRNA [61], protein translation [62, 63], the cul-
ture conditions [64, 65] and so on. Thus, protein produc-
tion can be further improved by optimizing the variables 
above.

Conclusions
Bacillus subtilis, a versatile microorganism, has been 
used to overexpress various recombinant proteins owing 
to its outstanding biological characteristics. In this study, 
highly efficient promoter NBP3510 was generated and 
two intracellular proteins (BgaB, sfGFP) and extracellular 
proteins (MPH, Chd) were overexpressed from a single 
copy expression cassette.

Methods
Strains, plasmids and growth conditions
Bacterial strains and plasmids used in this study are 
listed in Table  1. Plasmid pAX01 was a gift from the 
Bacillus Genetic Stock Center (BGSC). Escherichia 
coli Top 10 were used as the host for gene cloning. 
B. subtilis WB800 was used for gene expression and 
integration. Unless otherwise indicated, the final con-
centrations of antibiotics were as follows, mg/L: ampi-
cillin (Amp), 100 for E. coli; erythromycin (Em), 5 for 
Bacillus. Strains were cultivated in Luria–Bertani 
(LB) medium or 2 × Super-Rich (SR) [37] medium. LB 
medium consisted of 1% tryptone, 0.5% yeast extract 
and 0.5% NaCl while 2 × SR medium consisted of 
3% tryptone, 5% yeast extract and 0.6% K2HPO4, pH 
7.2. Strains were cultivated at 37  °C in shaking flasks 

Table 1  Strains and plasmids used in this study

a  ApR: ampicillin resistance; CmR: chloramphenicol resistance; EmR: erythromycin resistance; Spcr: spectinomycin resistance
b  BGSC: Bacillus Genetic Stock Center

Strain or plasmid Characteristicsa Source or referenceb

Plasmids

 pAX01 PxylA, Apr, Emr, lacA [15]

 pYBGB pAX01 containing Pylb-bgaB cassette This work

 pLJ-2 CmR; E. coli-Bacillus shuttle vector [19]

 pUS20 Spcr, unstable in B. subtilis, E. coli-Bacillus shuttle vector [71]

Strains

 E. coli Top10 F− mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara 
leu)7697 galU galK endA1 nupG

TransGene Biotech (Beijing, China)

B. subtilis

 168 trpC2 BGSC 1A1

 WB800 (168) ΔnprE, Δ aprA, Δepr, Δ bpr, Δmpr, ΔnprB, Δvpr, ΔwprA [72]

 WBEmBgaB Strain WB800 derivate, lacA::Pylb-bgaB, Emr This work

 WBBgaB Strain WB800 derivate, lacA::Pylb-bgaB This work

 BS43 Strain WB800 derivate, lacA::P43-bgaB This work

 BSxylA Strain WB800 derivate, lacA::PxylA-bgaB This work

 BSsrfA Strain WB800 derivate, lacA::PsrfA-bgaB This work

 35BgaB Strain WB800 derivate, lacA::P35-bgaB This work

 10BgaB Strain WB800 derivate, lacA::P10-bgaB This work

 3510BgaB Strain WB800 derivate, lacA::P3510-bgaB This work

 351016BgaB Strain WB800 derivate, lacA::P351016-bgaB This work

 351022BgaB Strain WB800 derivate, lacA::P351022-bgaB This work

 OBgaB Strain WB800 derivate, lacA::OP3510-bgaB This work

 JBgaB Strain WB800 derivate, lacA::JP3510-bgaB This work

 DBgaB Strain WB800 derivate, lacA::DP3510-bgaB This work

 BBgaB Strain WB800 derivate, lacA::BP3510-bgaB This work

 WBSBgaB Strain WB800 derivate, lacA::NBP3510-bgaB This work

 WBGFP Strain WB800 derivate, lacA:: Pylb -sfGFP This work

 WBSGFP Strain WB800 derivate, lacA::NBP3510-bgaB This work

 WBSMPH Strain WB800 derivate, lacA::NBP3510-mpd This work

 WBSChd Strain WB800 derivate, lacA::NBP3510-chd This work
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(SHUNIU, GG-17, Sichuan SHUBO Co., LTD, China) 
on an incubator shaker (IS-RDV1, Crystal, China) 
operating at 200 rpm. To express recombinant protein, 
0.3 mL of preculture was transferred into 250-mL shak-
ing flasks that were loaded with 30 mL of LB or 2 × SR 
liquid medium. The percentages of the produced intra-
cellular proteins were calculated by Imagine J software. 
The cell density was determined by measuring the 
OD600 with a UV-1800/PC spectrophotometer (Shang-
hai, MAPADA Instrument Co., Ltd., China).

DNA manipulation techniques
Oligonucleotides synthesis (Additional file  1: Table  S1) 
and DNA sequencing were performed by Sangon Biotech 
Co., Ltd. (Shanghai, China). The isolation and manipula-
tion of recombinant DNA was performed using standard 
techniques. All enzymes were commercial preparations. 
Phusion DNA high-fidelity polymerase was purchased 
from NEB (Shanghai, China). The transformation of B. 
subtilis was carried out as previously described [66].

Comparison of the WT promoter Pylb with other promoters 
in BagB expression
To construct Pylb-driven bagB expression strain, Frag-
ment 1, a 2.0-kb fragment, comprising the bgaB encoded 
β-galactosidase activity was cloned from plasmid pLJ-2 
[19] using the primer pair P1/P2. Concomitantly, Frag-
ment 2, carrying the Pylb promoter from B. subtilis 168 
genome was generated using the primer pair P3/P4. The 
third fragment, the pAX01 plasmid backbone was ampli-
fied using the primer pair P5/P6. The terminuses of three 
fragments were flanked by 30-bp homology in order 
using the Sequence and Ligation Independent Clon-
ing (SLIC) method, yielding integrating plasmid pYBGB 
(Fig. 1a). The plasmid was then transformed into B. subti-
lis WB800, resulting in strain WBEmBgaB.

To eliminate the Em resistance, left flanking region (LF) 
and the right flanking region of erm was fused together 
using the primer pairs P7/P8 and P9/P10. The fragment 
was transformed to B. subtilis WBEmBgaB with the tem-
perature-sensitive plasmid pUS20 by nature co-transfor-
mation. The temperature-sensitive plasmid pUS20 was 
subsequently cured by overnight growth without selec-
tion, generating the marker-free strain WBBgaB.

As for other promoter-driven expression strains, co-
transformation was applied to replace the promoters with 
the Pylb promoters in strain WBBgaB. First, the promot-
ers P43, PxylA and PsrfA were amplified from B. subtilis 168 
genome using primer pairs P11/P12, P13/P14 and P15/
P16. Next, the corresponding LF region and RF region 
were amplified from strain WBBgaB using the primer 
pairs P7/P17, P7/P19, P7/P21 and P18/P10, P20/P10, 
P22/P10, respectively. The promoters were flanked by the 

corresponding LF and RF region by overlapping-exten-
sion PCR. Three fused fragments with promoter-driven 
bgaB expression cassettes were separately transformed to 
B. subtilis WB800 by nature co-transformation described 
above. The resulting strains were designed as BS43, BSx-
ylA and BSsrfA. All of the target mutation was confirmed 
by PCR amplification followed by DNA sequencing.

Site‑mutation of the WT Pylb promoter
To mutate the core region of the Pylb promoter, for 
instance, the −  35 region, the strain WBBgaB contain-
ing Pylb-bgaB cassette was used as template. Primer 
pairs P7/P23 and P24/P10 were used to amplify the LF 
region and RF region, respectively. The mutation was 
introduced into the primers P23 and P24. Primers P23 
and P24 were reverse complementation. The LF and RF 
fragments were fused by overlapping PCR and co-trans-
formed with the plasmid pUS20 followed by elimination 
of pUS20, generating the strain 35bgaB. Other mutant 
promoters, P10, P3510, P351016 and P351022 were also 
constructed using the method described above and the 
corresponding strains (10BgaB, 3510BgaB, 351016BgaB 
and 351022BgaB) are also constructed using the primers 
listed in Additional file 1: Table S1.

As for mutation of the upstream sequence of P3510, 
strain 3510bgaB was used as template. The native UP 
was replaced by four upstream sequences of rrn operon 
(rrnO, rrnJ, rrnD, rrnB) P1 promoter [33]. New promot-
ers OP3510, JP3510, DP3510, BP3510 and NBP3510 were 
generated the same as above. The corresponding strains 
(OBgaB, JBgaB, DBgaB, BBgaB and WBSBgaB) and the 
primers are listed in Additional file 1: Table S1.

Measurement of BgaB encoded β‑galactosidase activity
Bacillus subtilis WB800 containing each engineered 
promoter with the bgaB reporter gene was cultured at 
37 °C in an orbital shaker at 200 rpm in LB medium with-
out antibiotic. After incubation for 16  h, samples were 
taken for determination of β-galactosidase activities. 
The β-galactosidase specific activities were converted 
to Miller units, as described previously [67]. The values 
shown are the average of three independent experiments.

Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS‑PAGE)
The protein samples were mixed with 5 × SDS-PAGE 
sample buffer (125 mM Tris–HCl pH 6.8, 4% SDS, 20% 
glycerol, 10% β-mercaptoethanol and 0.004% bromo-
phenol) and heated at 100 °C for 10 min. The sample was 
centrifuged at 12,000 rpm for 5 min and the supernatant 
was used for SDS-PAGE. The electrophoresis was per-
formed at 80 V through the stacking gel (5%) and at 120 V 
through the separation gel (9%) until the bromophenol 
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blue marker dye reached to within 0.5  cm of the bot-
tom of the gel. Then, the protein bands were stained with 
Coomassie Brilliant Blue R-250. After staining, gels were 
destained overnight in a solution containing 5% ethanol 
and 10% acetic acid.

Construction of the GFP, Methyl Parathion Hydrolase 
(MPH) and Chlorothalonil hydrolytic dehalogenase (Chd) 
expression strains
To construct integrative strain for intracellular GFP 
expression and extracellular MPH and Chd expression, 
sfgfp [36] was synthesized from Genescript  Company 
(Nanjing, China). Gene mpd encoding methyl parathion 
hydrolase was amplified from the plasmid pP43NMK 
[38] using primer pairs P43/P44. Gene chd encoding 
chlorothalonil hydrolytic dehalogenase was amplified 
from the plasmid pP43Chd using primer pairs P45/P46 
[39]. For extracellular expression of MPH and Chd, the 
single peptide of aprE was assembled to mpd and chd 
using primer pairs P47/P48 and P49/P50. The corre-
sponding LF (including the promoter Pylb or NBP3510) 
region was cloned from the strain WBBgaB and WBS-
BgaB. The common RF region was amplified from the 
strain WB800. Then the LF (Pylb or NBP3510), sfGFP and 
the RF fragment were fused together and transformed to 
WB800, generating the strains WBGFP and WBSGFP. 
Strains harboring NBP3510-mpd cassette and NBP3510-
chd were also constructed as described above, namely 
WBSMPH and WBSChd, respectively.

Flow cytometric analysis
Bacillus subtilis WB800 with the sfGFP reporter gene 
was cultured at 37  °C in an orbital shaker at 200  rpm 
in LB medium without antibiotic. Cells were taken and 
washed twice with phosphate-buffered saline (PBS, pH 
7.5), diluted tenfold in PBS and then analyzed with a BD 
Accuri C6 flow cytometer (BD, Oxford, UK) using an 
argon laser at 488  nm as described previously [68]. For 
each sample, at least 5 × 104 cells were analyzed. Stand-
ard deviations are based on a minimum of three statisti-
cally independent experiments. Data were obtained using 
FlowJo V10 software (http://www.flowj​ochin​a.com/).

Expression of MPH and Chd using promoter NBP3510
A fresh overnight culture of the recombinant strain con-
taining mpd or chd cassette was inoculated into 250-mL 
shake flasks containing 30 mL 2 × SR [37] liquid medium, 
cultivated 24  h and periodically sampled. A cell-free 
supernatant was obtained by centrifugation (5  min, 
10,000×g). MPH activity measurements were performed 
as previously described [38, 69]. One unit of MPH activ-
ity was defined as the amount of enzyme required to 
hydrolyze 1  μmol methyl parathion in 1  min at 35  °C. 

Chd activity measurements were performed as previously 
described [39, 70]. One unit of Chd activity was defined 
as the amount of enzyme needed to decrease 1  mmol 
chlorothalonil per minute under optimal conditions.
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controlled by mutant P3510. Fig. S7–S8 The expression pattern of sfGFP in 
mutant strains. Fig. S9–S10 The control of MPH (a) and Chd (b) expression 
in strain WB800. Fig. S11 Purification of BgaB and sfGFP. Fig. S12 Purifica-
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