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Abstract: The recently discovered 340-cavity in influenza neuraminidase (NA) N6 and N7 subtypes
has introduced new possibilities for rational structure-based drug design. However, the plasticity of
the 340-loop (residues 342–347) and the role of the 340-loop in NA activity and substrate binding
have not been deeply exploited. Here, we investigate the mechanism of 340-cavity formation and
demonstrate for the first time that seven of nine NA subtypes are able to adopt an open 340-cavity
over 1.8 µs total molecular dynamics simulation time. The finding that the 340-loop plays a role
in the sialic acid binding pathway suggests that the 340-cavity can function as a druggable pocket.
Comparing the open and closed conformations of the 340-loop, the side chain orientation of residue
344 was found to govern the formation of the 340-cavity. Additionally, the conserved calcium ion was
found to substantially influence the stability of the 340-loop. Our study provides dynamical evidence
supporting the 340-cavity as a druggable hotspot at the atomic level and offers new structural insight
in designing antiviral drugs.
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1. Introduction

Since the beginning of the last century, multiple pandemics caused by influenza viruses have
severely impacted public health [1]. Although vaccines and antiviral drugs have been developed
to prevent and control upcoming influenza outbreaks, unpredictable novel strains and constantly
mutating existing strains still pose a great threat to human life [2]. In 2020, COVID-19, caused by the
SARS-CoV-2 coronavirus, has already affected more than 200 countries, taken more than 500,000 lives,
and instigated a significant global economic downturn [3]. Influenza, which also spreads readily via
respiratory droplets, cannot be neglected for its high morbidity and mortality [4]. New antiviral drugs
are a promising and straightforward approach to treating influenza by reducing case severity and
transmission, which can be particularly impactful for responding to new outbreaks [5]. Neuraminidase
(NA), which releases progeny virions by cleaving the terminal sialic acid (SA) residues on the infected
cell surface, is considered the most promising target for antiviral drug development [6]. Therefore,
exploring the structural features of NAs and identifying the SA binding path are of great importance
in designing anti-influenza drugs [7,8].

Nine NA alleles are classified into two groups according to phylogenic and structural differences
(group-1: N1, N4, N5, N8; group-2: N2, N3, N6, N7, N9) [9]. The crystal structures of group-1 NAs
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contain a unique characteristic, the 150-cavity, which can be exploited to develop new anti-influenza
drugs [10]. It is noteworthy that an additional pocket, the 340-cavity, adjacent to the active site of
NA capped by the 340-loop (residues 342–347) was observed in the crystal structures of N6 and
N7 [11]. Our group discovered that the hydrogen bond between G342 and Q296 and the calcium ion
bound in the 340-loop contribute to the special conformation of the N7 340-cavity [12]. However,
questions regarding whether the 340-cavity is prevalent in NAs, whether the 340-loop participates in
the substrate binding process, and the structural dynamics of the 340-loop in other NA subtypes have
never been explored.

To answer the above questions, normal molecular dynamics (MD) simulations were performed on
N1 to N9 subtypes in calcium-bound and calcium-free systems. Additionally, the binding mechanism
of natural substrate SA was identified by sliding binding-box docking. Our study reveals that seven of
the nine NA subtypes exhibit an open 340-cavity, the calcium ion plays an important role in maintaining
the conformation of the 340-loop, and the 340-loop is a canonical approach site in the SA binding
mechanism. Our results indicate that the 340-loop is a critical motif in NA, and the 340-cavity is a
valuable hotspot for anti-influenza drug design.

2. Results

2.1. N1, N3, N4, N5, N6, N7, and N8 Exhibit an Open 340-Cavity

To probe 340-cavity formation in NAs, the volumes of the 340-cavity for all NA subtypes were
calculated using POVME. Maps of the potential of mean force (PMF) from N1 to N9 as a function of
340-cavity volume were constructed based on the simulation data (Figure 1). To compare the size
of the 340-cavity, the volume of the N7 crystal structure 340-cavity, 102 Å3, was given as a reference.
It revealed that most of the NA subtypes, except N2 and N9, are able to adopt open 340-cavity
conformations in normal MD simulations. Moreover, the NA subtypes can be divided into three types
based on their 340-cavity volume.

Figure 1. Potential of mean force (PMF) of nine neuraminidase (NA) subtypes based on 340-cavity
volume calculation. Potential of mean force (PMF) based on the volume of the 340-cavity in N1 and N4
(A), N3, N5, and N8 (B), N2 and N9 (C), N6 and N7 (D).

Type-1 NAs comprise N1, N3, N4, N5, and N8. Although no 340-cavity was observed in the
crystal structures of type-1 NAs (Figure 2), their 340-loops transitioned to open conformations during
simulation. In particular, one local minimum indicating the open conformation of the 340-cavity in
N1 and N4 was discovered, and the local minimum is centered around 75 and 100 Å3 in N1 and N4,
respectively (Figure 1A). For N3, N5, and N8, local minima indicating a larger 340-cavity with volumes
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232, 154, and 175 Å3 are shown in Figure 1B. Type-2 NAs comprise N2 and N9, wherein almost no
340-cavity forms during simulation (Figure 1C). Type-3 NAs comprise N6 and N7, of which the crystal
structures already exhibit an open 340-cavity (Figure 2). Based on the PMF maps, local minima with
volumes of 107 and 154 Å3 are associated with the lowest free energy in N6 and N7, respectively
(Figure 1D). PMF maps illustrate that the 340-cavity of N1, N3, N4, N5, N6, N7, and N8 are able to
exhibit the open configuration, while N2 and N9 prefer the closed conformation of the 340-cavity.

Figure 2. Surface of the NA binding pocket in different subtypes. Surface of the binding pocket in the
crystal structures of different NA subtypes. N6 and N7 have an open 340-cavity in the crystal structures.

2.2. 340-Cavity Formation Is Governed by the Side-Chain Orientation of Residue 344

To identify the conformational alterations that induce 340-cavity opening, root mean squared
fluctuation (RMSF) calculation and clustering analysis of each NA subtype were carried out.
The 340-loop residues of each NA subtype are listed in Table 1. RMSF values indicate that residues
342, 343, and 344 were associated with larger flexibility than that of residue 345, 346, and 347 in the
340-loop of type-1 NAs (N1, N3, N4, N5, and N8), while RMSF values of the 340-loop residues in
type-2 NAs (N2 and N9) showed little discrepancies (Table 2). The RMSF results suggest that the open
conformation of the 340-cavity in type-1 NAs may be controlled by residues 342–344 in the 340-loop.

Table 1. Residues of the 340-loop in each NA subtype.

NA Subtype 340-Loop Residues

N1 342-SSNGAY-347

N2 342-NERGTQ-347

N3 342-NVNGGP-347

N4 342-NGKGRY-347

N5 342-GGSGTY-347

N6 342-GGSPDP-347

N7 342-GSPGAP-347

N8 342-G-NQGY-347

N9 342-YPGNNN-347

N8 (PDB 2HT5) lacks residue 343.
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Table 2. Root mean squared fluctuation (RMSF) for 340-loop residues over the whole simulation in
type-1 and type-2 NAs.

Residue No.
RMSF of Type-1 NAs (nm) Type-2 NAs (nm)

N1 N3 N4 N5 N8 N2 N9

342 0.2524 0.3295 0.1536 0.1119 0.1072 0.1234 0.1072
343 0.1571 0.3867 0.2273 0.1326 N.A. 0.0775 0.1057
344 0.2590 0.3599 0.1575 0.2121 0.2154 0.0969 0.1396
345 0.0973 0.0982 0.0759 0.1113 0.1384 0.0612 0.1474
346 0.0742 0.0905 0.0973 0.0902 0.0839 0.0598 0.1623
347 0.1240 0.0861 0.1321 0.1659 0.1365 0.0709 0.1496

The 340-loop of the representative structures in open configuration displays a great deviation
from its locations in the crystal structures for type-1 NAs. Moreover, the side-chain of residue 344 was
discovered to be oriented to the opposite direction, which left a space for the formation of 340-cavity
and induced the transition state of the 340-loop from the closed to the open conformation in type-1
NAs (Figure 3A–E).

Figure 3. Mechanism for 340-cavity formation. Cluster analysis based on the 340-loop root mean
squared fluctuation was performed. Cluster centers representing the open conformation of the
340-cavity were superimposed on the crystal structures of type-1 and type-2 NAs. Panels (A–E) show a
structural comparison between the cluster center and crystal structure of the 340-loop in type-1 NAs
N1, N3, N4, N5, and N8. Panels (G,H) show a structural comparison between the cluster center and
crystal structure of the 340-loop in type-2 NAs N2 and N9. The 340-loops of cluster centers and crystal
structures are colored in blue and orange, respectively. Panels (F,I) illustrate the 340-cavity and binding
pocket of type-3 NA N6 and N7 with surface representation.
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In contrast, ARG-344 in type-2 NA N2 never changed orientation from its initial position.
The strong salt bridge interaction between ARG-344 and ASP-369 in N2 locked the side-chain of
ARG-344 and intensified the rigidity of the 340-loop, leading to an always-closed conformation of the
340-loop (Figure 3G). In N9, the 344th position was occupied by the amino acid glycine, which has no
side-chain, and the 340-loop maintained its starting crystal structure conformation during the entire
simulation (Figure 3H). In N6 and N7, the comparison between the crystal structure and representative
structure is not displayed because the 340-cavity in the crystal structures already exhibit an open
conformation (Figure 3F,I).

2.3. The 340-Loop Is Involved in the SA Binding Pathway

The discovery of the 340-cavity in seven of nine NA subtypes via simulation indicates that small
molecule compounds that target this cavity could have pan-NA activity. The resultant compounds
would interfere with NA function if the 340-loop or 340-cavity is involved in natural SA substrate
binding. To figure out the function of the 340-loop in SA binding, sliding binding-box docking was
performed on N1, N2, and N7, representing the three types of NAs. The docking procedure can be
observed in Figure S1. Two lowest binding energy pathways of SA were proposed in the three NA
subtypes, designated the climbing path and the tunneling path. This method was inspired by a previous
sliding binding-box docking study which revealed the binding mechanism of a NA inhibitor [13].
The binding path of SA and the averaged binding energy of cluster components are illustrated in
Figure 4.

Figure 4. Binding pathway of sialic acid (SA) and distribution of binding energies along the pathway.
The two lowest binding energy pathways of sialic acid (SA), the climbing path and tunneling path, are
illustrated in N1 (A), N2 (B), and N7 (C). The harbors of the climbing path, active site, and tunneling path
were abbreviated as C, A, and T, respectively. Panels (D–F) represent binding energies in accordance
with the harbor sites in N1, N2, and N7, respectively. Boxes represent binding energies between 25%
and 75% of the cluster components, lines within the boxes represent mean values, and vertical bars
represent binding energies within 1.5 interquartile range (IQR).

In the climbing path, the natural substrate SA did a brief layover in the 340-loop region in the three
NAs. Although the 340-loop in the N1 and N2 crystal structures displayed a closed conformation, SA
was still held in the 340-loop region for a time while approaching the final binding pocket in both NAs
(Figure 4A,B). There were two harbors in the climbing path of SA in N7 since the 340-loop exhibited an
open conformation in the N7 crystal structure (Figure 4C). After a brief layover at the 340-loop region,
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the SA continued to move to the active site via two (A1 and A2 in N1 and N7) or three steps (A1, A2,
and A3 in N2). The large decrease in binding energy made this movement energetically favorable
(Figure 4D–F).

In the tunneling path, the 430-loop (residues 430–433) adjacent to the binding pocket was
discovered to act as a harbor that facilitated SA landing in N1, N2, and N7. The average binding
energies of the cluster centers in the tunneling path were larger than that of cluster centers in the
climbing path (Figure 4D–F). Thus, the probability of SA binding via the tunneling path was lower
than that of the climbing path, a finding in good agreement with a previous study [13]. The SA binding
mechanisms determined here suggest that the 340-loop is an important motif in shepherding SA to
the final binding pocket, and this finding indicates that the 340-cavity is a potential target pocket for
drug discovery.

2.4. A Calcium Ion Controls the Stability of the 340-Loop

The 340-loop was found to be involved in the SA binding mechanism. Therefore, the conformation
and stability of the 340-loop need to be carefully characterized. A conserved calcium ion found to
influence the activity and thermostability of NA is located near the 340-loop [14,15]. At least one
residue on the 340-loop interacts with this cation ion (Table 3). The interaction energy between the
calcium ion and residues in Table 3 contains two parts, the Lennard-Jones (LJ) and Coulomb (Coul)
interactions. The LJ and Coul interactions between the calcium ion and interacted residues of the
nine NA subtypes were well-preserved during simulations, since error values of block averages are
relatively small (Figure 5).

Table 3. Residues interact with the conserved calcium ion in each NA subtype.

NA Subtype Residues Interact with the Calcium Ion

N1 D293, G297, D324, G345, Y347
N2 D293, G297, D324, G345, Q347
N3 D293, G297, D324, G345, P347
N4 G297, D324, G345, R346, Y347
N5 D293, G297, D324, Y347
N6 D293, G297, D324, P347
N7 D293, G297, D324, P347
N8 D293, G297, D324, Y347
N9 D293, G297, D324, N347

Residues in bold font are 340-loop residues.

To further characterize the conformational changes of the 340-loop due to influence of the
calcium ion, dihedral principal components analysis (dPCA) of the 340-loop in the calcium-bound
and calcium-free systems was performed. Free energy landscapes of N1, N2, and N7, representing
the three 340-cavity types of NA, are shown in Figure 6. It is evident that the free energy landscapes
of the 340-loop in the calcium-bound and calcium-free systems of all NA subtypes are distinct from
each other, indicating disparate configurations of the 340-loop (Figure S2). Specifically, only one local
minimum was observed in the calcium-bound NA systems, while two or more local minima were
observed in the calcium-free systems. Interestingly, comparing free energy landscapes of the 340-loop
in the calcium-bound systems, configurations of the 340-loops in N1 and N7 experienced a wider
space than that in N2 system, which is directly related to the 340-cavity volume calculation. In the
volume calculation, the N2 340-loop maintained its closed conformation during the whole trajectory,
while the N1 340-loop transitioned from closed to open state, and the N7 340-cavity opened to a larger
extent during the simulations. The dPCA analysis revealed that the conserved calcium ion plays an
important role in maintaining the stability of the 340-loop, and removal or disruption of this cation ion
could severely influence the 340-loop conformation.
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Figure 5. Interaction energy between the conserved calcium ion and interacted residues in all NA
subtypes. Interaction energy, Lennard-Jones (LJ) and Coulomb (Coul), between the calcium ion and
interacted residues was calculated based on the whole trajectory of each NA subtype. Panels (A) to (I)
represent the LJ and Coul interactions of N1 to N9, respectively.

Figure 6. Free energy landscape of the 340-loop from dihedral principle component analysis. Free
energy landscapes of the 340-loop in N1, N2, and N7 calcium-bound and calcium-free systems were
obtained using dihedral principle component analysis (dPCA).

3. Discussion

The 340-loop was discovered to be a canonical accommodating pocket along SA’s binding
mechanism to NA across multiple NA subtypes. This implicates that the SA binding process may be
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influenced or terminated if the 340-loop is reconfigured or blocked from its conventional configuration.
Our results are consistent with a previous study in which the NA inhibitor binding pathway was
explored and oseltamivir was found to loosely localize between the two loops 294-NWH-296 and
345-GAY-347 [13]. Although the authors stated that this finding may not be prevalent in other NAs,
we have found that the 340-loop participates in SA binding of N1, N2, and N7, which represent three
types of NAs. The 340-cavity was found in seven of nine NA subtypes, which indicated that this cavity
could guide the design of robust novel ligands which function as NA inhibitors by interfering with the
SA binding mechanism. Our study provides more evidence that supports the 340-cavity as a potential
drug target.

Additionally, the conserved calcium ion was found to maintain the stability of the 340-loop due to
its intimate contact with residues on the loop. Specifically, the backbone carbonyl group of residue
Y/P/Q/N347 stably interacts with the calcium ion in all NA subtypes (Table 3 and Figure 5). Y347 in
N1 was identified as the key framework residue that can “clamp” the ligand into a favorable binding
pose in one study [16]. Two other studies found that residue 347 could mediate oseltamivir on the NA
surface via a hydrogen bond [13,17]. All these findings, including our own, indicate that the conserved
calcium ion plays an important role in stabilizing the conformation of the 340-loop, thus facilitating
SA/drug binding. Therefore, disruption of the calcium ion binding can also influence NA function and
thus stop viral release.

Moreover, the 430-loop was discovered to be a common stop in the SA tunneling pathway of the
three NA subtypes. The displacement of the 430-loop was found to induce a larger opening of the
binding pocket based on crystal structural analysis and MD simulations [18,19]. The 430-loop was also
predicted to be a novel druggable hot spot by a computational solvent mapping study [20]. Our study
provides new evidence that supports the 430-loop as a potential drug-targeting region.

In conclusion, this study demonstrates the plasticity of the 340-loop in different NA subtypes and
the importance of the conserved calcium ion in influencing the stability of the 340-loop. The open
340-cavity discovered in the seven NA subtypes and the mechanism of 340-cavity formation offer
new structural insights for antiviral drug development. Moreover, the 340-loop’s role as a canonical
stop in the SA climbing path suggests it can function as a novel drug-binding hotspot for combating
influenza viruses.

4. Methods

4.1. MD Simulation Details

Normal MD simulations of nine subtypes of NA were performed, and the X-ray crystal structures
of N1 to N9 were taken from PDB 2HTY, 1NN2, 4HZV, 3HTV, 3SAL, 4QN4, 4QN3, 2HT5, and 4MWJ,
respectively [10,11,21–24]. All the NA structures were crystallized with the conserved calcium ion, and
the calcium ion coordinated with interacted residues (Table 3) was preserved in the calcium-bound
system and deleted in the calcium-free system. The simulation time for each NA subtype with or
without calcium ion was 100 ns, with total simulation of 1.8 µs in this study. All the systems were
solvated with TIP3P waters in an octahedral box with periodic boundary conditions [25]. Sodium and
chloride ions were added to a concentration of 100 mM. The GROMACS and Amber99SB force field
were used in all simulations [26]. All systems were first equilibrated for 5 ns by restraining all the
heavy atoms, then normal MD simulations were performed in an isothermal, isobaric ensemble (300 K,
1 bar) for 100 ns. Bond length constraints were applied to all bonds that contained hydrogen atoms
based on the LINCS protocol [27]. An integration step of 0.002 ps was used in all the simulations.
Electrostatic interactions were treated with Particle Mesh Ewald with a cutoff of 0.9 nm with grid
spacing for the FFT grid < 0.12 nm [28].
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4.2. Sliding Binding-Box Docking

Sliding binding-box docking was performed using Autodock Vina software [13,29]. The N1, N2,
and N7 crystal structures were treated as receptors, and the direction from the binding pocket to the
exposed solvent was defined as the z-axis. Thirteen overlapping grid boxes along the z-direction were
generated, wherein the z plane covers the binding pocket and the xy planes cover the entire protein
area. Each grid box was set to size 48 × 48 × 10.5 Å, with an overlap of 2 Å in the z-direction. In detail,
the x and y coordinates of the overlapped grid boxes were kept the same as those of the thirteen grid
boxes in the Autodock setup procedure, while the z coordinate was increased by 2 Å for each grid box.
The representative image of sliding binding-box docking is shown in Figure S1. Sialic acid (SA) was
prepared as the ligand. An exhaustiveness value of 20 was set in Autodock Vina. The possible binding
mechanism of SA was revealed by k-means clustering: the x, y, and z coordinates of the center of mass
of the ligand and the docking score were treated as coordinates in four dimensions, and the docking
score was weighted by a factor of 0.7. The number of cluster centers was set at 5.

4.3. 340-Volume Calculation

The volume of the 340-cavity was calculated using POVME [30]. NA structure snapshots were
extracted from the trajectory of each NA subtype with the calcium ion every 5 ps and superimposed
onto the reference structure (N7) with a pregenerated 3D-grid representing the 340-cavity. The volume
was calculated by counting the grid points located in the 340-cavity.

4.4. Dihedral Principal Components Analysis (dPCA)

Before dPCA, all backbone dihedral angles of the 340-loop in N1 to N9 were collected from
trajectories every 1 ps [31]. dPCA was performed on the angles collected from each NA in the
calcium-bound and calcium-free systems. All calculated snapshots were projected to the first two
eigenvectors to get the first two principal components to make a two-dimensional free energy landscape.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/16/
5655/s1.
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