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Genetic analysis of seed traits in Sorghum
bicolor that affect the human gut
microbiome

Qinnan Yang 1,2, Mallory Van Haute1,2, Nate Korth2,3, Scott E. Sattler4,5,
John Toy4,5, Devin J. Rose 1,2,5, James C. Schnable 2,5,6 &
Andrew K. Benson 1,2

Prebiotic fibers, polyphenols and other molecular components of food crops
significantly affect the composition and function of the human gut micro-
biome and human health. The abundance of these, frequently uncharacter-
ized, microbiome-active components vary within individual crop species.
Here, we employ high throughput in vitro fermentations of pre-digested grain
using a humanmicrobiome to identify segregating genetic loci in a food crop,
sorghum, that alter the composition and function of human gut microbes.
Evaluating grain produced by 294 sorghum recombinant inbreds identifies 10
loci in the sorghum genome associated with variation in the abundance of
microbial taxa and/or microbial metabolites. Two loci co-localize with sor-
ghum genes regulating the biosynthesis of condensed tannins. We validate
that condensed tannins stimulate the growth of microbes associated with
these two loci. Our work illustrates the potential for genetic analysis to sys-
tematically discover and characterize molecular components of food crops
that influence the human gut microbiome.

Over the last six decades, the incidence of complex lifestyle diseases
such as obesity, diabetes, metabolic disease, and inflammatory bowel
diseases have grown at alarming rates in countries with westernized
diets1–4. In addition to genetic and environmental factors, many dis-
eases in these categories are also associated with disconfiguration of
the human gastrointestinal microbiome5. In instances such as obesity
and metabolic liver diseases, disconfigured microbiomes have been
shown to be causal to disease processes6,7. Dietary factors are also
associated with these same diseases and diet has a major effect on
taxonomic configuration and function of the gut microbiome8,9. Con-
sequently, there is tremendous interest in developing novel foods and
novel food ingredients that could be used to manipulate the gut
microbiome in predictable ways to reduce susceptibility to diseases10.

Several types of bioactive molecules in human diets are known to
affect taxonomic configuration and function of the gut microbiome,
including complex carbohydrates and fibers, polyphenols, lipids, and
seed proteins11,12, but these components have not been systematically
cataloged and there is a major gap in our understanding of how plant
breeding and genetics can impact abundances of many of these
bioactive molecules. This gap is significant because the goals of crop
breeding and improvement programs have historically been focused
on agronomic and yield traits, and more recently on sustainability
traits such as carbon footprints and water use13. There is little under-
standing of whether emphasis on agronomic, yield, or sustainability
traitsmay have trade-off effects on nutritional traits or traits that affect
the gut microbiome. This gap and the mounting opportunity to
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improve nutritional and health-promoting traits is becoming more
broadly recognized within the plant science community14.

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most widely
produced grain globally, behindmaize, rice, wheat, and barley, and it is
a staple in the diets of populations in some semi-arid areas (estimated
500million people) but is alsowidely grown in theUnited Stateswhere
it is valued for its ability to produce grain in areas with insufficient
water for maize production. Sorghum populations exhibit substantial
genetic and phenotypic diversity, including diversity in the abundance
of bioactive components15,16. For example, substantial variation
between sorghum varieties exists for several phenotypes such as grain
color (polyphenols) and fiber content that may have effects on the
human gut microbiome17–20. Thus, sorghum serves as an excellent
model system to begin study of seed traits that affect human gut
microbiome fermentation.

In this work, we develop an approach for genetic analysis of seed
traits that affect fermentation patterns by the human gut microbiome
in a model food crop (sorghum) to address the gap and the opportu-
nity to improve nutritional traits. We show how these analyses can be
used to systematically study variation in microbiome-active compo-
nents within any food crop species. Our study highlights how existing
genetic resourcepopulations of food crop species can be exploited for
co-analysis of seed traits and microbiome traits to efficiently pinpoint
candidate loci and pathways through which genetic variation can
affect the human gut microbiome. Ultimately, this approach will pave
the way to incorporate microbiome traits into crop improvement
programs to improve human health.

Results
Genetic analysis of seed traits that affect the human gut
microbiome
Anoverviewof our approach for genetic analysis of seed traits that can
influencehumangutmicrobiome is illustrated in Fig. 1.We focused this
proof-of-concept study on a well-characterized set of sorghum
recombinant inbred lines (RILs, Fig. 1a) derived from two genetically
diverse parents (IS3620C from the Guinea sorghum subpopulation
and BTx623, which is a blend of the Kafir and Caudatum sorghum
subpopulations)21,22. Grain from individual RILs was used for auto-
mated in vitromicrobiome screening (AiMS) to quantify interaction of
human gut microbes with pre-digested grain from the RILs (see
“Methods” for details). The AiMS method first prepares the grain
samples from each RIL through a series of steps that resemble the
digestive process (Fig. 1b), including milling (mastication), hydrolysis
by acid and digestive enzymes (digestion), and dialysis (absorption in
the small intestine). The remaining components of the digested grain
are then mixed with aliquots of a stool microbiome (Fig. 1c) from an
individual humandonor and incubated anaerobically (Fig. 1d) tomimic
interaction of the digested grain components with the colonic
microbiome. Abundances of microbial taxa in the individual fermen-
tations aremeasured by 16S rDNA sequencing and used as quantitative
traits for quantitative trait locus (QTL) mapping analysis (Fig. 1e),
where genetic variation at specific regions in the sorghum genome in
the RILs is tested for association with significant differences in abun-
dances of microbial taxa in the fermentations.

Fig. 1 | Schematic diagram of the of AiMS for genetic analysis of microbiome
traits. a This section of the diagram depicts the well-characterized set of sorghum
recombinant inbred lines derived from two genetically diverse parents and illus-
trates how each individual derived recombinant inbred line (RIL) carries random
combinations of genomic segments from both parents. b This section of the dia-
gramdepicts howtheAiMSmethodfirst prepares thegrain fromeachRIL througha
series of steps that resemble the digestive process—milling (mastication), acid and
enzymatic hydrolysis (digestion), and dialysis (absorption in the small intestine).

c, d The remining components of the digested grain from each RIL are then mixed
with aliquots of a stoolmicrobiome froman individual humandonor and incubated
anaerobically to mimic interaction of the digested grain components with the
colonic microbiome. e Abundances of microbial taxa in the individual fermenta-
tions are then estimated by 16S rDNA sequencing andused as quantitative traits for
genetic analysis by Quantitative Trait Locus (QTL) mapping to identify regions in
the sorghum genome where variation has significant effects on abundances of taxa
in the fermentations. The diagram was created with BioRender.com.
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Parental lines of the RILS have distinct effects on human gut
microbiomes
To define differences in seed characteristics between the two parental
lines that affect the human gut microbiome fermentation patterns, we
first evaluated AiMS fermentations of grain from the BTx623 and
IS3620C parental lines across microbiomes from 12 different healthy
human donors (see Methods for human subjects). Baseline (before
fermentation) composition of the microbiomes from each of the 12
human donors are shown in Supplementary Fig. 1. Permutational
multivariate analysis of variance (PERMANOVA) based on β-diversity
using Bray-Curtis distances of the microbiome after fermentation
showed that 10 of the 12 microbiomes had significant differences in
overall microbiome composition after fermentation (p < 0.05), with
parental line explaining 27–53% of the observed variation (Supple-
mentary Fig. 2a), suggesting differences in grain composition between
the BTx623 and IS3620C parental lines drive distinct fermentation
patterns of the gut microbiome.

The individual taxonomic responses of the ten microbiomes to
the parental lines were donormicrobiome-specific, and collectively 27
microbial clades showed significant parental line-specific differences
in abundances (p <0.05, unadjusted repeated measures analysis of
variance (ANOVA), Fig. 2). Nine clades showed consistent, differential
responses to the parental grain lines inmicrobiomes ofmultiple (three
or more) donors (p <0.05, Wilcoxon test). For example, the clades
Coprococcus 1,Coprococcus 3 andBifidobacteriumweremore abundant
in fermentations of IS3620 grain than BTx623 grain across micro-
biomes from 4, 7 and 5 donors, respectively (Fig. 2). In contrast,
Escherichia, Parasutterella and Bacteroidesweremore abundant across
7, 5 and 7 donor microbiomes in fermentation of BTx623 than in
IS3620C, respectively (Fig. 2).

QTLs in the sorghum genome that affect human gut microbes
The microbiome of donor subject S765 showed significant overall
difference (Supplementary Fig. 2a) between parental lines andmany of
the individual taxonomic responses observed in thismicrobiomewere
consistent with the population-wide average responses observed
across all 12 donors (Supplementary Fig. 2b). This microbiome was
subsequently used for AiMS-based phenotyping of 294 individual RILs
from the BTx623 x IS3620C RIL population.

Across themicrobial profiles of AiMS reactions fromall 294RILs, a
total of 84 genera were represented by at least 100 reads in the
resulting 16S microbiome data after rarefaction to 15,452 reads per
sample and these taxa were used for subsequent genetic analyses.
After log 10 transformation, observed abundances for many of these
taxa across fermentation reactions of the 294 RILs were not-normally
distributed (Supplementary Data 1; Shapiro-Wilk). Consequently, we
used a non-parametric model for QTL mapping with the log trans-
formed abundances of individual taxa (Supplementary Data 2) serving
as phenotypes and genotypes from a previously published set of
geneticmarkers scored across the BTx623 x IS3620C RIL population22.
A total of 26 significant QTLs (p < 0.05, 1000 permutations) and sev-
eral suggestive QTLs (p <0.1, 1000 permutations) were identified that
influence the abundances of 19 different microbial clades (Supple-
mentary Table 1). These QTLs were positioned on nine of the ten sor-
ghum chromosomes, illustrating a polygenic architecture of genetic
variation in sorghum can influence human microbiome phenotypes.

Genetic associations were detected for taxa from three phyla
(Bacteriodetes, Firmicutes, and Proteobacteria) with 23 of the 26 sig-
nificant QTLs corresponding to members of the Firmicutes phylum.
Among these 23 significant QTLs, 14 correspond to genera in the
Ruminococcaceae or Lachnospiraceae families. Genera from these

Fig. 2 | Shifts in the abundances of bacterial taxa in AiMS reactions with grain
fromthe IS3620CorBTx623 parental lines. IS3620CandBTx623 are the parental
lines of sorghum used to generate the RIL population used in our study. The left-
hand portion of the figure illustrates microbial taxa from 12 different human sub-
jects that show significant differences in abundances between fermentation of
grain from the IS3620C or BTx623 parents. Themicrobial taxa are organized based
on a neighbor-joining tree representing their phylogenetic relationships. These
phylogenetic relationships were inferred from representative sequences of species
from each bacterial genus using MUltiple Sequence Comparison by Log- Expecta-
tion (MUSCLE). Bacterial genera from the same family are shaded in the same

colors. On the right-hand portion of the figure, abundance differences of each
taxon in AiMS fermentations from each subject are depicted by heat-mapping of
the mean log2-transformed-fold difference from fermentation of grain from the
IS3620C parent relative to BTx623 parent. All taxa illustrated show significant
microbiome-wide effects across the human subjects (unadjusted p <0.05; two-
sided rANOVA) and statistically significant differences between IS3620C and
BTx623 sorghum for each taxon were determined by subject microbiome (Two-
sidedWilcoxon test; p <0.05) anddenoted by an asterisk. Source data are provided
as a Source Data file.
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families, particularly Faecalibacterium and Roseburia, are increasingly
being recognized as beneficial organisms in the microbiome that
reduce susceptibility to inflammatory diseases23–26. Importantly, while
Faecalibacterium and Roseburia showed highly significant genetic
associations with variation in the RIL population, they did not exhibit
significant differences between the parental lines, suggesting these
microbial phenotypes and genetic associations in the RILs could be
due to transgressive segregation.

Multiple effect loci are definedby overlappingQTLs formultiple
microbial taxa and their metabolic products
Among the 26 significant QTLs, overlapping QTLs for two or more
microbial taxa were present on chromosome 2, chromosome 3,
chromosome 4 and chromosome 5 (Table 1 and Fig. 3a), suggesting
these QTL regions behave as multiple effect loci (MEL) where genetic
variation at the QTL peaks in the sorghum RILs has pleiotropic effects
on multiple microbial taxa. The peaks of genetic associations at the
MEL on chromosome 4, corresponding to a genomic interval from
59–62Mb, influenced the greatest number of microbial taxa, affecting
the relative abundances of a diverse group of eight different microbial
taxa (p <0.05; 1000 permutations). Within this 59–62Mb interval, the
physical peaks for Catenibacterium, Roseburia, Coprococcus 1, and
Faecalibacterium (61,878,324), were immediately adjacent to peaks for
Ruminococcaceae UCG.002 (61,555,802), Christensenellaceae_R7 group
(61,304,986), Paraprevotella (61,161,519), and Paeniclostridium
(59,462,696). These QTL peaks also exhibited some of the highest
logarithm of the odds (LOD) scores, (LOD 8.64 for Paeniclostridium,
LOD 7.37 for Christensenellaceae_R7 group, LOD 7.02 for Faecali-
bacterium, LOD 5.41 for Roseburia, LOD 5.26 for Catenibacterium, and
LOD 4.73 for Ruminococcaceae UCG 002).

Two MELs were identified on chromosome 2 with a peak in the
7.9–9.6Mb region that affected three genera (Christensenellaceae_R7
group, Ruminococcaceae_UCG 002 group, and Paeniclostridium) and

another peak in the 65.54–65.69658Mb region affected Para-
prevotella. TwoMELs were identified on chromosome 3, oneMEL with
a peak at 4.04Mb affecting two members of the Lachnospiraceae
(Dorea and Coprococcus 3) and a second MEL with a peak at 71.5Mb
affecting another member of the family Lachnospiraceae (Roseburia)
and a member of the Christensenellaceae_R7 group. A fifth MEL on
chromosome 5 with a peak at 47.69Mb affected three genera from the
family Lachnospiraceae (Coprococcus 3, Blautia, and Dorea).

In addition to QTL mapping of microbial taxa, we also used
metabolic end products ofmicrobial fermentation as quantitative traits
forQTL analysis, specifically focusing on concentrations ofmajor short-
chain fatty acid (SCFA) from the individual AiMS fermentations as
functional phenotypes of microbiome. Significant QTLs were detected
for propionate, butyrate, and valerate production (Table 1 and Fig. 3a).
The overlapping QTL peaks on chromosome 2 at 65,688,971 bp for
butyrate andvalerateproductionboth sharedconfidence intervals from
65.54–67.24Mb, which overlapped with the QTL for Paraprevotella.
QTLs on chromosome 5 within the confidence interval of 7.45–55.7Mb
were associatedwith propionate, butyrate, and valerate andoverlapped
with QTLs for abundances of Coprococcus 3, Blautia, and Dorea. Over-
lapping of QTLs for microbial taxa and SCFAs implies variation at these
loci may drive significant effects on taxonomic abundances and meta-
bolites from their fermentation activities. Interestingly, the most sig-
nificant MEL on chromosome 4 (based on number of microbial taxa
affected) did not show significant effects on SCFA, suggesting that the
broad effect of this MEL on microbial taxa may confound the SCFA
phenotypes or that the QTL may manifest in ways that do not sig-
nificantly influence metabolic end products of fermentation.

QTLs for seed color and tannin content overlap with MELs for
microbiome phenotypes
While both parental sorghum lines produce cream-colored seeds,
many of the 294 RILs produce brown-colored seeds (Supplementary

Table 1 | Major effect loci for microbial taxa and short-chain fatty acids

Microbial taxa and short-chain fatty acid LOD score Chromosome Peak position (Mb) Confidence interval (Mb)

Ruminococcaceae_Ruminococcaceae UCG.002 3.43 2 7.93 7.01–12.79

Peptostreptococcaceae_Paeniclostridium 3.22 2 9.69 4.83–77.22

Christensenellaceae_ChristensenellaceaeR.7group 4.17 2 9.69 7.93–9.69

Prevotellaceae_Paraprevotella 4.05 2 65.54 63.91–69.84

Butyrate 4.84 2 65.69 65.54–67.24

Valerate 3.73 2 65.69 65.54–67.24

Lachnospiraceae_Dorea 3.61 3 4.04 3.81–7.46

Lachnospiraceae_Coprococcus 3 3.88 3 4.04 3.81–72.46

Lachnospiraceae_Roseburia 3.52 3 71.51 4.04–73.24

Christensenellaceae_ChristensenellaceaeR.7group 3.63 3 71.51 71.51–72.69

Peptostreptococcaceae_Paeniclostridium 8.64 4 59.46 58.94–60.16

Prevotellaceae_Paraprevotella 4.01 4 61.16 60.49–61.88

Christensenellaceae_ChristensenellaceaeR.7group 7.37 4 61.3 60.84–61.88

Ruminococcaceae_Ruminococcaceae UCG.002 4.74 4 61.56 60.84–62.37

Lachnospiraceae_Coprococcus1 4.09 4 61.88 61.16–62.4

Lachnospiraceae_Roseburia 5.41 4 61.88 48.57–62.4

Ruminococcaceae_Faecalibacterium 7.02 4 61.88 61.16–62.4

Erysipelotrichaceae_Catenibacterium 5.26 4 61.88 59.46–62.37

Valerate 3.51 5 13 7.45–49.41

Lachnospiraceae_Coprococcus 3 3.04 5 47.69 7.45–54.78

Lachnospiraceae_Blautia 3.07 5 47.69 13–55.7

Lachnospiraceae_Dorea 3.19 5 47.69 13–55.7

Butyrate 3.08 5 47.69 13–55.7

Propionate 3.35 5 54.78 52.23–55.7
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Data 3), indicating seed color phenotypes segregate transgressively in
the RIL population. QTL analysis of seed color using the first princi-
pal component of red, green and blue color identified major QTLs for
seed color with major peaks on chromosome 2 (7.93Mb) and chro-
mosome 4 (61.5Mb), but not other loci significantly associated with
seed color, such as Y (chromosome 1), R (chromosome 3) and Z
(chromosome 2) (Fig. 4a). The chromosome 4QTL peak for seed color
(61.5Mb) overlaps with the physical location (61.1–61.8Mb) of theMEL
on chromosome 4 for eight microbial taxa and the QTL peak on
chromosome 2 for seed color overlaps with the QTL peaks for theMEL
on chromosome 2 at 4.83–12.79Mb for three microbial taxa (Fig. 4a).
The overlapping QTL peaks for seed color and traits that affect fer-
mentation patterns by the human gutmicrobiomes implied that allelic
variation at the 61.5Mb region of chromosome 4 and 4.83–12.79Mb
region of chromosome 2 affects molecular components that con-
tribute to seed color, and variation in these molecules may be driving
the observed differences in the human gut microbiome.

The overlapping QTL peaks for seed color and for microbial taxa
are very close to the physical locations of the S. bicolor Tan2 (chro-
mosome 2, 7.97Mb) and Tan1 (chromosome 4, 62.3Mb) genes, which
encode transcription factors that regulate the expression of genes in
the polyphenol/flavonoid pathways, including proanthocyanidin and

anthocyanins that affect seed color in sorghum27–29. Grain color in
sorghum is determinedby thepigmentationof threedistinct tissues. In
the pericarp, or seed coat, two loci (Y and R, located on chromosomes
1 and 3 respectively) can condition white, yellow, or red seed color.
Condensed tannins, conditioned by Tan1 and Tan2, typically accu-
mulate in the testa layer, below the pericarp, and are visible as a brown
layer when the pericarp is thin or colorless as well as when seeds are
ground into flour. Finally, the endosperm itself, the majority of
the seed, can also vary in color between white and yellow. While the Y
locus on chromosome 1 and R locus on chromosome 3 typically
control seed color, proanthocyanidin (condensed tannins) can pro-
duce brown seed color when dominant alleles at both Tan1 and Tan2
occur in genetic backgrounds such as the spreader (S), which causes
the spread of condensed tannins from the testa layer into the
pericarp20,27,29. The Tan1 gene (Sobic004G280800) is physically loca-
ted at 62,315,396–62,318,779 and encodes a WD40-like protein while
the Tan2 gene on chromosome 2 (Sobic002G076600) is physically
located at 7,975,937–7,985,221 and encodes an b-HLH-like transcrip-
tion factor28,30.

To confirm that seed color and microbiome traits associated with
chromosome 2 and chromosome 4 are due to segregation at these loci
in the RILs, we quantified tannin production from each of the 294 RIL
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Fig. 3 | QTL analysis of the RIL population using the S765 microbiome.
a Logarithm of the odds (LOD) score profiles formicrobial taxa showing significant
QTLs in the RIL population. The circular plots illustrate each chromosome and
positions are marked around the outer track in Centimorgans (cM). The individual
tracks (A–I) depict the LOD plots of individual genera belonging to the same
microbial family or SCFA that are color codedwith the corresponding key shown at
the bottomof the figure. LODvalues are indicatedon the Y-axis by chromosome for
each LOD plot. The MELs on Chr 2, Chr 3, Chr 4, and Chr 5 are marked by red
triangles on the outside of the diagram corresponding to the QTL peaks. b Heat

map of tissue-specific gene expression data (from the Phytozome v13 database) for
sorghum genes within the MELs on Chr 2, Chr 3, Chr 4, and Chr 5 is shown for
candidate genes that are highly expressed in seed (normalized Fragments Per
Kilobase of transcript per Million mapped reads (FPKM) > 5) and which have
sequence variation between the two parental lines classified as havingmoderate or
high impact on gene function. Gene structure of Tan1 and Tan2 and the causal loss
of function mutations in two parental lines were also shown on the right. Source
data are provided as a Source Data file.
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lines and from two parental lines (Supplementary Data 4). Like the trait
values for seed color andmicrobiome traits, tannin productionwas also
transgressive with 57 lines producing significant levels of tannins
(10.34–118.08mg/g seed) whereas the remaining 237 lines only pro-
duced low levels (0.09–9.60mg/g) found in the parental lines (BTx623:
1.47mg/g and IS3620C: 1.12mg/g). Strong genetic associations with
variation in tannin content among the sorghum lines used in this study
were identified exclusively on chromosome 2 and chromosome 4 in
regions overlappingwith thepeaks for seed color and specificmicrobial

taxa (Fig. 4a). We did not detect any significant associations for seed
color anyother loci, including the Y, R or Z, locatedon chromosome 1, 3
and 2, respectively (Fig. 4a), suggesting that the brown seed color in the
RILpopulationused in this studywascontrolled solelyby segregationof
Tan1 and Tan2 alleles. Lastly, we also confirmed the overlap of micro-
biome, seed color, tannin content and absolute levels of Faecali-
bacterium prausnitzii using species-specific qPCR to more accurately
quantify this organism in each of the AiMS reactions. As with the 16S
rDNA data, QTL mapping of the absolute levels of this organism from
qPCR data also gave significant associations with chromosome 4 and
suggestive associations with chromosome 2, and these QTL peaks
overlap with peaks from 16S rDNA data, seed color data, and tannin
content (Fig. 4a). The overlap suggests that tannin content of the seed
candrive differences in abundanceof F. prausnitzii andother organisms
influenced by these MELs.

Segregation of dominant alleles at Tan1 and Tan2 loci explains
transgressive segregation of seed color, tannin production, and
microbiome phenotypes
Functional products fromboth theTan1 andTan2 regulatorygenes are
required for tannin synthesis and high-impactmutations in either gene
can mask effects of a dominant allele at the other locus (duplicate
recessive epistasis), blocking tannin synthesis and yielding light-
colored seed28. Neither BTx623 nor IS3620C produce significant
quantities of tannins as a result of recessive loss of function alleles in
the Tan1 (BTx623) or the Tan2 (IS3620C) genes. More specifically,
BTx623 carries dominant (wild type) alleles of Tan2, but at the Tan1
locus is homozygous for the tan1-b allele, which has a 10-base insertion
in the C-terminal exon that truncates 35 amino acids from the
C-terminus30. In contrast, the IS3620C parent carries dominant alleles
at Tan1, but is homozygous for the tan2-c allele with a 95-base deletion
that removes the entire intron between exons 7 and 828. Thus, the
homozygous inheritance of either or both of tan1-b (BTx623 parent)
and tan2-c (IS3620C parent) alleles in the RILs would yield non-tannin
phenotypes with light-colored seeds. In contrast, RILs inheriting wild-
type Tan1 (IS3620Cparent) and Tan2 (BTx623 parent) alleles would be
expected to result in a tannin-positive phenotype, with brown seed
color being observed in backgrounds that allow spread of the con-
densed tannins into the pericarp layers (transgressive phenotypes). If
tannin production and function of Tan1 and Tan2 are indeed drivers of
theQTLs forMELs ofmicrobial taxa associatedwith the chromosome2
and chromosome 4, then we would expect the transgressive pheno-
types of the microbes to co-segregate with tannin production pheno-
type, brown seed color, and inheritance of dominant parental
haplotypes linked to Tan1 (IS3620C parent) and Tan2 (BTx623).

When the RILs are grouped based on parental haplotypes of
markers linked to Tan1 and Tan2, we were able to predict parental
haplotypes atTan1 andTan2 in 254 of the lines. Tanninproduction and
dark seeds were exclusively found among the 45 RILs with haplotypes
linked to wild-type Tan1 alleles from the IS3620C parent and wild-type
Tan2 alleles fromBTx623 (Fig. 4b, c and SupplementaryData 5) but not
the other three haplotype combinations (Tan1/tan2-c, tan1-b/Tan2,
and tan1-b/tan2-c). Like the seed color and tannin phenotypes, analysis
of microbiome phenotypes across RILs in the four different genotypic
classes atTan1 and Tan2 showed thatmicrobial genera associatedwith
the chromosome 2 and chromosome 4 QTL peaks displayed the
expected distribution across the four genotypic classes of RILs.
Christensenellaceae R7 group, Catenibacterium, Coprococcus 1, Rose-
buria, Paeniclostridium, Faecalibacterium, and Ruminococca-
ceae_UCG.002 group all showed significantly higher abundances in
tannin-producing RILs carrying wild-type haplotypes at the chromo-
some 4 Tan1 (IS3620C) and chromosome 2 Tan2 (BTx623) regions
versus theother three genotypic categories carrying either tan1-b from
BTx623, tan2-c from IS3620C, or both tan1-b/tan2-c from each parent
(Fig. 4c and Supplementary Data 5) and there were no significant
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Fig. 4 | Tan1 and Tan2 determine the seed color, tannin, and microbiome
phenotypes in the RILs. a Logarithm of the odds (LOD) score profiles for the first
principal component of red, green, and blue color value (RGB), tannin content and
the abundance of Facecalibacterium determined by 16S rRNA gene sequencing and
by qPCR in the RIL population. The significance level was established by permu-
tation testing (1,000 permutations). The locations of the R, Y, and Z loci known to
affect pericarp color are marked with arrows on the LOD score profiles for the first
principal component of RGB. b Each RIL was assigned to one of four genotypic
categories basedon haplotypes ofmarkers closely linked to theTan1 and Tan2 loci.
The four genotypic categories correspond to tannin-negative categories (tan1-b/
Tan2; Tan1/tan-2-c; tan-1-b/tan-2-c) and the tannin-positive category (Tan1/Tan2).
Pictures of whole plant, whole grain and color of powders from seed from a
representative RIL in each category are illustrated. c Box and whisker plots are
shown for phenotypic values of tannin concentration, seed color, relative abun-
dance of individual microbial taxa (16S-amplicon-based abundances of Faecali-
bacterium, Roseburia, Christensenellaceae R7 group) and absolute abundance of
Faecalibacterium prausnitzii by qPCR corresponding to RILs in each of the geno-
typic categories (tan1-b/Tan2, n = 89; Tan1/Tan2, n = 45; tan-1-b/tan-2-c, n = 75;
Tan1/tan-2-c, n = 45). Displayed are the interquartile range (IQR; boxes), median
(line), and 1.5 IQR (whiskers). Different letters (a–c) indicate significant difference
among different genotypic categories determined by pairwise two-sided
Kruskal–Wallis test corrected by Dunn’s multiple comparisons (p <0.05). Source
data are provided as a Source Data file.
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differences between the tannin-negative genotypic categories. Thus,
the microbiome phenotypes, seed color, and tannin production show
the expected pattern of co-segregation with allelic variation at the
Tan1 and Tan2 loci, and the gain of function expression of tannins in
Tan1 and Tan2 RILs can explain the transgressive segregation of seed
color, tannin, and microbial phenotypes.

RILs and NILs with the same tannin phenotypes have similar
effects on microbiomes from multiple human subjects
Since a representativemicrobiomeof a single subjectwasused forQTL
mapping, we next examined the ability to detect sorghum genetic
variation (chromosome 2 and chromosome 4 MELs) driving microbial
taxa against gut microbiomes from multiple human subjects. In these
experiments, we pooled seeds from RILs based on haplotype of mar-
kers linked to Tan1 and Tan2 loci and tested them in AiMS reactions
with microbiomes from the 11 other subjects used in the pilot study
with parental lines. Thirty genera were detected with significant dif-
ferent abundance between Tan1/Tan2 haplotype against other haplo-
types (rANOVA analysis followed by false discovery rate (FDR)
correction using Benjamini–Hochberg procedure, Fig. 5a). For exam-
ple, Tan1/Tan2 lines had significantly higher abundances of Faecali-
bacterium, Christensenellaceae R7 group, Roseburia and Coprococcus 1
than lines carrying tan1-b, tan2-c or both alleles. On the other hand, the
abundances of Odoribacter, Paraprevotella, and Pasutterella were sig-
nificantly lower in Tan1 Tan2 lines (Fig. 5a). Thus, the effects of varia-
tion at Tan1 and Tan2 appear to manifest similar taxonomic changes
across microbiomes from different human subjects.

We further studied causal effects of variation at the tannin reg-
ulatory loci on gut microbes using grain from three pairs of near-
isogenic lines (NILs). Each pair of NILS effectively differ only in their
allelic content at the Tan1 locus but are fixed for the wild-type allele at
the Tan2 locus. Seed from the pairs of NILs was used as substrate in
AiMS reactions with microbiomes from the same 12 subjects. As illu-
strated in Supplementary Fig. 3, allelic variation at Tan1 had significant
effects on β-diversity of microbiome from subject 765 as well as the
microbiomes from each of the other 11 donors. Several taxa across
each of the 12 microbiomes showed significant responses to the
tannin-positive against tannin-negative RILs and NILs (Fig. 5a, b). For
example, the NILs homozygous for wild-type alleles at Tan1 and RILs
homozygous for wild-type haplotypes at Tan1 and Tan2 had sig-
nificantly higher abundances of Faecalibacterium, Christensenellaceae
R7 group, and Roseburia with consistent responses of these taxa in
magnitude and directionality across the different microbiomes. Simi-
larly, multiple microbiomes also showed decreased abundances of
Odoribacter, Paraprevotella, and Parasutterella in tannin-positive RILs
(Fig. 5a). Correlation analysis of genera with significantly different
abundance between Tan1/Tan2 haplotype and all other haplotypes in
AiMS reactions across microbiomes from all 12 subjects also showed
significant correlation of multiple taxa from 14 different families that
aggregate to 5 different phyla (Fig. 5c, Pearson correlation coefficient
of 0.65, p < 4.3e −05). Thus, the Tan1 alleles in the NILs can drive
similar microbiome responses associated with the Tan1 alleles in the
RILs across the unique microbiome context of multiple subjects.

Introduction of purified condensed tannins into fermentations
with tannin-negative RILs restores the microbiome phenotype
Because the Tan1 and Tan2 loci regulate the pathways for anthocyanin
and proanthocyanidin synthesis as well as other pathways, we used
molecular complementation experiments with extracted condensed
tannins to determine if the Tan1/tan1-b-associated microbiome phe-
notypes from the RILs and NILs are mediated by effects of proantho-
cyanidin (condensed tannins) in the seed. Here the condensed tannin
production defect in pooled seed from tannin-negative RILs was
complemented by introducing purified condensed tannins extracted
from pooled tannin-producing RILs or condensed tannins extracted

from hardwood trees (quebracho tannin) into fermentations of grain
from the non-tannin RIL lines (Fig. 6a). The amount of added tannin
extract was based on the average tannin concentration in tannin-
producing RILs. Fivemicrobiomes from the above experiments (Fig. 5)
showing the most significant difference (smallest p value from PER-
MANOVA analysis) between tannin-positive RIL pool and non-tannin
RILs pools (Supplementary Fig. 4) were used individually in the fer-
mentations for molecular complementation.

Weighted UniFrac distances of β-diversity of themicrobiomedata
after fermentation (Fig. 6b) were compared by subject across the dif-
ferent treatment groups, using the data from fermentation of pow-
dered seed from the pool of tannin-positive RILs as a reference for
distance. As expected, dot plots (Fig. 6b) of the distances of the
microbiomes from the treatment groups show that microbiome
composition from tannin-negative group (seed from non-tannin RILs
only) was the most distant from the tannin-positive RIL reference
whereas composition of the microbiome in fermentations of the two
tannin-complemented fermentations (seed from non-tannin RIL lines
supplemented with sorghum tannin extract or quebracho tannin
extract) had intermediate distances between the tannin-positive and
tannin-negative RILs (Kruskal–Wallis test followed by post hoc pair-
wise multiple comparisons using Dunn’s Test). Thus, the introduction
of condensed tannins extracted from sorghum or quebracho appears
to diminish the microbiome phenotype of tannin-negative RILs, shift-
ing overall microbiome composition toward that from fermentation of
tannin-positive RIL lines.

Detailed analysis of the microbiome differences across com-
plementation groups was done by comparing abundances of indivi-
dual genera in the fermentation reactions from microbiomes of
multiple subjects across the treatment groups (Fig. 6c). The abun-
dance of 15 genera were different in the tannin-positive RIL pool
compared with non-tannin RIL pool across 5 microbiomes (q < 0.1,
rANOVA followed by FDR correction, Fig. 6c). Organisms such as
Lachonoclostridium, Roseburia, Alistipes, Faecalibacterium and Flavo-
nifractor, which showed significant increases in abundance with RILs
carrying wild-type Tan1 and Tan2 loci (Fig. 5) were also more enriched
in the tannin-positive RIL group in at least four out of fivemicrobiomes
(Fig. 6c). Introduction of condensed tannin extracts from tannin-
producing RILs or from quebracho into fermentations of seed from
non-tannin RILs also drove increases in abundances of these same taxa
(Fig. 6d). The quebracho condensed tannin extracts, which are more
refined than our sorghum tannin extracts, showed remarkably similar
changes to the tannin-positive sorghum RILs, and correlation analysis
of taxonomic abundances between fermentations of the tannin-
positive RIL pool and fermentations of the tannin-negative RIL pool
complemented with purified quebracho tannin was highly significant
(Pearson correlation coefficient of 0.83, p =0.00014). Thus, purified
condensed tannins can complement the defects of seed from tannin-
deficient RILs in the microbiome fermentations.

Condensed tannins stimulate growth of Faecalibacter-
ium prausnitzii in the context of a microbiome and in pure
culture
While several organisms respond to both genetic variation at the Tan1
locus and to molecular complementation by addition of condensed
tannins, abundance differences in Faecalibacterium in response to
condensed tannins were consistently observed in microbiomes from
multiple human donors in both the genetic analyses and molecular
complementation (Figs. 4–6). We therefore used this organism as an
indicator to determine if condensed tannins can directly stimulate its
growth. Using minimal fermentation media alone or minimal media
supplemented with quebracho tannin, we measured the absolute
levels of Faecalibacterium prausnitzii by species-specific qPCR in fer-
mentations inoculated with humanmicrobiomes or with pure cultures
of F. prausnitzii. Four of thefivemicrobiomes showed that the absolute
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levels of F. prausnitzii increased by at least 1-logarithm when con-
densed tannins were introduced (Fig. 7a). Similarly, addition of con-
densed tannins topure cultures of F. prauznitzii also increased levels of
the organism by >0.5 logarithm (Fig. 7a) during incubation. Notably,

growth stimulation was higher in the context of the complex micro-
biomes compared to monoculture, suggesting the potential for
mutualism between F. prausnitzii and other bacteria in utilizing tannin
as a growth substrate.

Fig. 5 | Fermentation profile of RILs and NILs differing in tannin production
across microbiomes from multiple human subjects. a Heat map of the genera
that showed significant overall effects (unadjusted p <0.05; two-sided rANOVA) of
abundances in AiMS fermentations of tannin-positive RILS (Tan1/Tan2) relative to
tannin-negative RILS (tan 1-b/Tan2; Tan 1/tan-2-c; tan-1-b/tan-2-c) across the
microbiomes of 12 different human subjects. The heat map is colored based on the
log2-transformed fold difference of abundances of each taxon in tannin-positive
RILs vs tannin-negative RILs and the color key is indicated at the bottomof the heat
map. bHeatmap of the same genera and subjectmicrobiomes from panel A based
on data from AiMS fermentations of Near-Isogenic Lines (NILs) created by crossing
the tan 1-bmutation into three different tannin-positive parental lines. In this panel,
the mean log2-transformed fold difference of abundances of the microbial genera
in AiMS reactions of tannin-positive parental lines relative to tannin-negative NIL

derivatives of each parent across each microbiome are colored according to the
same color key at the bottomof the heatmap. Statistical significance of differences
was determined by two-sided Wilcoxon test corrected by Benjamini–Hochberg
pairwise comparisons; p <0.05 and those genera showing significance in one or
moremicrobiomes are denoted by an asterisk. c Scatter plot of log2 fold difference
of taxa in AiMS reactions of tannin-positive/tannin-negative NILs versus tannin-
positive/tannin-negative RILs. The plot depicts the average log2 fold difference in
each genus in data from the RILs on the X axis versus average log2 fold difference
for the same genus in data from the NILs on the Y-axis. Each genus is colored
according to its taxonomic family with a color key shown to the right. The Pearson
correlation coefficient and two-tailed p values are indicated on the dot plot. Shaded
regions represent 95% confidence intervals. Source data are provided as a Source
Data file.
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Lastly, we confirmed the ability of pure cultures of F. prausnitizii
to degrade condensed tannins by introduction of the brown-colored
quebracho tannins into solid growthmedia. Here, fermentationmedia
withbrown-coloredquebracho tannin extractswereoverlaid onto24-h
cultures of F. prausnitizii streaked onto LYBHI agar (Fig. 7b). After 48 h
of additional incubation, zones of clearing were distinctly evident
around areas of dense growth as well as individual colonies, indicating

that this organism can degrade the brown-colored tannins to colorless
products.

Discussion
Our study leveraged the well-characterized population of S. bicolor
BTx623 X IS3620C RILs to explore variation in traits that can affect the
human gut microbiome. Our QTL analyses revealed a complex,
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polygenic genetic architecture controlling seed traits that affect the
human gut microbiome fermentation patterns, with ten significant
QTLs affecting different combinations of microbial taxa, concentra-
tions of microbial fermentation products (SCFAs). Several of the QTLs
corresponded to MELs with pleiotropic effects on multiple microbial
taxa and their metabolites (Fig. 3), illustrating how variation in seed
traits can have dramatic effects on the human gut microbiome.

Genetic diversity between the BTx623 and IS3620C parents
represents only a fraction of the total genetic diversity of the S. bicolor
species31,32 and consequently, seed traits that affect human gut
microbiome and the genetic architecture driving them in sorghum are
likely to be far more diverse than the ten QTL identified in our study.
Indeed, a more comprehensive catalog of these traits and the under-
lying genetics will emerge from genetic analysis of these traits in
populations such as the Sorghum Association Panel33, which captures
genetic diversity of sorghum fromall four of themajor subpopulations
representing the major domestication events. The use of multiple,
diverse human gut microbiomes for AiMS phenotyping will also

provide a more complete catalog of traits that affect gut microbiome
fermentation because the ability to detect diverse types of traits is
likely dependent on species composition of the human microbiome
used for AiMS phenotyping. However, an important observation from
our work was that MELs affecting multiple taxa from a single micro-
biome tend to have significant effects across diverse microbiomes
frommultiple human subjects. For example, the MEL on chromosome
4 that we localized to Tan1 affected 8 different genera from the
microbiome of subject 765, but reactions with NILs (Fig. 5), RIL pools
(Fig. 6), and molecular complementation experiments (Figs. 6 and 7)
all showed significant effects of Tan1or condensed tannins themselves
on microbiomes of multiple subjects. While the overall effects of
condensed tannins were unique to each microbiome, a subset of
microbial taxa, including Faecalibacterium, Flavonifractor, and other
members of the Ruminococcaceae, shared similar responses to tannins
in the context of diversemicrobiomes from additional human subjects
(Figs. 5 and 6). Thus, while MELs can affect microbiome-specific
combinations of organisms, they can also display shared effects on the
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Fig. 7 | Condensed tannin alone can stimulate growth of Faecalibacter-
ium prausnitzii. aDot plots of absolute abundance of Faecalibacterium prausnitzii
by qPCR inmicrobiome or pure culture of Faecalibacterium prauznitziiA2-165 with
fermentation media alone or fermentation media supplemented with quebracho
tree condensed tannin extract. Five microbiomes showing the most significant
difference between tannin-positive RIL pool and non-tannin RILs pools were cho-
sen, and qPCRwas run on the baseline (after introduction of the stool samples) and
on the samples after 16 h of incubation. The absolute level of pure culture F.
prausnitzii A2-165 for the baseline (after inoculation with F. prausnitzii A2-165) and
after 48h of incubation was also determined using qPCR (n = 3 for each group).
Data are presented asmean values ± SEM. Different letters (a–c) indicate significant

difference among different treatment groups determined by two-sided one way
ANOVA corrected by Benjamini–Hochberg pairwise comparisons (p <0.05).
b Evaluation of tannin utilization activity of F. prauznitzii A2-165 in agar overlay
assay. LYBHI media was supplemented with 1% agar and a pure culture of F.
prausnitzii was streaked onto the media for isolated colonies (top portion of petri
dish) or in a patch (bottomportion of the plate). After 24 h of anaerobic incubation,
the culturewas overlayedwith fermentationmedia supplemented with 1% agar and
quebracho tree tannin. The culturewas then incubated for an additional 48h. Areas
of clearing around individual colonies and the patched growth indicated degra-
dation of the brown-colored tannin. Source data are provided as a Source Data file.

Fig. 6 | Molecular complementation of tannins in AiMS reactions with tannin-
negative RILs. a Schematic diagram of the molecular complementation experi-
ment. Five microbiomes showing the most significant difference between tannin-
positive RIL pool and non-tannin RILs pools were used individually in the fermen-
tations for molecular complementation. The diagram was created with BioR-
ender.com. b The UniFrac distances of each fermentation samples within each
microbiome are plotted from the corresponding microbiome in tannin RIL treat-
ment samples (Tannin RILs, n = 15; other 3 groups, n = 45). The different letters
(a–c) above each treatment group indicate statistical significance between treat-
ments determined by two-sided pairwise Kruskal–Wallis test corrected by Dunn’s
multiple comparisons (p <0.05). Displayed are the interquartile range (IQR; boxes),
median (line), and 1.5 IQR (whiskers). cHeatmapof themean log2-transformed fold
difference of genera that showed significant overall effects (unadjusted p <0.05;
two-sided rANOVA) of tannin-positive pool, tannin-negative pool plus sorghum
tannin extract (ST) and tannin-negative pool plus quebracho tannin extract (QT)

relative to tannin-negative pool, in each microbiome respectively. d Taxa showing
significant difference between tannin-negative control and tannin-negative RIL +
sorghum tannin extract (ST) are shown. The plot depicts the average log2 fold
difference in each genus in data from the positive control (tannin-containing RILs)
on the X axis versus average log2 fold difference for the same genus in data from
sorghum tannin extract treatment group on the Y-axis. e Scatter plot shows taxa
with significant difference between tannin-negative control and tannin-negative
RIL + quebracho tree tannin extract (QT). The plot depicts the average log2 fold
difference in eachgenus in thedata set from thepositive control (tannin-containing
RILs) on the X-axis, and data from the quebracho tree tannin extract treatment
groupon the Y-axis. Each genus is colored according to its taxonomic colorwith the
color key on the right. Pearson correlation coefficient and two-tailed p values are
indicated on the plot. Shaded regions represent 95% confidence intervals. Source
data are provided as a Source Data file.
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same or similar organisms across diverse human microbiomes. This
principle is informative because it suggests that our hierarchical
approach using small numbers of human donor microbiomes to
identify candidate loci affectingmultiplemicrobes (MELs) followed by
validation using larger numbers of donor microbiomes may be an
efficient strategy for comprehensive analysis of seed traits that affect
fermentation profile by the human gut microbiome.

Our QTL analyses, detailed genetic analyses of variation at Tan1
and Tan2, and molecular complementation experiments collectively
illustrate how genetic variation can translate into seed traits that affect
the gut microbiome. Here, the genetic analyses with RILs and NILs
localized variation affecting multiple microbiome traits in AiMS reac-
tions to the Tan1 and Tan2 loci, showing that RILs carrying wild-type
alleles at both the Tan1 and Tan2 loci increase abundances of 8 dif-
ferent microbial taxa while RILs carrying the null tan1-b allele from
BTx623, the null tan2-c allele from IS3620C or both reduce abun-
dances of these organisms. The null tan1-b and tan2-c alleles can
individually (and collectively) block expression of the entire proan-
thocyanidin pathway and lead to seeds that lack condensed tannins
whereas segregation of wild-type Tan1 (inherited from the IS3620C
parent) andTan2 (fromtheBTx623parent) in theRIL progenyproduce
lines capable of expressing the entire proanthocyanidin pathway and
that produce condensed tannins in the seed. Our molecular com-
plementation experiments, where purified condensed tannins were
introduced into AiMS reactions of seed from tannin-negative RILs,
showed that condensed tannins themselves can bring about the same
changes in microbiome composition. We further demonstrated that
the introduction of condensed tannins into complex microbiomes or
into pure cultures of F. prauznitizii increases the absolute levels of
F. prausnitzii, implying that the condensed tannins stimulate growth of
this organism.Whilemicrobial pathways for degradationof condensed
tannins are not known, we showed that F. prauznitzii can degrade and
grow on condensed tannins in pure culture (Fig. 7). Thus, genetic
variation in genes controlling tannin synthesis affects condensed tan-
nin content in the seed, a component that can serve as a growth sub-
strate for specific taxa such as F. prausnitzii and other members of the
Ruminococcaceae in the microbiome.

There are striking parallels between the tannin-stimulated
microbes in our study and the effects of condensed tannins on
microbiomes observed in several different studies. For example,
introduction of quebracho tannins into in vitro fermentations con-
taining growthmedia with various food components and human stool
samples showed increased abundances of members of the Lachnos-
piraceae, Ruminococcaceae (including Faecalibacterium), Christense-
nellaceae, and Peptostreptococcaceae, and decreased the abundance of
Parabacteriodes34. Similarly, feeding studies in swine and poultry show
that introducing high-tannin sorghum into the feed stimulates
increased abundances of members of the Lachnospiraceae, Rumino-
coccaceae (including Faecalibacterium), and Peptostreptococcaceae in
fecal and cecal microbiota35–37. Work in ruminants shows that con-
densed tannins can reduce methane production and may do so by
altering the gutmicrobiome although the associated organisms are yet
unknown38. Human clinical trials also show that introducing high-
tannin sorghum into the diet induces increased abundances of Fae-
calibacterium prausnitzii39. We have now shown that F. prausnitzii, can
directly degrade condensed tannins (Fig. 7b) and use condensed tan-
nins as growth substrates inmonoculture (Fig. 7a). Given the depletion
of this organism that is typically observed in individuals with inflam-
matory bowel diseases25,26, our findings suggest that introduction of
foods containing condensed tannins may help to preserve this
organism in IBD patients.

Tannin production is uncommon among domesticated grains,
being observed in sorghum and finger millet and it is believed that the
trait was lost in other major grains during domestication due to
selection against tannin-mediated phenotypes such as bitter taste40,41.

The trait may have been maintained in sorghum, however, because
tannin content contributes to agronomically-important characteristics
such as resistance to bird predation28,42. In many regions of Africa,
where sorghum is a staple in the human diet, local cultivation and
consumption of tannin versus non-tannin lines correlates geo-
graphically with the intensity of bird predation and allelic variation at
Tan1 and Tan2 are the major drivers of tannin and non-tannin phe-
notypes in locally cultivated sorghum varieties28,43. Remarkably, this
study also identified geographicbias in allelic variationof humanbitter
taste receptor genes, where human populations cultivating high-
tannin sorghum to reduce bird predation hive higher frequencies of
human taste receptor alleles that decrease bitter taste perception28.
Our work appears to further expand these complex allelochemical
interactions by illuminating the effects of tannins on beneficial gut
microbes, begging the question of whether disproportionate health
outcomes may arise in human populations consuming high-tannin vs
low-tannin sorghum due to the effects of tannins on beneficial gut
microbes such as F. prausnitzii.

Significant QTLs with characteristics of MELs were also identified
on chromosome 2, chromosome 3, and chromosome 5 (Fig. 3). We
localized potential candidate genes at these MELs by a two-step pro-
cess, looking for genes that (a) are expressed in sorghum seed and (b)
contain allelic variation between two parental lines (Supplementary
Data 7). The candidates include a putative cytochrome P450 asso-
ciated with synthesis of sesquiterpenes (Sobic.002G273600), putative
gibberellin 3-beta-dioxygenase (Sobic.003G045900) and abscisic acid
insensitive3 (ABI3) transcription factor (Sobic.003G398200) that
modulate gibberellic acid (GA) and abscisic acid (ABA) signaling in
seed development, and a putative xylanase inhibitor protein precursor
(Sobic.005G098700) (Fig. 3) that could influence microbial xylanases
in the AiMS reactions. Gibberellin 3-beta-dioxygenase can alter grain
composition, including starch content, by its effects on α-amylase44

and the abscisic acid insensitive3 (ABI3) transcription factor also plays
important roles in seed lipid and protein content as well as
development45. Xylanase inhibitor proteins have been described in
several food crops where they function to inhibit the degradation of
plant cell wall arabinoxylans by invasive species of xylanase-producing
bacteria and fungi46. In the context of our AiMS reactions, these xyla-
nase inhibitors could affect the ability of organisms to grow on xylans
from the seed pericarp.

While much work remains to validate effects of variation in these
putative candidates, our study illustrates how complex trait analysis
can be used to identify loci in food crops where genetic variation
affects seed composition and fermentation patterns by the human gut
microbiome. This approach can apply to any food crop to develop a
comprehensive catalog of seed traits that affect the human gut
microbiome.Webelieve such approacheswill also pave theway for use
of seed traits withmajor effects on beneficial gut microbes as traits for
crop improvement strategies that can have profound outcomes with
respect to human health.

Methods
Germplasm
A total of 294 F7-8 RILs derived from a S. bicolor BTx623 by IS3620C
cross22,47 were grown in the Greenhouse Innovation Center at the
University of Nebraska-Lincoln, Lincoln, NE, USA. The greenhouse
growout was planted on September 18, 2017 and harvested on Feb-
ruary 6, 2018. The temperature was maintained between 26.6 °C and
27.8 °C during day light hours and between 21.1 and 23.3 °C during
night hours with a target relative humidity of 30%. Supplemental LED
lighting was employed to maintain total photosynthetically active
radiation (PAR) at or above 230 µmolm−2 s−1. All plants were watered to
field capacity. Heads were bagged to ensure self-pollination of indivi-
dual RILs. The B Wheatland sorghum line containing tannins was
developed through cross-pollination of ‘BWheatland’ by ‘B SD106’, the
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source of the tannin trait. The resulting F1 progeny were allowed to
self-pollinate, and F2 progeny containing tannins were identified and
backcrossed to the recurrent parent B Wheatland. The B
Tx631 sorghum line was cross-pollinated with two different tannin-
producing lines, ‘Waconia’ and ‘BKS5’. The resulting F1 progenies were
allowed to self-pollinate, and F2 progenies were backcrossed to the
recurrent parent B Tx631 and B KS5, respectively. The tannin trait was
identified in homozygous lines in the generation following second
round of self-pollination.

In vitro digestion
Two grams of seeds from each line were milled using a high-
throughput ball mill (2025 GenoGrinder; SPEX SamplePrep, Metu-
chen, NJ, USA). Twentymilligrams (±0.5mg) of each flour per replicate
was dispensed into 1 mL-deep wells in 96-well plates using an auto-
matedpowderdispenser (Flex PowderDose; ChemspeedTechnologies
AG, Füllinsdorf, Switzerland). Each flour was dispensed in triplicates.
The dispensed flour was mixed with 425 μL of water for 15min for
complete dispersion and steamed for 20min. Forty-five microliters of
0.5M HCl + 10% (w/v) pepsin (P7000; Sigma, St. Louis, MO) were
added to the samples and incubated at 37 °C for 1 h. Then 25μL of
0.5M sodiummaleate buffer (pH = 6, containing 1mMCaCl2), 40μL of
0.5M NaHCO3, 40μL of 12.5% (w/v) pancreatin (P7545; Sigma, St.
Louis, MO) + 4 % (w/v) amyloglucosidase (E-AMGDF, 3260U/mL,
Megazyme) was added into samples before incubating at 37 °C for 6 h.

After digestion, sampleswere transferred to96-well dialysis plates
(MWCO 1,000; DispoDialyzer; HarvardApparatus, Holliston,MA, USA)
and dialyzed against 5 gallons of distilled water for 72 h at 4 °C with
freshwater changes at 12-h intervals. During dialysis, each well was
stirred individually with tumble stir bars in each well using a tumble
stirrer (VP 710L V&P Scientific, SanDiego, CA, USA). Following dialysis,
the retentatewas transferred into 1mL-deepwells in 96-well plates and
stored in −80 °C until fermentation.

Fecal donor and in vitro fecal fermentation
Fresh fecal samples from 12 healthy adults (3 females and 9males, ages
23–41) with no history of gastrointestinal abnormalities and no pre-
biotic, probiotic, or antibiotic consumption within the past 6 months
were collected using a commode specimen collection kit (Fisher Sci-
entific, NH, USA). All procedures involving human subjects were
approved by the Institutional Review Board of the University of
Nebraska–Lincoln before initiating the study (20160816311EP).
Informed consent was obtained from all subjects prior to fecal col-
lection. A 1:10 fecal slurry was prepared in an anaerobic chamber (5%
H2, 5% CO2, and 90%N2; Bactron X, SheldonManufacturing, Cornelius,
OR, USA) within 2 h of stool collection by adding sterile 10% glycerol in
phosphate-buffered saline, pH 7.0 (1:9, w/v) and mixing with a sto-
macher for 4min prior to storing at −80 °C until fermentation.

In vitro batch fermentations were performed inside an anaerobic
chamber. Four hundred and twenty-five microliter of retentate was
mixed in a 1 mL-deep wells of a 96-well plate with fifty microliters of
10X fermentation medium containing (per liter): 1 g Bacto casitone,1 g
yeast extract, 2 g K2HPO4, 3.2 g NaHCO3, 3.5 g NaCl, 1mL hemin solu-
tion (KOH 0.28 g, 95% Ethanol 25mL, hemin 100mg and ddH2O to
100mL), 0.05 g bile salts, 0.5 g/L cysteine HCl, 0.6mL resazurin (0.1%),
10mL ATCC trace mineral supplement, 3.6mL VFA solution (17mL
acetic acid, 1mL n-valeric acid, 1mL iso-valeric acid, 1mL iso- butyric
acid mixed with 20mL of 10mM NaOH), 10mL ATCC vitamin sup-
plement and 1mL vitamin K-3 solution (0.14 g vitamin K-3 in 100mL
95% ethanol)48. The substrate was then reduced using 25μL of Oxyrase
(Oxyrase Inc, Mansfield, OH, USA) before inoculation with 50μL of
fecal slurry. In vitro fermentations were incubated at 37 °C for 16 h.
After fermentation, samples were centrifuged at 4000× g for 10min.
Pellets and supernatants were stored at −80 °C until further proces-
sing. Fermentationmedia without seed substrate inoculated with fecal

slurry at 0 h and incubated at 37 °C for 16 h were used as microbiome
baseline controls and media-only fermentation controls, respectively.

Validation of effect of tannin genotypes in RILs and in NILs
RILs were grouped by haplotype of markers linked to Tan1 and Tan2
and were randomly selected and pooled within each haplotype group
(Tan1/Tan2: 41 lines (27.04mg catechin equivalents (CE)/g),
Tan1/tan2-c: 15 lines (0.36mg CE/g), tan1-b/Tan2: 15 lines (0.25mgCE/
g), tan1-b/tan2-c: 15 lines (0.32mg CE/g)) (Supplementary Data 6).
Pooled RILs groups and NILs were digested and used as substrate for
fermentation with 3 replicates across 12 human microbiomes49.

Tannin complementation experiment
Sorghum tannin extract (ST) (492.21mg CE/g) from pooled sorghum
RILs in haplotype of Tan1/Tan2 was extracted using the method from
Barros et al.50 A commercial quebracho wood tannin extract (QT) was
gifted from Silvateam Spa (San Michele di Mondoví, Italia). The
extractionmethod forQTwasnatural hotwater extraction. Two tannin
extracts were added to the fermentations after the in vitro digestion
and dialysis steps. A tannin-negative RILs pool wasmade by combining
lines with haplotype of Tan1/tan2-c, tan1-b/Tan2, and tan1-b/tan2-c
(Supplementary Data 6). Tannin-negative RILs were then com-
plemented with ST or QT based on the tannin content in tannin-
positive RILs. Tannin-negative RILs, tannin-negative RILs + ST, tannin-
negative RILs + QT, and tannin-positive RILs were each inoculatedwith
each of five human fecal microbiomes with the most significant
responses between tannin-negative RILs and tannin-positive RILs sor-
ghum observed in in vitro fermentations (smallest p value from PER-
MANOVA analysis) with three replicates.

Tannin enrichment experiment
The commercial quebracho wood tannin extract (QT) in the 1X fer-
mentation media was used as substrate (3.33mg/mL) for the enrich-
ment experiment. Fifty microliters of the same five human fecal
microbiome used in tannin complementation experiment was inocu-
lated into 500μL fermentation media with or without QT and were
incubated at 37 °C for 16 h with three replicates. Fifty microliters of the
overnight culture of type strain F. prausnitzii A2-165 in LYBHI broth26

was inoculated into 500μL fermentationmedia with or without QT and
were incubated at 37 °C for 48h with three replicates. The overnight
culture of type strain F. prausnitzii in LYBHI broth was also streaked on
the LYBHI 1% agar plate and incuabated at 37 °C for 24h. Fermentation
media plus 1% agar and QT (3.33mg/mL) was cooled to 40 °C and then
poured on top of the LYBHI plate that had F. prausnitzii colonies.

DNA extraction and 16S rRNA gene sequencing
DNA was extracted from the fecal pellets using the BioSprint 96
workstation (Qiagen, Germantown, MD) and the BioSprint 96 one-for-
all Vet kit with the addition of buffer ASL (Qiagen, Germantown, MD)
and bead beating51. The V4 region of the bacterial 16S rRNA gene was
amplified from each sample using the dual-indexing sequencing
strategy52.

16S rRNA gene sequencing processing
Paired-end sequences were analyzed using Quantitative Insights Into
Microbial Ecology (QIIME) program (version 2)53. Sequences were
truncated (220 bases for forward reads and 160 bases for reverse
reads) and denoised into amplicon sequence variants (ASVs) using
DADA254. All ASVs were assigned with taxonomic information using
pre-fitted sklearn-based taxonomy classifier SILVA database (release
132)55,56 and were then binned at genus level and transformed to rela-
tive abundance by dividing each value in a sample by the total reads in
that sample. A neighbor-joining tree of representative sequence was
generated using MUltiple Sequence Comparison by Log- Expectation
(MUSCLE).
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Quantification of Faecalibacterium prausnitzii
The absolute abundance of Faecalibacteriumprausnitziiwas quantified
using quantitative PCR method using primers (FprauF: TGAG-
GAACCTGCCTCAAAGA; FprauR: GACGCGAGGCCATCTCA) described
by Lindstad et al.57. Quantitative PCR reactions in duplicates were
prepared in a 10 µL volume containing 5 µL 2× SYBR Green, 3 µL
nuclease-free water, 1 µL primer mix (a mixture of forward and reverse
primer of 5 µM each), and 1 µL DNA template. Thermocycling condi-
tions included: (i) an initial denaturation step of 5min at 95 °C; (ii) 40
cycles of 20 s at 95 °C, 25 s at annealing temperature at 63 °C, and 30 s
at 72 °C; (iii) one cycle of 15 s at 95 °C; (iv) one cycle of 30 s at 60 °C; (v)
one 20-min interval to generate amelting curve. The cycle thresholdof
each sample was then compared to a standard curve made by diluting
genomic DNA from type strain F. prausnitzii A2-165.

Seed color analyses
Six individual grains fromeach line of the RILpopulationwere scanned
using an EPSON Perfection V600 scanner. Image analysis was con-
ducted using a set of scripts for automatic seed image analysis (https://
github.com/alejandropages/SLHTP). The average red, green, blue
value from each line was extracted and the first principal component
of RGB value was used as trait for QTL analysis.

Tannin content analyses
Tannin content of each linewasmeasuredusingVanillin/HClmethod58.
In short, 0.05 g of each ground sorghum flour was accurately weighed
andmixedwith 1%HCL inmethanol and incubated at 30 °C for 20min.
After centrifugation at 2000× g for 4min, 0.125mL of aliquots from
the supernatant was mixed with vanillin regent (0.5% vanillin and 4%
HCL inmethanol) and incubated at 30 °C for 20min. Another 0.125mL
of aliquots from the supernatant was mixed 4% HCL in methanol and
incubated at 30 °C for 20min and was used as blank. The absorbance
was then measured at 500 nm against the blank. One mg/mL catechin
hydrate (Sigma, St. Louis, MO) was used to generate standard curve.

SCFA analyses
SCFA (acetate, propionate, butyrate and valerate) and branched chain
fatty acids (BCFA; iso-butyrate and iso-valerate) from fermentation
samples were analyzed by gas chromatography59. Briefly, 100 µL ali-
quots of fermenteation supernatant was mixed with 100 µL of 7 nM
2-Ethylbutyric acid and 100 µLof 9Msulfuric acid and 500 µLof diethyl
ether. It was then homogenized with a vortex mixer and then cen-
trifuged at 10,000 g for 2min. Onemicroliter of diethyl ether layerwas
then analyzed using 8890 gas chromatography system (Agilent Tech-
nologies, Santa Clara, CA).

Genetic map construction and QTL mapping
A genetic map was constructed using data from 616 informative SNP
markers from the BTx623 × IS3620C RILs previously reported by Kong
et al.22 and the ASMap package version 1.0-4 in R60. A non-parametric
interval QTL mapping procedure was employed to identify a single
QTL model for each phenotypic trait using the R/qtl package version
1.47-961. LOD score significance level threshholds were also calculated
based on 1,000 permutations of the data with a single QTL genome
scan per permutation. Significant QTL and suggestive QTL were then
identified using the threshold of p < 0.05 and p <0.1, respectively.
Bayes credible interval probability was calculated using p = 0.95.

Candidate genes mining
To get functional insights intoMELs, genes that were highly expressed
in sorghum seed and have sequence variations between two parental
lines were identified. In short, anRNA-Seq data were downloaded from
phytozyme v1362 for all expressed genes in seed between the flanking
genetic markers for each MEL. Tissue-specific expression of each gene

was normalized using fragments per kilobase of transcript per million
mapped reads (FPKM) values by dividing the average value of gene
expression for that gene across all tissue types. Genes expressed in
seed were further filtered to identify gene models with sequence var-
iation in one of the two parental lines classified as having moderate or
high impact on gene function using public resequencing data62.

Statistical analysis
All analyses were performed using R version 4.0.4 and Rstudio version
2022.07.163,64. Bacterial community β-diversity in Bray-Curtis and in
UniFrac distance was calculated using rarefied amplicon sequence
variant (ASV) data with the phyloseq and vegan packages65,66. Differ-
ences in the microbiome communities were compared by PERMA-
NOVA using the Adonis function in vegan version 2.5-7. Bacterial
genera abundances and SCFAproductionwere compared byWilcoxon
test or Kruskal–Wallis test. Data were visualized using Interactive Tree
Of Life (iTOL) v5 and R packages including: ggplot2 version 3.3.3,
ggpubr version 0.4.0, and Complexheatmap packages version
2.4.367–70. All the figure illustrations are created by BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The DNA sequencing reads for this study are available in the NCBI SRA
database asproject accession PRJNA801694. Genotypedata of theRILs
can be found at Figshare [https://doi.org/10.25387/g3.6304538]22. All
ASVs were assigned with taxonomic information using pre-fitted
sklearn-based taxonomy classifier SILVA database [https://www.arb-
silva.de/documentation/release-132/]55,56. Source data are provided
with this paper.

Code availability
The code used in the analysis can be found at GitHub [https://github.
com/qinnanyang/SorgRIL].

References
1. WHO. Obesity and overweight. https://www.who.int/news-room/

fact-sheets/detail/obesity-and-overweight (2020).
2. Deshpande, A. D., Harris-Hayes, M. & Schootman, M. Epidemiology

of diabetes and diabetes-related complications. Phys. Ther. 88,
1254–1264 (2008).

3. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Mod-
eling the epidemic of nonalcoholic fatty liver disease demonstrates
an exponential increase in burden of disease. Hepatology 67,
123–133 (2018).

4. Ng, S. C. et al. Worldwide incidence and prevalence of inflamma-
tory bowel disease in the 21st century: a systematic review of
population-based studies. Lancet 390, 2769–2778 (2017).

5. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health
and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

6. Ridaura, V. K. et al. Gutmicrobiota from twins discordant for obesity
modulate metabolism in mice. Science 341, 1241214 (2013).

7. Le Roy, T. et al. Intestinal microbiota determines development of
non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).

8. Rothschild, D. et al. Environment dominates over host genetics in
shaping human gut microbiota. Nature 555, 210–215 (2018).

9. Carmody, R. N. et al. Diet dominates host genotype in shaping the
murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

10. Ercolini, D. & Fogliano, V. Food design to feed the human gut
microbiota. J. Agric. Food Chem. 66, 3754–3758 (2018).

11. Singh, R. K. et al. Influence of diet on the gut microbiome and
implications for human health. J. Transl. Med. 15, 1–17 (2017).

Article https://doi.org/10.1038/s41467-022-33419-1

Nature Communications |         (2022) 13:5641 13

https://github.com/alejandropages/SLHTP
https://github.com/alejandropages/SLHTP
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA801694
https://doi.org/10.25387/g3.6304538
https://www.arb-silva.de/documentation/release-132/
https://www.arb-silva.de/documentation/release-132/
https://github.com/qinnanyang/SorgRIL
https://github.com/qinnanyang/SorgRIL
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight


12. Beam,A., Clinger, E. &Hao, L. Effect of diet anddietary components
on the composition of the gut microbiota. Nutrients 13,
2795–2810 (2021).

13. Hickey, L. T. et al. Breeding crops to feed 10 billion.Nat. Biotechnol.
37, 744–754 (2019).

14. Henkhaus, N. et al. Plant science decadal vision 2020–2030:
Reimagining the potential of plants for a healthy and sustainable
future. Plant. Direct 4, e00252 (2020).

15. Boyles, R. E., Brenton, Z. W. & Kresovich, S. Genetic and genomic
resources of sorghum to connect genotype with phenotype in
contrasting environments. Plant. J. 97, 19–39 (2019).

16. Mace, E. S. et al. Whole-genome sequencing reveals untapped
genetic potential in Africa’s indigenous cereal crop sorghum. Nat.
Commun. 4, 2320 (2013).

17. Sukumaran, S. et al. Association mapping for grain quality in a
diverse sorghum collection. Plant Genome 5, plantgenome
2012.07.0016 (2012).

18. Boyles, R. E. et al. Genetic dissection of sorghumgrain quality traits
using diverse and segregating populations. Theor. Appl. Genet.
130, 697–716 (2017).

19. Habyarimana, E., Dall’Agata, M., De Franceschi, P. & Baloch, F. S.
Genome-wide association mapping of total antioxidant capacity,
phenols, tannins, and flavonoids in a panel of Sorghum bicolor and
S. Bicolor × S. Halepense populations using multi-locus models.
PLoS ONE 14, e0225979 (2019).

20. Rhodes, D. H. et al. Genome-wide association study of grain
polyphenol concentrations in global sorghum [Sorghum bicolor
(L.) Moench] germplasm. J. Agric. Food Chem. 62,
10916–10927 (2014).

21. Evans, J. et al. Extensive variation in the density and distribution of
DNA polymorphism in sorghum genomes. PLoS ONE 8,
e79192 (2013).

22. Kong, W. et al. Genotyping by Sequencing of 393 Sorghum bicolor
BTx623 × IS3620C Recombinant Inbred Lines Improves Sensitivity
and Resolution of QTL Detection. G3 Genes Genomes Genet. 8,
2563–2572 (2018).

23. Tamanai-Shacoori, Z. et al. Roseburia spp.: a marker of health?
Future Microbiol. 12, 157–170 (2017).

24. Ferreira-Halder, C. V., Faria, A. V., de, S. & Andrade, S. S. Action and
function of Faecalibacterium prausnitzii in health and disease. Best.
Pract. Res. Clin. Gastroenterol. 31, 643–648 (2017).

25. Martín, R. et al. Functional characterization of novel Faecalibacter-
ium prausnitzii strains isolated from healthy volunteers: a step for-
ward in the use of F. prausnitzii as anext-generationprobiotic.Front.
Microbiol. 0, 1226 (2017).

26. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory
commensal bacterium identified by gut microbiota analysis of
Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736
(2008).

27. Morris, G. P. et al. Dissecting genome-wide association signals for
loss-of-function phenotypes in sorghum flavonoid pigmentation
traits. G3 Genes Genomes Genet. 3, 2085–2094 (2013).

28. Wu, Y. et al. Allelochemicals targeted to balance competing
selections in African agroecosystems. Nat. Plants 5,
1229–1236 (2019).

29. Boatwright, J. L. et al. Genetic characterization of aSorghumbicolor
multiparent mapping population emphasizing carbon-partitioning
dynamics. G3 Genes Genomes Genet. 11 jkab060 (2021).

30. Wu, Y. et al. Presenceof tannins in sorghumgrains is conditionedby
different natural alleles of Tannin1. Proc. Natl Acad. Sci. USA 109,
10281–10286 (2012).

31. Wang, M. L. et al. Genetic diversity and population structure ana-
lysis of accessions in the US historic sweet sorghum collection.
Theor. Appl. Genet. 120, 13–23 (2009).

32. Morris, G. P. et al. Population genomic and genome-wide associa-
tion studies of agroclimatic traits in sorghum. Proc. Natl Acad. Sci.
USA 110, 453–458 (2013).

33. Casa, A. M. et al. Community resources and strategies for associa-
tion mapping in Sorghum. Crop Sci. 48, 30–40 (2008).

34. Molino, S. et al. Enrichment of food with tannin extracts promotes
healthy changes in the human gut microbiota. Front. Microbiol. 12,
625782 (2021).

35. Choy, Y. Y. et al. Phenolic metabolites and substantial microbiome
changes in pig feces by ingesting grape seed proanthocyanidins.
Food Funct. 5, 2298–2308 (2014).

36. Díaz Carrasco, J. M. et al. Tannins and bacitracin differentially
modulategutmicrobiota of broiler chickens.Biomed.Res. Int.2018,
1–11 (2018).

37. Brugaletta, G. et al. Insights into themode of action of tannin-based
feed additives in broiler chickens: looking for connections with the
plasma metabolome and caecal microbiota. Ital. J. Anim. Sci. 19,
1349–1362 (2020).

38. Aboagye, I. A. & Beauchemin, K. A. Potential of molecular weight
and structure of tannins to reduce methane emissions from rumi-
nants: a review. Animals 9, 856 (2019).

39. Seidel, D. V. et al. Sorghum‐based dietary intervention enriches
Faecalibacterium prausnitzii in fecal samples of overweight indivi-
duals. FASEB J. 27, 1056.12–1056.12 (2013).

40. Dykes, L. & Rooney, L. W. Phenolic compounds in cereal grains and
their health benefits. Cereal Foods World 52, 105–111 (2007).

41. Drewnowski, A. & Gomez-Carneros, C. Bitter taste, phytonutrients,
and the consumer: a review.Am. J. Clin. Nutr. 72, 1424–1435 (2000).

42. Xie, P. et al. Control of bird feeding behavior by Tannin1 through
modulating the biosynthesis of polyphenols and fatty acid-derived
volatiles in sorghum. Mol. Plant 12, 1315–1324 (2019).

43. Civáň, P. When bitter is better. Nat. Plants 5, 1205–1206 (2019).
44. Appleford, N. E. J. et al. Decreased shoot stature and grain α-

amylase activity following ectopic expression of a gibberellin
2-oxidase gene in transgenic wheat. J. Exp. Bot. 58,
3213–3226 (2007).

45. Tian, R. et al. Direct and indirect targets of the arabidopsis seed
transcription factor ABSCISIC ACID INSENSITIVE3. Plant J. 103,
1679–1694 (2020).

46. Gusakov, A. V. Proteinaceous inhibitors of microbial xylanases.
Biochemistry 75, 1185–1199 (2010).

47. Burow, G. B. et al. Registration of the BTx623/IS3620C Recombi-
nant Inbred Mapping Population of Sorghum. J. Plant Regist. 5,
141–145 (2011).

48. Reichardt, N. et al. Specific substrate-driven changes in human
faecal microbiota composition contrast with functional redun-
dancy in short-chain fatty acid production. ISME J. 12,
610–622 (2018).

49. Yang, Q. et al. Near isogenic lines (NIL) of sorghum carrying wild
type or waxy alleles of the granule-bound starch synthase (GBSS)
gene have distinct effects on human gut microbiome phenotypes
and host physiological characteristics. https://doi.org/10.21203/
RS.3.RS-1405055/V1 (2022).

50. Barros, F., Awika, J. M. & Rooney, L. W. Interaction of tannins and
other Sorghum phenolic compounds with starch and effects on
in vitro starch digestibility. J. Agric. Food Chem. 60,
11609–11617 (2012).

51. Benson, A. K. et al. Microbial successions are associated with
changes in chemical profiles of a model refrigerated fresh pork
sausage during an 80-day shelf life study. Appl. Environ. Microbiol.
80, 5178–5194 (2014).

52. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. &
Schloss, P. D. Development of a dual-index sequencing strategy
and curation pipeline for analyzing amplicon sequence data on the

Article https://doi.org/10.1038/s41467-022-33419-1

Nature Communications |         (2022) 13:5641 14

https://doi.org/10.21203/RS.3.RS-1405055/V1
https://doi.org/10.21203/RS.3.RS-1405055/V1


MiSeq illumina sequencing platform. Appl. Environ. Microbiol. 79,
5112–5120 (2013).

53. Bolyen, E. et al. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nat. Biotechnol. 37,
852–857 (2019).

54. Callahan, B. J. et al. DADA2: High-resolution sample inference from
Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

55. Pedregosa, F. et al.Scikit-learn:machine learning in Python. J. Mach.
Learn. Res. 12. http://scikit-learn.sourceforge.net (2011).

56. Quast, C. et al. The SILVA ribosomal RNA gene database project:
Improved data processing andweb-based tools.Nucleic Acids Res.
https://doi.org/10.1093/nar/gks1219 (2013).

57. Lindstad, L. J. et al. Human gut Faecalibacteriumprausnitziideploys
a highly efficient conserved system to cross-feed on
b-mannanderived oligosaccharides. MBio 12, e0362820 (2021).

58. Price,M. L., Scoyoc, S., Van&Butler, L. G. A critical evaluation of the
vanillin reaction as an assay for tannin in Sorghum grain. J. Agric.
Food Chem. 26, 1214–1218 (1978).

59. Yang, J. et al. Disparate metabolic responses in mice fed a high-fat
diet supplemented with maize-derived non-digestible feruloylated
oligo- and polysaccharides are linked to changes in the gut
microbiota. PLoS ONE 11, e0146144 (2016).

60. Taylor, J. ASMap: Linkage Map Construction using the MSTmap
Algorithm version 1.0-4 from CRAN. https://rdrr.io/cran/ASMap/.

61. Broman, K. W., Wu, H., Sen, Ś., & Churchill, G. A. R/qtl: QTL
mapping in experimental crosses. Bioinformatics 19,
889–890 (2003).

62. Goodstein, D.M. et al. Phytozome: a comparativeplatformforgreen
plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

63. R Core Team. R: a language and environment for statistical com-
puting. https://www.r-project.org (2021).

64. RStudio Team. RStudio: Integrated Development Environment for
R. http://www.rstudio.com/ (RStudio, PBC, Boston, 2022).

65. Oksanen, J. et al. vegan:Community ecologypackage. https://cran.
r-project.org/package=vegan (2020).

66. McMurdie, P. J. & Holmes, S. phyloseq: an R package for repro-
ducible interactive analysis and graphics of microbiome census
data. PLoS ONE 8, e61217 (2013).

67. Wickham H: ggplot2: Elegant Graphics for Data Analysis. https://
ggplot2.tidyverse.org (Springer-Verlag, New York, 2016).

68. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots.
https://CRAN.R-project.org/package=ggpubr (2020).

69. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns
and correlations in multidimensional genomic data. Bioinformatics
32, 2847–2849 (2016).

70. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool
for phylogenetic tree display and annotation.Nucleic Acids Res.49,
W293–W296 (2021).

Acknowledgements
This research was supported by funds from the Jeff and Tricia Raikes
Foundation, the Bill and Melinda Gates Foundation, and the Don Dillon
Foundation to A.K.B., funds from the Hogemeyer Family Foundation and
the McConnell fund to J.C.S., and USDA-ARS project 3042-21220-033-
00D. Q.Y. was supported in part by scholarship from the China Scho-
larship Council and N.K. was supported in part by Foundation for Food

and Agriculture Research (FFAR) and the FFAR Fellows Program. This
work was completed utilizing the Holland Computing Center of the
University of Nebraska which receives support from the Nebraska
Research Initiative. We thank Alejandro Pages for assistance and meth-
ods development in sorghum seed phenotyping, Dr. Keting Li and Wil-
liam McQueney for assistance with AiMS phenotyping, Bryce Askey for
assistance in QTL mapping, and Christine Smith, Vicent Stoeger, and
Troy Pabst for their assistance in plant care and harvesting. We thank Dr.
Silvia Molino from Silvateam for kindly providing quebracho tannin
extract for this experiment.

Author contributions
Q.Y. designed and conducted experimental studies; A.B. supervised the
work;Q.Y.,M.V.H., andN.K. participated inparticipants recruitment;Q.Y.
performed the primary analysis and interpretation data; S.S. and J.T.
provided the sorghum NILs for validation experiment; J.S. assisted with
interpreting the mapping results; D.R. assisted with experiment proto-
col; Q.Y. and A.B. drafted themanuscript; and all authors contributed to
critical revisions and approved the final version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33419-1.

Correspondence and requests for materials should be addressed to
Andrew K. Benson.

Peer review information Nature Communications thanks Rongling Wu,
Qi Xie and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33419-1

Nature Communications |         (2022) 13:5641 15

http://scikit-learn.sourceforge.net
https://doi.org/10.1093/nar/gks1219
https://rdrr.io/cran/ASMap/
https://www.r-project.org
http://www.rstudio.com/
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=ggpubr
https://doi.org/10.1038/s41467-022-33419-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Genetic analysis of seed traits in Sorghum bicolor that affect the human gut microbiome
	Results
	Genetic analysis of seed traits that affect the human gut microbiome
	Parental lines of the RILS have distinct effects on human gut microbiomes
	QTLs in the sorghum genome that affect human gut microbes
	Multiple effect loci are defined by overlapping QTLs for multiple microbial taxa and their metabolic products
	QTLs for seed color and tannin content overlap with MELs for microbiome phenotypes
	Segregation of dominant alleles at Tan1 and Tan2 loci explains transgressive segregation of seed color, tannin production, and microbiome phenotypes
	RILs and NILs with the same tannin phenotypes have similar effects on microbiomes from multiple human subjects
	Introduction of purified condensed tannins into fermentations with tannin-negative RILs restores the microbiome phenotype
	Condensed tannins stimulate growth of Faecalibacterium prausnitzii in the context of a microbiome and in pure culture

	Discussion
	Methods
	Germplasm
	In vitro digestion
	Fecal donor and in�vitro fecal fermentation
	Validation of effect of tannin genotypes in RILs and in NILs
	Tannin complementation experiment
	Tannin enrichment experiment
	DNA extraction and 16S rRNA gene sequencing
	16S rRNA gene sequencing processing
	Quantification of Faecalibacterium prausnitzii
	Seed color analyses
	Tannin content analyses
	SCFA analyses
	Genetic map construction and QTL mapping
	Candidate genes mining
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




