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The immune system represents a major barrier to cancer progression, driving the
evolution of immunoregulatory interactions between malignant cells and T-cells in the
tumor environment. Blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare acute
leukemia with plasmacytoid dendritic cell (pDC) differentiation, provides a unique
opportunity to study these interactions. pDCs are key producers of interferon alpha
(IFNA) that play an important role in T-cell activation at the interface between the innate
and adaptive immune system. To assess how uncontrolled proliferation of malignant
BPDCN cells affects the tumor environment, we catalog immune cell heterogeneity in the
bone marrow (BM) of five healthy controls and five BPDCN patients by analyzing 52,803
single-cell transcriptomes, including 18,779 T-cells. We test computational techniques for
robust cell type classification and find that T-cells in BPDCN patients consistently
upregulate interferon alpha (IFNA) response and downregulate tumor necrosis factor
alpha (TNFA) pathways. Integrating transcriptional data with T-cell receptor sequencing
via shared barcodes reveals significant T-cell exhaustion in BPDCN that is positively
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correlated with T-cell clonotype expansion. By highlighting new mechanisms of T-cell
exhaustion and immune evasion in BPDCN, our results demonstrate the value of single-
cell multiomics to understand immune cell interactions in the tumor environment.
Keywords: BPDCN, cancer, single-cell, bioinformatics, multiomics
INTRODUCTION

Innovations in immuno-oncology, such as immune checkpoint
blockade (ICB) therapy, have transformed cancer medicine. ICB
and CAR-T cells have led to improved outcomes in various solid
tumors and B-cell malignancies, respectively (1), however these
methods have been less successful in myeloid leukemias than in
other cancers. Various mechanisms have been proposed to
explain the relative inefficacy of immunotherapies in myeloid
leukemias, including expression of immunoregulatory molecules
by malignant cells (2, 3). The complexity of immune regulation
in cancer is well illustrated by expression of interferon (IFN)
related genes that influence the effectiveness of immunotherapy
through immunostimulatory and immunosuppressive effects (4–
6). Chronic interferon signaling has been associated with T-cell
exhaustion in the setting of viral infections, but its role in cancer
is controversial (7–9). Blastic plasmacytoid dendritic cell
neoplasm (BPDCN) is an aggressive form of acute leukemia
with few effective therapies that provides a unique opportunity to
study IFN dysregulation in cancer. BPDCN is characterized by
uncontrolled proliferation of transformed plasmacytoid
dendritic cells (pDCs), specialized immune cells that link the
innate and adaptive immune systems through the secretion of
Type I interferons, including IFNA, particularly during viral
infection (10). Studies of BPDCN up to this point have largely
focused on the malignant pDC-like tumor cells, but few have
focused on the T-cell response. An effective immune response
relies on the interaction between healthy innate and adaptive
immune systems, which is critical for immunotherapy and may
be impacted by IFNA-producing pDCs.

Single-cell RNA-sequencing (scRNA-seq) has provided
granular insights into the dynamics and phenotypes of
immune cells. Specifically, scRNA-seq has been utilized to
define subsets of exhausted T-cells in viral infection and
cancer, including those that drive responses to ICB (11–13).
Advances in other single-cell technologies — such as single-cell
methylation, chromatin accessibility, and mutation status —
have allowed for multimodal data collection all from the same
cell (14–17). This type of analysis allows us to understand
relationships between biological processes and heterogeneous
cell types that cannot be studied using unimodal measurements
alone. To study T-cell biology, scRNA-seq can be paired with
sequencing of the T-cell receptor (TCR) a- and b-chain variable
regions. These regions can be enriched from single-cell
transcriptomes while maintaining cell barcodes to integrate
TCR sequencing data with gene expression profiles (18–20).
Recently, TCR sequencing has been applied to solid and blood
cancers to tie cell phenotypes to TCR properties, which has
allowed for a deeper examination of T-cell subsets via multiple
org 2
modalities (20–22). These studies also investigate the
phenomenon of T-cell exhaustion, which occurs when cells
enter a dysfunctional state in which they lose effector
functions, such as proliferation and cytotoxicity, and gain
immunoregulatory functions (7, 23, 24). Known drivers of T-
cell exhaustion include continuous antigenic stimulation and
chronic inflammation (7). Understanding the mechanism by
which cells become exhausted is particularly important in the
context of immunotherapy, as exhausted T-cells can regain
effector functions via ICB therapy (24, 25).

Here, we investigate the immune environment in five BPDCN
bone marrow samples and five healthy controls using scRNA-seq
and TCR sequencing. We used computational integration tools
to create a unified healthy reference and applied multiple
classification algorithms to annotate cell types in the BPDCN
samples by consensus. These data show variable cell type
expansions and a wide range of T-cell proportions between
patients. Though we found heterogeneity in cell type
proportions, we identified common signatures of upregulated
IFNA response, downregulated TNFA signaling, and
significantly increased CD8+ T-cell exhaustion. We applied a
TCR sequencing approach termed T-cell Receptor Enrichment
to linK clonotypes (TREK-seq) that we recently developed to
identify expanded T-cell clonotypes in BPDCN samples and
showed a correlation between CD8+ T-cell clone size and
exhaustion scores. By providing a comprehensive map of
cellular heterogeneity and T-cell transcriptomes/clonotypes in
BPDCN patients, we lay the foundation for future development
and evaluation of immunotherapies in this devastating cancer.
MATERIALS AND METHODS

Patient Samples
Bone marrow aspirate was collected from 5 patients with blastic
plasmacytoid dendritic cell neoplasm (BPDCN) who consented
to an excess sample banking and sequencing protocol that
covered all study procedures and was approved by the
Institutional Review Board (IRB) of the Dana-Farber/Harvard
Cancer Consortium. Additionally, 5 samples from healthy
donors were collected for use as a control in this study,
following the same approved protocol or a protocol approved
by the IRB of Mass General Brigham. Blast quantification for
each diagnostic patient sample was measured using four distinct
methods. Aspirates were tested by Giemsa stain for cell
morphology, flow cytometric measurement of blast markers
(CD45loSSClo/mid, abnormal CD4/CD123/CD56 expression),
and Rapid Heme Panel for targeted sequencing of leukemia-
March 2022 | Volume 13 | Article 809414

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


DePasquale et al. Single-Cell Multiomics in BPDCN
associated genes; a bone marrow core biopsy was tested by
hematoxylin and eosin (H&E) stain and immunohistochemical
(IHC) histological analysis. Details for each of these samples are
located in Supplemental Table 1.

Single-Cell RNA-Sequencing
Single-cell RNA-sequencing was performed on cryopreserved
iliac crest bone marrow aspirates for BPDCN samples and BM 1-
3 controls, and cryopreserved sternum bone marrow for BM 4
and 5 controls. To isolate mononuclear cells, BPDCN samples
and BM 1-4 were processed using Ficoll or lymphoprep, whereas
BM 5 was processed using Acrodiscs (Pall AP-4952). Cells were
stored in liquid nitrogen, thawed using standard procedures, and
viable (DAPI negative) cells were sorted on a Sony SH800 flow
cytometer. Next, 10,000-15,000 cells were loaded onto a 10x
Genomics chip. Further processing was done using the
recommended procedures for the 10x Genomics 3’ v3.0 or v3.1
chemistry (26). 10x libraries were sequenced on the NovaSeq SP
100 cycle with the following parameters (Read 1: 28 + Read 2: 75 +
Index 1 (i7): 10 + Index 2 (i7): 10).

Dataset Processing
Raw sequencing data were processed using CellRanger software
(27) to generate FASTQ files and count matrices. Ambient RNAs
were estimated and removed from the datasets using SoupX with
default parameters (28). Each dataset was filtered to retain cells
with >= 1000 UMIs, >=500 genes expressed, and <30% of the
reads mapping to the mitochondrial genome. Three of the
healthy control bone marrow samples were originally
integrated using the IntegrateData() function in Seurat v4.0.3
and clustered using the same software at the default resolution of
0.5 (29). Cell cycle genes (“cc.genes” within the Seurat software)
were removed from the integration anchors to combine smaller
cell cycle-driven clusters and to eliminate redundancy, though
these genes were retained in the final dataset for further analyses.
Further, a combination of high resolution sub-clustering with
Seurat and analysis of key T-cell gene expression were used to
improve granularity in the naive T-cell compartment. Two
additional healthy samples from older individuals were further
integrated into the original controls using Seurat’s TransferData
() function. The BPDCN samples were processed and clustered
individually using Louvain clustering within Seurat with default
options and a resolution of 0.5, though these clusterings were not
used in downstream analyses.

Cell Classification
Cells in each BPDCN sample were classified with four
classification methods using the integrated healthy control
samples as a reference: random forest (30, 31), cellHarmony
(32), Seurat’s TransferData() function (33), and scPred with
default parameters (34). Reference input for three of the
algorithms was the integrated Seurat object and feature
selection was performed separately as a part of each method.
cellHarmony instead used a gene expression matrix of the cells
by top 50 marker genes for each cluster (as defined by Seurat),
Frontiers in Immunology | www.frontiersin.org 3
the full expression matrix, and a table to cell type classifications
for the reference. Given highly consistent classifications between
the four methods, we selected cellHarmony-defined cell type
labels for all downstream analyses. Classified cells from BPDCN
patients were projected into the UMAP space of the integrated
controls using the MapQuery() function in Seurat v4.0.3.

Gene Set Enrichment Analysis (GSEA)
Gene set enrichment was performed separately on cells from each
cell type and BPDCN sample relative to the healthy controls. Log
fold change values for every gene were extracted from the
cellHarmony output (~/input/cellHarmony/OtherFiles), sorted
in decreasing order, and used as input for a custom GSEA
function (35). This function uses two GSEA implementations in
R, gage (36) and fgsea (37) and only reports the results that are
significantly enriched with bothmethods. Hallmark gene sets from
the GSEA website were used for this analysis (https://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp). Pathways that were
significantly enriched in at least one comparison were plotted
using the Pheatmap R package.

Pathway Score Quantification
To score individual cells for gene signatures, we combined all
52,803 cells from the dataset into one Seurat object, read in a
curated list of signatures [IFNA response from the GSEA
Hallmark gene set, TNFA signaling by NFKB from the
Hallmark gene set, T-cell exhaustion from Penter et al. (21)]
and applied the function AddModuleScore to the Seurat object
using signature genes as features. Statistical significance for each
cell type was calculated by comparing the median scores of
normal samples (n = 5) to the median scores of BPDCN samples
(n = 5) using the R function wilcox.test and default parameters.
The number of biological replicates was less than five if a cell type
was not detected in one of the donors (for example, n = 4 for
BPDCN CD8+ Memory T-cells).

T-Cell Receptor Sequencing
T-cell receptor sequencing was performed on both control and
BPDCN bone marrow samples using a modified protocol
originally developed for Seq-Well (18) that we term TREK-seq.
The modifications to the original protocol are as follows: in the
TCR enrichment master mix, we added PartialRead1 and
PartialTSO primers at a final concentration of 1.25 µM each.
For amplification of TCR transcripts following enrichment, we
used the same primers at a final concentration of 0.4 µM each. For
the final PCR, we used UPS2-N70x and 10X_SI-PCR_P5 primers
at a final concentration of 0.2 µM each to add the Illumina P5 and
P7 sequences. The libraries were sequenced using a 150 cycle kit
on the Illumina MiSeq and loaded at a final concentration of 10
pM. 28 cycles were used for Read 1, which read the cell barcode
and UMI. 150 cycles were used for Index 1, which read the TCR
region. TCRa and TCRb-specific custom sequencing primers
were used for index 1 at a final concentration of 2.5 µM. We
aimed for a MiSeq cluster density of roughly 450k/mm2. Primer
sequences can be found in Supplemental Table 2.
March 2022 | Volume 13 | Article 809414
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WAT3R Computational Pipeline
To analyze TREK-seq data, raw sequencing data were
demultiplexed with bcl2fastq (v2.20.0), and the resulting
FASTQ files were reformatted to join the cell barcode, UMI
and corresponding TCR sequence in the same file. For this
analysis, we developed and applied the bioinformatics pipeline
WAT3R, or Workflow for Association of T-cell receptors from 3’
single-cell RNA-seq (WAT3R) (https://github.com/mainciburu/
WAT3R) (38). Briefly, we first corrected cellular barcodes
allowing one mismatch with the 10x Single Cell 3’ v3 whitelist.
UMI correction was also performed by clustering together UMIs
with one mismatch. Every corrected barcode and UMI sequence
was then added to the corresponding FASTQ read header. Next,
we applied a quality filter to remove every read with an average
score < 25. To account for barcode swapping, TCR sequences
with identical barcode and UMI were subjected to clustering
using an identity threshold of 0.9. The subsequent analysis was
carried out exclusively with clusters representing at least 50% of
the reads with identical barcodes and UMI and doubling the
number of reads from the second most abundant cluster. Next, a
consensus sequence was built to summarize the TCR sequences
in each of those clusters. We required a minimum of 3 sequences
and allowed for a maximum error rate of 0.5 and gap frequency
of 0.5 per position. Consensus sequences were aligned to the VDJ
segments reference available at the IMGT database. IgBLAST
with the default parameters was used for the alignment. Finally,
the V, D and J calls and CDR3 sequence with higher UMI counts,
for both TRA and TRB genes, were assigned to each cell barcode.
For downstream analysis, only TRB variable regions were used.

Statistics
P-values less than or equal to 0.05 were considered statistically
significant. Cell population proportions between younger and
older healthy donors were assessed for significant differences
using a chi-squared test. For the GSEA heatmap (Figure 3A),
only significantly enriched pathways (P-value ≤ 0.05) in at least
one sample were visualized. For the heatmaps of genes in the IFN
Alpha Response and TNFA Signaling via NFKB hallmark gene
sets (Figure 4), P-values were calculated via t-test for each
comparison of reference (BM1-5) to each BPDCN sample per
cell type and adjusted using the Bonferroni method. Genes that
were significant (P-value ≤ 0.05) following correction and had an
expression value of 0.5 or greater (log normalized expression) in
at least one BPDCN or reference sample were retained for the
heatmap. A Wilcoxon signed-rank test was used for pathway
score and exhaustion score quantification, a Kruskal-Wallis rank
sum test was used to compare normalized T-cell clonotype sizes,
and a Spearman ranked correlation analysis was used to test the
relationship between clonotype size and exhaustion scores.

Data and Software Availability
All data used in this paper are publicly available in the Gene
Expression Omnibus (GEO), accession number GSE189431. The
scripts used to generate the results in this paper can be found at
the project GitHub repository: https: //gi thub.com/
EDePasquale/BPDCN.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Identification of Cell Populations in
Healthy Bone Marrow
To map the cellular diversity in healthy bone marrow samples,
we performed scRNA-seq using the 10x Genomics platform (27).
We profiled cells from three younger healthy donors (age 31-45)
and two older donors (age 74 and 75) (Supplemental Table 1).
The two older donors were included as age-appropriate controls
for BPDCN, which has been reported to have a median age of
~65 (39). Unique cellular barcodes were used to assign
transcripts to cells and individual mRNA molecules were
quantified using Unique Molecular Identifiers (UMI). Across
all five healthy donors, we retained 25,726 cells following quality
control and filtering.

Cells from these healthy donors (BM 1-5) were integrated
using the Seurat package (IntegrateData and TransferData
functions) to remove batch effects and generate a unified
UMAP projection of the data (Figure 1A and Supplemental
Figure 1). We initially identified 16 unique clusters based on
gene expression that were interrogated for expression of
canonical marker genes and gene signatures of blood cell types
(Figure 1B). Additional sub clustering was performed in the
lymphocytic compartment, and new T-cell classifications were
made based on expression of CD8A, CD4, ITGB1, and CCR7
gene expression. Specifically, CD4+ T-cells and CD8+ T-cells
could both be split into Naive (ITGB1- CCR7+) and Memory
(ITGB1+ CCR7-/+) subsets. The final reference was comprised of
17 clusters representing known hematopoietic cell types,
including HSCs and progenitors, myeloid, erythroid, and
lymphoid cells (Figure 1C). All cell types were represented in
each donor at broadly comparable levels, though variation exists
as expected, particularly between the younger and older donors
(P < 0.05, chi-squared test) (Figure 1D) (40).

Single-Cell Profiling of BPDCN
Bone Marrow
Approximately half of BPDCN patients present with skin tumors
only, whereas the other half present with bone marrow
involvement, i.e. detection of malignant blasts in the bone
marrow by conventional clinical assays, including Giemsa
stain, flow cytometry, H&E, and Rapid Heme Panel (41).
These assays often indicate divergent bone marrow
involvement due to inherent differences in the assays and due
to sampling. For example, bone marrow aspirate samples, as used
in this study, can be variably diluted with peripheral blood
elements depending on the quality of the biopsy and the
number of passes taken. Further, our single-cell sequencing
pipeline involves density centrifugation, cryopreservation and
microfluidics that could influence cell type proportions. A
comparison of bone marrow involvement estimates is included
in Supplemental Table 1. To understand the proportional and
transcriptional changes that occur in the bone marrow in the
presence of BPDCN tumor cells, we selected five patients with
1.5-97% disease involvement at diagnosis. We performed
scRNA-seq on BPDCN bone marrow samples using the same
March 2022 | Volume 13 | Article 809414
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protocol as in the healthy samples. From this sequencing, we
acquired 27,077 cells across all BPDCN donors following quality
control and filtering.

We next wanted to classify cell types in the five
BPDCN samples (BPDCN 1-5) using the healthy controls
cells as a reference. To this end, we tested four computational
classification methods that utilize different underlying
algorithms to assign cell type labels to cells: random forest,
cellHarmony, Seurat TransferData, and scPred. The resultant
cell type predictions were concordant across all four methods in
most cell types, particularly in the erythroid and lymphoid
lineages, lending confidence to the classification methods
(Figure 2A). Classifications from the cellHarmony algorithm
were chosen as the cell type labels for downstream analyses
Frontiers in Immunology | www.frontiersin.org 5
(Supplemental Table 3). Some variability was noted in the
proportion of cells labeled as pDC, conventional dendritic cells
(cDC), and Pro-B cells (ProB) in BPDCN 4 and 5; we
hypothesized that these could be malignant cells that align
poorly to any healthy population, which would be consistent
with the clinical annotation of high malignant cell content in
these bone marrows (Supplemental Table 1). To visualize shifts
in gene expression programs and differential cell type
proportions, we projected the cells from each BPDCN patient
onto the same UMAP space as the healthy reference, colored by
cellHarmony labels (Figure 2B). Indeed, we observed that the
pDC and cDC labeled cells in BPDCN 4 and 5 were shifted
toward the HSC/Prog and ProB populations, suggesting that the
malignant tumor cells in these samples were transcriptionally
A B

C D

FIGURE 1 | Integration and labeling of five healthy bone marrow control samples. (A) UMAP visualization of Seurat-integrated scRNA-seq data for 25,726
hematopoietic cells from five normal BM aspirates. (B) Expression scores for lineage signatures overlaid on the UMAP of healthy BM in (A). (C) UMAP shows 17
clusters of cells with similar transcriptional states, identified by Seurat clustering and sub-clustering of healthy BM. (D) Stacked barplots show the frequencies of cell
types in five normal BMs. Bone marrow (BM), hematopoietic stem cells (HSC), erythroid cells (Eryth), granulocyte-macrophage progenitor (GMP), B-cells (B), T-cells
(T), natural killer cells (NK), progenitor (Prog), monocyte (Mono), non-classical monocyte (ncMono), conventional dendritic cells (cDC), plasmacytoid dendritic cells
(pDC), pro-B cells (ProB), pre-B cells (PreB).
March 2022 | Volume 13 | Article 809414
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different from their healthy counterparts. For this study, we were
primarily interested in the role of T-cells in response to and as a
potential treatment for BPDCN, therefore we next focused on
alterations in cells of the lymphoid lineage.

T-Cell Populations Show Differential
Regulation of IFNA and TNFA Pathways
We used Gene Set Enrichment Analysis (GSEA) to identify
pathways that were significantly enriched in the BPDCN
samples. Using the Hallmark gene sets and gene expression
changes derived via cellHarmony, we generated a heatmap
containing all up- or down-regulated pathways enriched in any
BPDCN sample compared to the healthy controls (Figure 3A).
In several T and natural killer (NK) cell populations from
BPDCN patients, we found upregulation of “interferon alpha
response”, “allograft rejection”, “MYC targets”, and “oxidative
phosphorylation”. Interferon alpha (IFNA) response genes were
significantly upregulated in 4/4 BPDCN samples in CD8+
Memory T-cells, 3/5 in CD4+ Memory T-cells, 3/3 in CD8+
Naive T-cells, and 3/3 in CD4+ Naive T-cells, along with 3/5
samples in NK cells. IFNA is a marker of immune activation and
pDCs produce IFNA, furthering our interest in this pathway.
Using a different statistical framework, we next scored all
individual CD8+ Memory T-cells for their expression of genes
in the IFNA response gene set. We found a significant increase in
BPDCN 1-4 relative to control samples, confirming increased
Frontiers in Immunology | www.frontiersin.org 6
IFNA response gene expression in BPDCN T-cells (P = 0.0159,
Wilcoxon signed rank test, Figure 3B). BPDCN 5 did not have
cells classified as CD8+ Memory T-cells and was not tested.
Increased IFNA response gene scores were also observed in
CD4+ Memory T-cells and NK cells (data not shown). We
found that tumor necrosis factor alpha (TNFA) signaling was
downregulated in many of the T-cell and NK populations: 4/4
CD8+ Memory T-cell, 3/5 CD4+ Memory T-cell, and 2/3 CD4+
Naive T-cell, and 3/5 of the NK cell samples with the exception of
CD8+ Naive T-cells (0/3) (Figure 3A). Scoring individual CD8+
Memory T-cells for the TNFA gene signature also showed
significant reductions in BPDCN (P = 0.0159, Wilcoxon signed
rank test, Figure 3C). These results demonstrate that T/NK-cells
in BPDCN exhibit consistent gene expression changes compared
to healthy control cells, including increased response to the pDC-
related cytokine IFNA and decreased TNFA signaling.

We next investigated which genes in the IFNA response gene
set were driving the enrichment in BPDCN T-cells. We
generated a heatmap of genes that were significantly different
from control expression levels in at least one sample/cell type
pair and further filtered to those genes with normalized
expression values of at least 0.5 in one pair (P ≤ 0.05, t-test,
Bonferroni adjusted, Figure 4A). We also generated heatmaps
with the full list of genes in each gene set (Supplemental
Figure 2). Related to the IFNA response, genes that were
upregulated in BPDCN compared to control T-cells in the
A

B

FIGURE 2 | Classification of BPDCN samples using healthy references. (A) Stacked barplots show the frequencies of cell types in five BPDCN samples as classified
by four algorithms: RF, random forest; CH, cellHarmony; TD, Seurat TransferData; and SP, scPred. (B) UMAP visualization of cells from five BPDCN samples in the
same UMAP space as the integrated reference. Colors in the cell-type proportions and UMAP visualizations are coded by the legend. For comparison with healthy
controls, reference UMAP and proportions for each healthy sample are provided in the black box.
March 2022 | Volume 13 | Article 809414
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majority of samples included: IRF1, PSMB9, PSME2, CD74,
ISG15, ISG20, CD47, LY6E, PSMB8, and SELL (Figure 4A).
The increased expression of IRF1, PSMB9, and PSME2 were
notable in all 5 BPDCN samples across lymphoid cell types, with
the exception of BPDCN 4’s CD4+ Naive T-cells due to low cell
numbers. In contrast, CD74, ISG15, ISG20, CD47, LY6E, PSMB8,
Frontiers in Immunology | www.frontiersin.org 7
and SELL were most notably increased from control levels in
CD8+ Memory T-cells and NK cells, and in BPDCN 1-3
specifically. These genes are involved in T-cell proliferation/
differentiation, antigen presentation, and inflammation,
consistent with the view that IFNA signaling plays a critical
role in immune activation.
A

B C

FIGURE 3 | Gene set enrichment shows enrichment of IFNA and depletion of TNFA related genes in BPDCN. (A) Heatmap shows Gene Set Enrichment Analysis
normalized enrichment scores for each cell type and sample (columns) and significantly enriched Hallmark pathway (rows), determined by a P-value ≤ 0.05 in both
GSEA tests. Red indicates high normalized enrichment scores and blue indicates low normalized enrichment scores. (B) Violin plot of IFN Alpha Response gene set
scores (y-axis) for CD8+ Memory T-cells from each control and BPDCN sample (x-axis). Each dot within the violin plot represents a cell, with the box in the middle of
the violin representing the median and interquartile range of the data. Healthy BM samples are colored in dark blue, BPDCN samples are colored using the sample
color scheme from (A). (C) Violin plot of TNFA Signaling via NFKB gene set scores (y-axis) for CD8+ Memory T-cells from each control and BPDCN sample (x-axis).
P-values were calculated by comparing the medians of n = 5 healthy controls to n = 4 BPDCN samples.
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Related to TNFA signaling, genes that were downregulated in
BPDCN T and NK cells compared to control samples are as
follows: NFKBIA, TNFAIP3, DUSP1, DUSP2, FOS, JUN, ZFP36,
BTG2, and CD69 (Figure 4B). These genes were downregulated
relative to controls in all T-cell and NK cell subsets in BPDCN 1-
4, with the largest expression differences being isolated to the
CD4+ and CD8+ Memory T-cell and NK cell clusters. These
genes are involved in immune regulation via inflammatory
response, proliferation and T-cell activation. Decreased
expression of TNFA genes is indicative of a lowered immune
response, particularly in relation to T-cell activation. Overall, our
results suggest an altered balance between inflammatory
pathways in T-cells of BPDCN patients, shifting towards IFNA
at the expense of TNFA signaling (42). The changes we observe
in IFNA and TNFA target genes are likely to affect the function
of the adaptive immune system in BPDCN.
Frontiers in Immunology | www.frontiersin.org 8
Expanded T-Cell Receptor
Clonotypes in BPDCN Correlate
With Signatures of Exhaustion
T-cell antigen specificity is determined by the TCR sequence,
which consists of the a- and b-chains encoded by TRAV and
TRBV genes that are recombined during T-cell development. We
reasoned that sequencing the variable region of the TCR may
help to elucidate the biology of T-cells in BPDCN.We performed
TCR sequencing on healthy control and BPDCN samples using
TREK-seq, a protocol for paired transcript and TCR capture in
10x Genomics data (see Material and Methods). We developed
and applied the Workflow for Association of T-cell receptors
from 3’ single-cell RNA-seq (WAT3R) computational pipeline to
detect groups of cells expressing the same TCR sequence, i.e. T-
cell clonotypes (38). We identified 10,870 T-cell clonotypes in
our dataset, each supported by multiple sequencing reads.
A B

FIGURE 4 | Expression of IFNA and TNFA associated gene sets. (A) Heatmap shows log expression values for genes in the IFN Alpha Response gene set (rows)
for each sample and cell type (columns), clustered by row. Genes were filtered to those significant (p < 0.05) after multiple testing correction with an expression value
for one sample above 0.5. Red indicates higher expression and blue indicates lower expression. (B) Heatmap shows log expression values for genes in the TNFA
Signaling via NFKB gene set.
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Using this pipeline, we found that TCR sequences were
mainly detected in T-cell types in healthy controls, which is in
line with the reported specificity highlighted in the WAT3R
publication and lends confidence to TREK-seq protocol
(Figures 5A–E). In BPDCN, we mapped most of the TCR
sequences to T-cell types (Figures 5F–I), though more
variability is seen in these samples than the healthy controls.
Specifically, in BM 1-5, 94.7% of TCR sequences were detected in
T-cells (Figure 6A), and we observed clonal expansions in the
CD8+ Memory T-cell compartment, which was expected
(Figure 6B). In BPDCN 1-4, 86.7% of TCR sequences mapped
to T-cell types, though 3.9% mapped to NK cells and 7.8%
mapped to likely tumor populations (pDC, cDC, and ProB). NK
cells with TCR results may be a misclassified subset of NKT cells
not prevalent enough in the healthy controls to warrant a
separate cluster during classification. We observed TCR
transcripts in 12.6% of pDC/cDC/ProB cells in BPDCN 4. This
Frontiers in Immunology | www.frontiersin.org 9
finding is of uncertain significance in this biological context as
BPDCN blasts do not typically express the cell-surface proteins
(e.g., CD3) associated with functional TCR complexes (43).
TCR sequences from BPDCN 5 could not be successfully
retrieved with the TREK-seq, likely due to the low number of
T-cells in the sample, and it was therefore excluded from all
downstream analyses.

Next, we ranked clonotypes in each sample by their
normalized size (number of cells with the same TCR over all
cells in which a TCR was detected). For BM 1-5, we found that
none of the control samples were dominated by a single clone or
handful of clones, but that the distribution of clonotypes was
largely uniform (Supplemental Figures 3A–E). BPDCN samples
showed heterogeneity in the distribution of clonotypes: while
BPDCN 2-4 do not exhibit a single prevalent clone, similar to the
healthy controls, we detected a clone that comprises 30.9% of all
TCRs in BPDCN 1 (Supplemental Figures 3F–I). In this sample,
A B C

D E F

G H I

FIGURE 5 | TRA and TRB detection in healthy controls and BPDCN patients by cell type. (A–E) Bar plots for TREK-seq results in BM 1-5 (healthy controls),
separated by cell type. For each cell type, represented by a stacked bar, the colors indicate the proportion of TRA, TRB, and both genes mapped to that cell type.
(F–I) Bar plots for TREK-seq results in BPDCN 1-4 patient samples.
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one-third of the cells within the largest clone are labeled as NK
cells (Supplemental Figure 3F), leaving open the possibility that
the NK-labeled population with TCR results are NKT cells.

We next evaluated T-cell exhaustion by scoring each T-cell
for the expression of exhaustion-associated genes (21). We
overlaid cell type label, exhaustion scores, and normalized
clone size parameters onto UMAP plots for each BPDCN
sample containing T-cells (Figure 7). CD8+ Memory T-cell
clusters were enriched for exhausted cells and expanded
clonotypes in all patients, which was confirmed by
quantification of signature scores and clone sizes in cell types
(Figure 8A). Overall, exhaustion scores in CD8+ Memory T-
cells in BPDCN 1-4 were significantly higher than controls (P =
0.0159, Wilcoxon signed-rank test), though the range of scores
among individual cells within each sample was high (Figure 8B).
These results are consistent with the pathway analysis above, as
IFNA-mediated immune stimulation and low levels of TNFA
signaling were previously associated with T-cell exhaustion (7,
8, 44).

To explore the relationship between exhaustion and
clonotype sizes, we correlated these two parameters at the
single-cell level. We found that CD8+ Memory T-cell
clonotypes of various sizes can express T-cell exhaustion
signature genes, including some clonotypes that make up a
small proportion of the total T-cell population (Figures 8C–F).
Spearman ranked correlation analysis revealed a positive
relationship between clonotype size and exhaustion signature
expression: rho of 0.67, 0.61, 0.63, and 0.4 for BPDCN 1-4,
respectively (Supplemental Figure 4). These results suggest that
clonal expansion and exhaustion of CD8+ Memory T-cell
Frontiers in Immunology | www.frontiersin.org 10
clonotypes may be functionally linked in the BPDCN
tumor environment.
DISCUSSION

To study the immune environment in BPDCN, we utilized
paired single-cell sequencing of the transcriptome and T-cell
receptors in healthy controls and patient samples. We identified
17 transcriptionally unique cell clusters in an integrated dataset
of bone marrow from five younger and older healthy donors. We
used this dataset to label cell types in five BPDCN patient bone
marrow samples using four distinct classification algorithms,
revealing heterogeneity in cell type proportions that correspond
to clinical assessment of bone marrow involvement. An analysis
of differentially regulated gene sets revealed that IFNA response
genes were significantly increased in T-cells of the BPDCN
samples and TNFA signaling genes were decreased. A deeper
examination of expression within each gene set identified a
subset of genes driving this enrichment, with the associated
functions of T-cell proliferation, activation, and antigen
presentation. TREK-seq showed T-cell specific TCR expression
and uniformly distributed clone sizes in healthy controls; both of
these results were more variable in BPDCN patient samples.
Further, we saw increased T-cell exhaustion in CD8+Memory T-
cells that positively correlated with increasing clone sizes. These
results demonstrate the utility of single-cell multiomics by
establishing a resource of the BPDCN tumor environment that
provides new insights relevant to immuno-oncology.
A B

FIGURE 6 | TCR sequences are detected in T-cells and clonally expanded in CD8+ Memory T-cells. (A) Pie charts show cell type assignments of cells in which a
TCR sequence was detected. (B) Dot plot shows normalized clone size of all the T-cells in which a TCR sequence was detected. The distribution of values differs
between T-cell subsets (P < 2.2E-16).
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Our results contribute to the body of research surrounding
the role of the adaptive immune response in cancer and the
relationship between T-cell receptor clonality and exhaustion. In
a healthy immune system, activated pDCs produce large
quantities of IFNA to stimulate activation of T-cells (10). In
this study, we observe increased expression of IFNA response
genes in T-cells relative to T-cells in the healthy controls, initially
suggesting higher levels of IFNA production by pDC-like tumor
cells. However, previous research on BPDCN has shown that
Frontiers in Immunology | www.frontiersin.org 11
pDC-like tumor cells produce lower levels of IFNA relative to
pDCs from healthy individuals (45, 46). Further, little research
has been reported describing the role of TNFA signaling in
BPDCN, though studies have shown increased TNFA signaling
in the plasma of patients with acute myeloid leukemia (47, 48).
While the directionality of differential expression in these gene
sets in T-cells is in contrast to what has been observed in the
adjacent BPDCN cells, it is consistent with our findings of
increased T-cell exhaustion. We hypothesize that, despite the
FIGURE 7 | CD8+ Memory T-cells exhibit high expression of T-cell exhaustion-associated genes and larger TCR clones. UMAP plots of T-cell populations in each
BPDCN sample that contains T-cells (BPDCN 1-4), separated by column. UMAPs are colored by cluster (first row); T-cell exhaustion score, with red indicating high
exhaustion and gray indicating low exhaustion (second row); and normalized clone size, percentage of all cells in the dataset that share the same TCR sequence,
with blue indicating high clone size and gray indicating low clone size (third row).
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tumor cells exhibiting lower IFNA production at the individual
cell level, abnormal accumulation of pDC-like tumor cells in
BPDCN may lead to increased IFNA production and chronic T-
cell activation, eventually leading to T-cell exhaustion and
consequent TNFA downregulation.

Exhaustion of cytotoxic T-cells has been a major hurdle in
establishing effective immunotherapy treatments for blood
cancers (24, 25, 49). Reactivation of T-cell effector function in
exhausted T-cells is the goal of ICB, but aberrant IFNA and
IFNG signaling have been shown to inhibit this process (50, 51).
While the prevalence of exhaustion has been studied in other
cancers including acute myeloid leukemia, its role in BPDCN
Frontiers in Immunology | www.frontiersin.org 12
remains unknown. In this study, we establish that BPDCN
patients have heightened T-cell exhaustion relative to controls.
We also find a positive association between T-cell exhaustion and
T-cell clonal expansion, consistent with other cancers (21, 52).
Our findings highlight a potential mechanism of T-cell
exhaustion via persistent IFNA signaling that might be
targeted to restore anti-tumor immunity.

For this study, we selected five BPDCN patients with varying
levels of clinical bone marrow involvement, though more
samples will be needed to ensure that the full spectrum of
patient heterogeneity is captured. The quantification of
malignant blasts in the bone marrow is an important clinical
A C

D

E

F

B

FIGURE 8 | Exhaustion scores positively correlate with clone size in BPDCN samples. (A) Scatter plots show mean exhaustion score per cluster (x-axis) versus
mean clone size (y-axis). Dots are scaled by the number of cells of each cluster in the dataset. (B) Violin plot shows T-cell exhaustion signature scores in CD8+
Memory T-cells in healthy controls (BM 1-5) and BPDCN samples with T-cells (BPDCN 1-4). (C–F) Box plots of cells binned by TCR clone size (x-axis) versus
exhaustion score (y-axis) for T-cells in each BPDCN 1-4 sample as C-F. Parenthetical values on the x-axis labels indicate the normalized clone size.
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feature at the time of BPDCN diagnosis. Independent bone
marrow aspirates are evaluated for abnormal cell morphology
(Giemsa stain), surface phenotypes (flow cytometry), and
genetics (targeted sequencing, karyotyping). This can be
supplemented by H&E histological analysis of a bone marrow
core biopsy. Significant differences between these assays illustrate
the heterogeneity and complexity of BPDCN. Across the samples
we analyzed, the proportion of dendritic cells by scRNA-seq is
generally in agreement with the overall clinical evaluation of
malignant blasts, suggesting that single-cell sequencing may
provide additional support when defining tumor involvement.
Future studies should evaluate limitations introduced by
sampling bias and cell processing; further opportunities could
come from integration of genetic and phenotypic analysis with
single-cell gene expression.

Multimodal single-cell technologies enable investigation of
gene regulation at a high resolution through multiple modalities
representing interacting processes within a cell. In addition to
our measurements of gene expression and TCR sequences, other
multimodal technologies could elucidate mechanisms of
regulation in BPDCN. For example, the application of single-
cell genotyping methods in future work would help to classify
and characterize the transcriptomes of malignant tumor cells (2,
16). Inclusion of additional patient samples and complementary
single-cell measurements would strengthen our initial findings
and uncover new results that further illuminate T-cell biology
in BPDCN.

In summary, we apply scRNA-seq and TCR sequencing with
computational techniques to catalog the cellular heterogeneity in
BPDCN patient samples. Multiomics technology allows us to
gain a deeper understanding of immune cell dynamics by
assessing the diversity of immune cell states via scRNA-seq
and the expansion of T-cell clonotypes through TREK-seq.
Our results suggest that the balance between IFNA and TNFA
signaling is disrupted in BPDCN, potentially leading to T-cell
clonotype expansion and exhaustion. The discovery of
mechanisms by which BPDCN cells evade immune destruction
will lead to the development of new cancer therapies that
leverage tumor-reactive T-cells.
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