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G protein-coupled estrogen receptor 1 (GPER1), is a functional estrogen receptor
involved in estrogen related actions on several systems including processes of the
nervous, reproductive, metabolic, cardiovascular, and immune system. Regarding the
latter, GPER is expressed in peripheral B and T lymphocytes as well as in monocytes,
eosinophils, and neutrophils. Several studies have implicated GPER in immune-mediated
diseases like multiple sclerosis, Parkinson’s disease, and atherosclerosis-related
inflammation, while a recent report suggests that its deletion could be responsible for a
form of familial immunodeficiency. It has also been suggested that it is a key regulator of
immune-mediated events in breast, pancreatic, prostate, and hepatocellular cancer as
well as in melanoma. GPER has been also reported to interact with classic ER-alpha or its
splice variants in order to modify immune functions. This review aims to present current
knowledge relating GPER to immune functions, the cellular and signaling pathways
involved, as well as the potential clinical implications of GPER modulation in immune-
related diseases.
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INTRODUCTION

Our perception of the mechanisms involved in estrogen (patho)physiological effects has progressed
significantly in the last fifteen years, with the discovery of G protein-coupled estrogen receptor 1
(GPER1, previously known as G protein-coupled receptor 30 or GPR30). GPER1 is a seven
transmembrane-domain G protein-coupled receptor (GPCR) that in 2005 was reported
independently by two research groups to bind 17b-estradiol (E2) with high affinity and to induce
unique and specific signaling, upon its activation by this ligand (1, 2). GPER1 was at the time the
answer for the rapid estrogen actions pointing out the need for a paradigm shift in the field.
However, parallel reports for membrane anchoring of classic ERa and ERb via palmitoylation,
tethered actions, and role of specific ER splice variants, further added to the complexity of rapid,
extranuclear steroid signaling (3). Hundreds of studies further explored the role of GPER1 in
cellular physiology and the regulation of rapid steroid actions. As a result, the role of GPER1 in
estrogen actions in several systems is now well accepted, even though not fully elucidated yet.

Most of the GPER1 actions aremediated through the rapid activation of G proteins, Adenylyl cyclase/
PKA, tyrosine kinases, the membrane-associated guanylate kinase (MAGUK) family of PDZ domain
proteins, MAP kinases, and PI3K (4–6). Moreover, several lines of evidence also suggest that, upon
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GPER1 activation, specific actions on gene expression can be
modified (7). Apart from estradiol, a variety of drugs,
phytoestrogens, and xenoestrogens were found to exert actions
via GPER1, while potent synthetic agonists and antagonists have
been synthesized and utilized to understand GPER1-dependent
actions and specific estradiol biologic effects (8). Multiple research
groups have identified specific GPER1 actions in distinct cell types,
organs, and systems. The research produced in this field in the last
15 years is now reaching maturity and GPER1 targeting is now also
studied as a novel therapeutic approach in cancer, cerebrovascular,
metabolic, and neurodegenerative diseases (9–11). Indeed, GPER1
has been found to regulate estrogenic effects on specific immune
functions, not only in humans but also in various other species (12–
16). Therefore, research regarding the role of this membrane
receptor in diseases characterized by sexual dimorphism, like
atherosclerosis, some types of cancer, and several autoimmune
conditions, could provide further insight into the pathophysiology
of these diseases and create opportunities for novel therapies.

The role of GPER1 in the immune system is another field of
potential GPER1 actions. The immunomodulatory effect of
GPER1 has also been implicated in cancer immune tolerance,
although data for potential therapeutic implications in this field
are limited (17, 18). In this review, we will analyze the current
knowledge regarding the expression of GPER1 in the immune
system and will review the diseases, or disease-models, where this
receptor might play an important pathophysiological role.
Additionally, the signaling mechanisms involved and the
interaction of GPER1 with critical molecules regulating major
immune functions will also be discussed.
EXPRESSION AND FUNCTION OF GPER1
BY CELLS OF THE IMMUNE SYSTEM

GPER1 mRNA is expressed in CD34+, CD38+ hemopoietic cells,
and mature cells of the immune system. Its appearance in the
early stages of immune cell development suggests its role in their
maturation and function (19, 20). The functional role of GPER1
in each population of immune cells has been explored in several
published works. However, the depth of our knowledge is still
limited and several controversies have arisen from conflicting
results, as presented in Table 1. Below, we summarize the
findings of GPER1 detection and actions in specific immune
cell populations:

Lymphocytes
GPER1 is expressed in bone marrow B lineage CD19+ IgM- cells
(pro- and pre-B cells), in peripheral B cells, and in circulating T
cells (19, 21, 29). Peripheral T and B cells express GPER1,
showing a distinct subcellular distribution, different from the
classical ERa and ERb. These cells also exhibit membrane
binding sites for estrogen that are attributed to GPER1 and
membrane-bound forms of the classic estrogen receptors, which
display significant ligand-dependent internalization and
recycling (29).
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T Lymphocytes
In T-cells, GPER1 expression has been specifically reported in
CD4+ CD44loCD62LhiFoxp3- naive T‐cell and CD4+ Foxp3+ T‐
reg cells (28). GPER1 has been found to affect cytokine
expression, lineage progression, and proliferation. Although the
mechanisms involved are not fully elucidated, early GPER1
expression in adaptive immunity-related cells could affect their
maturation. Early reports disclosed that estrogen mediates
thymic atrophy via the classic estrogen receptor ERa (39).
Interestingly, after the discovery of GPER1, it was found that
its loss in mice leads to partial resistance to E2-induced thymic
atrophy via thymocyte/naive T-cell apoptosis. In contrast, in
wild-type mice, the GPER1 agonist G-1 effects on thymic atrophy
were equivalent to that of estrogen (19, 21). This finding,
however, could not be reproduced in three other early studies
(22, 23), using a different KO mouse strain.

The role of GPER1 in the induction of IL-10 expression by
CD4+ T cells and especially in the T helper 17 (Th17)
subpopulation, has been studied more thoroughly; GPER1
specific agonist G1 increases IL-10 expression in these cells,
activating the ERK kinase pathway, a well-established signaling
pathway of this receptor (26, 27). Increased IL-10 expression was
TABLE 1 | Actions attributed to GPER1 in each cell type of the immune system.

Cell type Action Reference

T-lymphocytes • Induces thymic atrophy (controversial) (21–25)
• Induces IL-10 in CD4+ T cells (26, 27)
• Enhances CD4+ T cells Foxp3 expression
and Foxp3 positive T-cells

(28)

• Increases T-cell proliferation (fish) (29, 30)
B-lymphocytes • Decreases activation‐induced B cell

proliferation
• Increases IgG (memory)

(29)

• Inhibits proliferation (fish) (30)
• Enhances natural antibody production (mice) (30).

Monocytes/
macrophages

• Decreases TLR4 expression,
• Blocks the inflammatory response to LPS
and expression of PGE2, IL-6, and TNFa

(31)

• Mediates E2 anti-inflammatory action on LPS
activated human monocytes and in vitro
differentiated macrophages via interaction with
ERa36 and NFkB and blocks IL-6 and TNFa
release

(32)

• Inhibits hepatocarcinogenesis in the DEN
induced HCC model by inhibiting IL-6 expression
by Kupffer cells

(33)

Eosinophils • Increases CCL11 induced chemotaxis
• Blocks caspase-3 dependent spontaneous
apoptosis in resting eosinophils
• Increases apoptosis in IL-5 stimulated
eosinophils.

(34)

• Suppresses airway inflammation (mouse
asthma model)

(35)

Neutrophils • Increases IL1b, CXCL8, and COX2
expression
• Enhances respiratory burst
• Increases life span

(36)

• Has anti-inflammatory effects in the equivalent
of human neutrophils in fish

(13, 37,
38)
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also observed in vivo, in splenocytes isolated from G1-treated
male mice (26). G-1 also enhances Foxp3 expression in CD4+ T
cells and increases the number of Foxp3+ T-cells, when they are
polarized in vitro toward the Th17 lineage (28). In the same
study, it is reported that G1 also induces small increases in the
expression of PD-1 and CTLA-4. It is to note that prior
investigations have attributed this estrogen-elicited action to an
effect of the classical estrogen receptors (40, 41).

Finally, although estrogen has been reported to decrease
activation‐induced T cell proliferation, E2‐BSA, acting
exclusively on membrane estrogen receptors, enhanced cell
growth. In addition, in fish, estrogen increases the proliferation
of T-cells specifically via GPER1 (29, 30).

B-Lymphocytes
Similarly to T-cells, activation‐induced B cell proliferation is
decreased by estrogen, while membrane-only acting estrogen
enhances it. The effect of membrane acting estrogen, potentially
viaGPER1, also increases IgG production in mice, but only when
immune memory has been established (29). This suggests that
GPER1 may affect the function of memory B-lymphocytes or
plasmacytes, a finding that should be further studied, since it may
explain recorded gender-specific differences in adaptive
immunity. In fish, however, GPER1 mediates estrogen-
dependent inhibition of B-cell proliferation GPER1 (30), while
both estrogen and G1 also raise natural antibody production in
mice via GPER1 (30).

Monocytes/Macrophages
Several research groups have reported that GPER1 is expressed
in monocytic cell lines, CD14+ monocytes, in in vitro
differentiated macrophages and in tissue-resident macrophages
(19, 31, 32, 42).

It has been repeatedly shown that estrogen can inhibit
monocyte/macrophages activation and this was attributed to
the classical estrogen receptors (43). This estrogenic action
could be crucial for diseases that display sexual dimorphism,
like atherogenesis, asthma, and some types of cancer. It was
later found that GPER1 mediates the anti-inflammatory effect
of estrogen in the monocyte/macrophages population through
multiple mechanisms. Both 17beta-estradiol and G1 decrease
TLR4 expression in RAW 264.7 cells and primary mouse
peritoneal macrophages and this effect is abolished in
GPER1 knockdown cells. Treatment of RAW 264.7 cells
with G1 leads to a diminished inflammatory response to LPS
and decreased expression of PGE2, IL-6, and TNFa (31). Our
group has reported that GPER1 is also crucial for E2 anti-
inflammatory action in LPS activated primary human
monocytes and in vitro differentiated human macrophages:
GPER1 mediated this effect via its direct physical interaction
with the 36-kDa ERa splice variant, called ERa36, and the p65
subunit of NFkB. The formation of this hetero-protein
complex led to a reduced capacity of NFkB to activate the
expression of key molecules like IL-6 and TNFa (32). This is
physiologically relevant since we also found expression and
co-localization of ERa36 and GPER1 in macrophage cells
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infiltrating coronary artery atherosclerosis plaques from
coronary heart disease patients.

In an elegant set of experiments focusing on liver tumorigenesis,
Wei et al. found that GPER1 knockout mice display accelerated
hepatocarcinogenesis in the diethylnitrosamine (DEN)
hepatocellular carcinoma (HCC) model. This was attributed to
increased local inflammation and fibrosis, accompanied by elevated
IL-6. Since the major source of IL-6 in the liver are Kupffer cells
(liver resident macrophages), they isolated bone marrow
mononuclear cells from wild type and knockout mice and found
that LPS induced IL-6 production is blocked in these cells in a
GPER1-dependent manner (33). These findings are also relevant for
human HCC where they found decreased GPER1 expression in
tumors versus adjacent non-tumor tissue.

Eosinophils
Although it has been reported that CD15+ cells do not express
GPER1 (19) another group reported GPER1 expression both at
the mRNA and protein level in highly purified eosinophils (34).
In their study, Tamaki et al. found that G-1 does not provoke
eosinophil degranulation or chemotaxis, but increased CCL11-
induced chemotaxis. GPER1 effect on eosinophil apoptosis is
dependent on their activation status. G1 blocked caspase-3
dependent spontaneous apoptosis of resting eosinophils
but had an opposite effect on IL-5 stimulated cells. These
findings suggest that low estrogen levels may lead to
worsening of eosinophil-dependent conditions via loss of
GPER1 dependent control. Interestingly, the decline of
estrogen levels during the premenstrual period is believed to
worsen medical conditions like asthma, a well-known
eosinophil-dependent condition (44). Although data in
humans are lacking, it was found that GPER1 suppressed
airway inflammation in a mouse model of asthma (35).
GPER1 could, therefore, be part of the pathophysiology of
several eosinophil related diseases that display sexual
dimorphism or perimenstrual variation.

Neutrophils
The expression of GPER1 on the surface of human neutrophils
was only recently reported, related to a significantly modified
gene expression profile. Previous reports have shown that
polymorphonuclear cells express the classical ERa and ERb
estrogen receptors, which were believed to have mostly anti-
inflammatory actions (45, 46). Contrary to these reports
regarding the effects of estrogen on neutrophils, G1 activation
of GPER1 triggered a proinflammatory reaction with increased
cytokine (IL1b, CXCL8) and COX2 expression, enhanced
respiratory burst and increased life span (36). This finding
supports a differential role of GPER1, compared to classical
estrogen receptors, in regulating inflammation in these cells.
However, it seems that several key pieces of the puzzle are
still missing.

Significantly more data regarding the expression and the role
of GPER1 in neutrophils come from studies in fish. The research
groups involved, however, have reported that in fish G1 has
mostly anti-inflammatory effects, via changes in the expression
October 2020 | Volume 11 | Article 579420
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profile of acidophilic granulocytes (the equivalent of human
neutrophils) (13, 37, 38).
MECHANISMS RELATED TO GPER1
ACTIONS AND INTERACTIONS WITH
OTHER MOLECULES

Most studies on immune-related action of GPER1 have focused
on phenotypic events and less is known regarding the underlying
signaling mechanisms. In the few studies that included
intracellular signaling, the major GPER1-related pathways
involved extracellular signal-regulated kinase 1/2 (ERK1/2),
phosphoinositide 3-kinase (PI3K), and NFkB (26, 29, 32). In
human neutrophils, the major pathways also involved cAMP/
protein kinase A/cAMP-response element-binding protein, p38
mitogen-activated protein kinase, and ERK (36).

We have shown that GPER1 physically interacts with ERa36
and the p65 subunit of NFkB. This complex is found both in the
cytoplasm and the nucleus, and is related to the estrogen
inhibitory NFkB-mediated expression of IL-6 and TNFa (32).
Furthermore, other groups have reported functional crosstalk
between GPER and other nuclear steroid receptors including the
vitamin D receptor (VDR) (47), the glucocorticoid receptor (GR)
(48), and the mineralocorticoid receptor (MR) (49, 50) although
the latter has been strongly questioned due to lack of proof for
aldosterone binding to GPER1 (51). Furthermore, Vivaqua et al.
have reported functional and physical interactions between
GPR30, activated EGFR and ERa-alpha that may set off
complex signaling cascades in hormone-sensitive cancer cells
(52). This is an interesting mechanism since in the same study
GPER1 was also found to be upregulated by EGF and TGF alpha
in endometrial and tamoxifen-resistant breast cancer cells via the
EGFR/ERK transduction pathway and c-fos (52).

Another controversial finding, related to the effects of steroids
via GPER1, has to do with the effect of dehydroepiandrosterone
(3b-hydroxy-5-androsten-17-one, DHEA), a molecule with a
significant functional role in human immunity, to act via
GPER1 [reviewed in (53)]. It has been reported that rapid
DHEA-induced miR-21 transcription involves GPER1, estrogen
receptor a-36 (ERa36), EGFR signaling, and activation of c-Src,
ERK1/2, and PI3K (54). Although the results of this study have not
been followed-up, the interaction of GPER1 with ERa36, also
reported by our group, points out that such an interaction might
be a more general model of GPER1 action.
GPER1 INVOLVEMENT IN IMMUNE-
RELATED HUMAN DISEASES

As GPER1 is expressed in different human immune cells
(presented above) regulating their life span and/or activation, a
crucial role of GPER1 in a wide range of immune-related disorders
has been suggested. These include chronic inflammatory and
autoimmune diseases as well as immunodeficiencies [recently
Frontiers in Endocrinology | www.frontiersin.org 4
GPER1 deletion has been reported to be central for a case of
familial immunodeficiency (55)]. For the scope of this review, we
will concentrate on GPER1 involvement in inflammation-
associated disorders.

Neuroinflammatory Disorders
Estrogen was known for many years to be active in the central
nervous system (CNS) [see (56, 57) for reviews]. They arrive at
their target cells either through the general circulation (by crossing
the blood-brain barrier-BBB-) or through local production by
neurons or astrocytes (58, 59). Several studies, including ours,
reported estrogen to possess antiapoptotic and antioxidant
activities [reviewed in (60)], which position them as anti-oxidant
and anti-inflammatory agents, in the CNS. These beneficial effects
of estrogen have resulted in the investigational use of estrogen in
many clinical trials for inflammatory CNS conditions, presented in
Table 2. The main targets of all these trials were intracellular ERa
or ERb, which are present in astrocytes or glial cells [excellently
reviewed in (57)]. However, in our study, before the identification
of GPER1 (1, 2), we reported that, in PC12 cells, BSA-bound
estrogen mediates anti-apoptotic effects through membrane
binding, mobilization of intracellular Ca2+ and activation of
specific intracellular kinases pathways, independently from the
activation of ERa/b (61). In addition, membrane estrogen binding
sites, lately associated with GPER1, were identified in preparations
of rat brain tissue. Later on (62), using the same model (PC12
cells), we have reported a detailed intracellular pathway. It includes
NOS activation, CREB’s, and NFkB nuclear translocation, leading
to a pro-survival effect of estrogen via the BCL2-family of anti-
apoptotic proteins.

The discovery of GPER1 shed a new light on the effect of
estrogen in neuro-inflammation. Indeed, GPER1 was found, in
addition to neuronal cells (61), also on microglial cells and
astrocytes (63–67). Anti-inflammatory effects were attributed
TABLE 2 | Clinical trials using estrogen agonists or antagonists in inflammatory
CNS conditions.

Condition Estrogen compounds

Agonists Antagonists

Traumatic Brain Injury NCT00973674 NCT00065767 (Raloxifene)
Stroke NCT00026039 NCT00368459 (Raloxifene)

NCT01040182
NCT00005466

Alzheimer’s Disease NCT00018343
NCT00006399
NCT00000176
NCT00000177
NCT00066157
NCT03718494
NCT03101085
NCT02142777
NCT01982578 (Genistein)

Parkinson’s Disease NCT00234674
ALS NCT02166944 (Tamoxifen)

NCT01257581 (Tamoxifen)
NCT00214110 (Tamoxifen)
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to GPER1 in several systems, including cells of the CNS (1, 8, 27,
61, 62, 66–71).

Although no clinical trials are available for the time being, due
to the absence of a clinically available specific GPER1 agonist or
antagonist, there are compelling preclinical indications about a
specific involvement of this receptor in neuro-inflammatory
diseases. Indeed, the GPER1 specific agonist G1 was found
to be beneficial in an animal model of experimental
encephalomyelitis and multiple sclerosis (68), by reducing the
severity of the disease and reducing the level of pro-
inflammatory cytokines. This effect was also reported by other
groups (24, 41) and was attributed to the anti-inflammatory
effect of GPER1, mediated by PD1 inhibition (24) [an element
which was exploited also in the case of melanoma therapeutic
manipulation (72)], or inhibition of pro-inflammatory cytokines
(41). G1 also has a protective effect in the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) mouse Parkinson’s Disease
model. G1 is directly neuroprotective, but most importantly it
has an indirect effect through an anti-inflammatory action on
immune cells (macrophages, lymphocytes) (69, 73). Finally,
GPER1 reduced neural injury and improved neural damage in
a mouse model of ischemic brain injury, through inhibition of
the TLR4-mediated inflammatory process (66).

Other Inflammatory Diseases
The anti-inflammatory effect of GPER1 has been investigated in
several diseases and conditions, outside the CNS. The main organ
that has been investigated is the vascular endothelium. Indeed,
many reports (15, 16, 32, 74–77) investigated the anti-inflammatory
effects of GPER1-mediated E2 effect in normal and atherosclerotic
vessels. In mice with pronounced atherosclerosis, GPER1 deficiency
was an aggravating factor, linked to disease progression. The effect
of GPER1 was mediated by infiltrating immune cells (macrophages,
lymphocytes) and was mediated by the GPER1-induced prostanoid
production by the vascular endothelium (78). TNF-induced
vascular inflammation (a condition which mimics the cellular
stimuli induced by infiltrating immune cells), could also be
attenuated by activation of GPER1, and enhanced by GPER1
antagonists, or activation of ERa, suggesting an opposing role of
nuclear and extranuclear estrogen actions in the vascular
endothelium (79). This finding led the authors to propose specific
pharmacological options for GPER1 activation in vascular
inflammation and derived atherosclerosis (80) and a specific role
of this receptor in the maintenance of heart health (75).

Interestingly, GPER1 seems to play a significant role in large
bowel physiology and disease [see (12) for a review]. More
specifically, GPER1 seems to be downregulated in Inflammatory
Bowel Disease and especially Crohn’s disease, as compared to the
normal tissue, suggestive of a protective role of the receptor in bowel
inflammation (81). Although the data are not conclusive, the fact
that GPER1 is expressed preferentially in normal tissue (81),
together with its anti-inflammatory effect on different lineages of
circulating or tissue-resident immune cells, as discussed above (28,
31–33, 35, 44), suggest a potential role of this receptor in bowel
inflammation, a condition that when is present for prolonged
periods of time (chronic colonic inflammation) is a risk factor for
Frontiers in Endocrinology | www.frontiersin.org 5
colon carcinogenesis (12). For more details on this topic please refer
to the specific review in this special issue.

As described previously, GPER1 has been also implicated in
liver inflammation, liver fibrosis, and hepatocarcinogenesis (33).
In the absence of GPER1 the latter is increased and is
accompanied by enhanced immune cell infiltration and
production of inflammatory mediators like interleukin-6 (IL-6),
through action on stellate cells rather than on hepatocytes, an
effect reported previously (82). Therefore, GPER1 may prevent
hepatocarcinogenesis via its anti-inflammatory effects.

Another condition characterized by a low degree of chronic
inflammation is obesity, resulting in the emergence of Type II
diabetes (15). In this condition, an underlying low-grade chronic
inflammation is considered an important factor leading to insulin
resistance. The anti-inflammatory effect of GPER1, documented by
the administration of G-1 in experimental animals, verified the
importance of this receptor in reducing vascular inflammation in
adipose tissue, liver, and pancreas (33, 83–87). Interestingly, another
mechanism GPER1 affects diabetes and hypercholesterolemia, is a
direct action on lipid metabolism (84) and insulin signaling (84, 85).
These effects have a direct impact on the generation and aggravation
of type II diabetes, as discussed in detail in another review in the
context of this thematic issue.

Finally, by modulating tissue and infiltrating immune cell-
regulated inflammation, a role of GPER1 was reported in the
regulation of endometriosis (88).

Cancer and Tissue Micro-Environment
Inflammation
GPER1 has also been implicated in cancer and stroma-related
inflammation, a hot topic in cancer research, and a preferential
therapeutic target in cancer treatment. (The role of GPER1 in
cancer is the object of a specific review, in this special issue.)

As discussed above, GPER1 activation inhibits PD1
production and action of pro-inflammatory cytokines,
positioning this receptor as an interesting player for the
modulation of the tumor microenvironment (24, 41). This
element has been exploited in in melanoma (72). Furthermore,
GPER1 stimulation by tamoxifen [acting as an agonist on this
receptor (2)] inhibits the myofibroblastic differentiation of
pancreatic stellate cells in the tumor microenvironment of
pancreatic tumors, hampering their ability to remodel the
extracellular matrix and to promote cancer cell invasion.
GPER1 activation reduces the recruitment and polarization of
the M2 phenotype of tumor-associated macrophages, inhibiting
tumor inflammation, and immune suppression (87). However,
GPER activation by either E2 or G-1 has been found to induce
IL1b expression in cancer associated fibroblasts, and IL-1R1 in
breast cancer cells, leading to a more aggressive phenotype (89).
Furthermore, T-lymphocytes-related apoptosis induction by
GPER1 (90, 91), leads to an inability of the major immune
cells infiltrating breast stroma, in primary or metastatic breast
cancer to support tumor expansion (92, 93). Overall, this
positions GPER1 as a good prognostic and/or therapeutic
target in several cancers, where the tumor microenvironment is
critical for tumor expansion.
October 2020 | Volume 11 | Article 579420
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In addition to the modulation of the tumor micro-
environment, GPER1 activation has a direct immunomodulatory
effect on the tumor tissue, per se. Indeed, GPER1 was found to be
an androgen-repressed gene and is therefore highly expressed in
castration-resistant but not in androgen-responsive prostate
cancer (94). Through a thorough analysis of xenografted
prostate tumors in mice, the authors report that GPER1 up-
regulation (and its activation by G1) results in an increased
expression of genes related to the interplay between innate and
adaptive immunity. Furthermore, they report substantial necrosis
of xenografted tumors through increased production of neutrophil
attracting cytokines. Therefore, GPER1 is a pro-inflammatory
mediator in castration-resistant prostate cancer involved in
neutrophil movement, accumulation, adhesion, activation, and
phagocytic respiratory burst. Interestingly, a similar E2-induction
of the mammary gland with a resulting inflammation was also
reported during mammary gland involution (95), although the
authors do not specifically investigate the implication of GPER1.

GPER1, through modification of local inflammation and the
corresponding immune response, has been reported to play a
role in inflammatory breast cancer (74). Specifically, if GPER1 is
co-expressed with ERa, it is a good prognostic marker, related to
improved overall survival and disease-free survival. GPER1 also
increases miR-148a, which in turn induces HLA-G, in both ER+
and triple-negative breast cancer cells (96). The expression of the
latter molecule impairs the immune evasion of breast cancer,
again suggesting that GPER1 is a good prognostic indicator in
breast cancer.

Finally, as discussed above, GPER1 has an indirect impact in
colon carcinogenesis through modulation of immune responses
(12), while in a thorough investigation, Wei et al. propose that
the effect of GPER1 on liver tumorigenesis might be attributed to
the anti-inflammatory effect of the agent rather than to a direct
action on cancer cells (33).
FUTURE PERSPECTIVES IN GPER1
IMMUNITY-RELATED RESEARCH

GPER1 actions on immune functions seem to be abundant and
could be critically important, especially in neuro-inflammation
and in inflammatory processes related to atherosclerosis. A
universal finding across systems and cell types seems to be
GPER1 dependent modulation of TLR4 mediated events, with
hints that this could be a mechanism affecting several other
fundamental pathways exploiting NFkB to lead to inflammation.
Current studies have given us just a glimpse of the potential of
this molecule and more studies are needed in this area.

The field of GPER1 research has been, however, obscured by
“availability bias” characterized by the narrow focus on single
molecules and mechanisms. The complexity of estrogen-mediated
anti-inflammatory actions may include interactions between
GPER1 and classical estrogen receptors or their isoforms, as well
as interactions of GPER1 with other nuclear receptors with the
capacity to regulate the immune system. The latter is a critical issue
for the explanation of the diverse actions of estrogen and G1 on the
Frontiers in Endocrinology | www.frontiersin.org 6
same mechanism, seen not only in GPER1 action on immune
functions but also in other systems. Since the physiologically
relevant molecule is estrogen, our current knowledge regarding
the effects of G1 suggests that GPER1 could have a more universal
role as a central rheostat for diverse intracellular mechanisms
related to inflammation. Therefore, future studies on the role of
GPER1 on immune functions should focus on a thorough analysis
of all the potential molecular interactions and intracellular
mechanisms in each cell type and each disease model.

Another important issue that should be further evaluated is the
potential role of GPER1 in the mediation of sexual dimorphism in
human diseases. It would be interesting to clarify if there exist
hormone independent differences in immune cell GPER1 levels
between males and females, or if sex-dependent differences in
estrogen levels are critical, although both phenomena could be
important in different clinical conditions. Sex related differences in
the expression of several other GPCRs have already been described
and have been related to sex dimorphism in cardiovascular
diseases and stress responses (97, 98).

Finally, the site where GPER1 resides is also an interesting
research subject. Membrane, endoplasmic reticulum, Golgi
apparatus, and nuclear localization of GPER1 (as observed in
immune cells), suggest molecular modifications that could also
affect its function. Deciphering GPER1 cellular trafficking could
also help us find ways to exploit its immune-modulating capacity.
CONCLUSIONS

GPER1 is a fascinating molecule that continuous to surprise us with
its diverse functions in the immune system. Since its discovery, it
has caused a paradigm shift in the way we understand estrogen
actions and the gender-dimorphism of several pathologies. Its role
in the immune system only now starts to unravel and initial data are
promising. Moreover, the role of GPER1 does not seem to be related
only to estrogen. GPER1 seems to have a more universal role in
regulating the function of almost all immune cells and several pro-
inflammatory mechanisms. Although there are still a lot of
uncharted territories to cover, the GPCR nature of GPER1 and
the existence of specific agonists and antagonists make it a
convenient therapeutic target for the immune system. Hopefully,
the best is yet to come.
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