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Abstract
Purpose Hypothyroidism is associated with a lower metabolic rate, impaired glucose tolerance, and increased respon-
siveness of sympathetic nervous system to glucose ingestion. The Levothyroxine (LT4) monotherapy is the standard
treatment for hypothyroidism; however to what extent this treatment restores the patients’ metabolism has not been verified.
The aim of this study was to test the hypothesis that standard LT4 therapy may not restore proper metabolic response to
carbohydrate ingestion.
Methods Energy expenditure, glucose tolerance, and catecholamine response to glucose ingestion were compared in
18 subjects with pharmacologically compensated hypothyroidism (PCH) and controls, at baseline and during oral glucose
tolerance test conditions.
Results Metabolic rate was significantly lower in PCH (P < 0.0001). Glucose tolerance was decreased in this group with no
differences in insulin resistance indicators between both groups. Adrenergic activity (P < 0.05) as well as adrenergic reaction
to glucose ingestion (P < 0.001) were stronger in PCH.
Conclusions Standard treatment for hypothyroidism does not restore the normal metabolic reaction to carbohydrate which is
observed in healthy people.
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Introduction

Hypothyroidism has an important impact on individuals’
glucose (Glu) tolerance, postprandial thermogenesis and
sympathoadrenergic reactions to Glu ingestion [1, 2]. Due
to a lack of specificity in the symptoms and signs, the
current treatment for hypothyroidism is focussed on nor-
malizing the levels of thyrotropin (TSH) and thyroid hor-
mones (THs) by the administration of levothyroxine (LT4)
[3], thus most of studies in such patients consist of com-
paring ‘on’ and ‘off’ conditions. Although the LT4 mono-
therapy treatment is standardly recommended by

“Guidelines for the Treatment of Hypothyroidism” [3] not
all patients are satisfied, some of them showing residual
symptoms like psychological distress, thyroid symptoms,
neurocognition, and general well-being impairment, depres-
sion, and anxiety [3–5]. Therefore, the metabolism of patients
treated with LT4 may not necessarily correspond to healthy
states, even in those with stabilized euthyroid conditions.

Glu tolerance is represented by standard reference ranges
of plasma Glu. Normal Glu tolerance refers to the stan-
dardized values of fasting plasma Glu below 5.6 mmol/L
and plasma Glu level below 7.8 mmol/L 2 h post Glu
ingestion [6]. Thyroid dysfunction could be risk factor for
Glu intolerance [7], in hypothyroidism, the Glu absorption
is impaired, the peripheral Glu assimilation is delayed and
gluconeogenesis is slower [8]. The available observations of
changes in Glu metabolism during LT4 treatment are not
consistent showing both alterations, as well as no differ-
ences in the levels of insulin (Ins) and Glu in fasting or post-
Glu state after treatment [9–14] compared to healthy
control.

The activity of sympathoadrenomedullary system, mea-
sured by catecholamine plasma concentrations, is much
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stronger in untreated hypothyroidism than in healthy indi-
viduals [2, 15–17]. Available observations of catecholamine
levels in the plasma of patients during LT4 treatment relate
to fasting values and are not consistent, documented both no
differences between hypothroid and euthyroid groups at NA
[18] and A [17], as well as higher NA concentration that
decreases after LT4 therapy [15, 17].

THs play essential roles in thermogenesis [19], especially
resting metabolic rate (RMR), a good measure of obligatory
thermogenesis, is remarkably responsive to THs around the
euthyroid state in humans [20]. Notwithstanding, some case
study reported a lack of normalization of RMR during
LT4 supplementation therapy in patients, despite of nor-
malization of hormones levels [21, 22].

In our previous study we showed that THs play impor-
tant role, also in postprandial thermogenesis, which refers to
the additional energy expenditure associated with meal
consumption [23]. In hypothyroid individuals, the post-
prandial thermogenesis is lower [2]. Unfortunately little is
known about postprandial thermogenesis in a hypothyroid
population [20].

Therefore, we decided to verify whether it is possible to
restore metabolic responses to carbohydrate ingestion (i.e.
Glu tolerance, postprandial thermogenesis, and sym-
pathoadrenomedullary response) in hypothyroidism. Our
hypothesis is that chronic treatment with L-T4, although
normalizing the hormone levels may not properly restore
metabolic responses to carbohydrate ingestion.

Materials and methods

Study population

The sample consisted of 18 patients (females, mean age
40.17 ± 3.06 years) with pharmacologically compensated
hypothyroidism (PCH) caused by Hashimoto’s thyroiditis
recruited from the Endocrinology Outpatient Department at
the Masovian Hospital Bródno and 18 healthy controls
matched by sex, age, body mass index (BMI) recruited by
the announcement. General data is presented in Table 1. All
subjects gave their written informed consent to be enrolled
into this study, which was approved by the Local Ethics
Committee of the Medical University of Warsaw. Inclusion
criteria were undergoing L-T4-treated primary hypothyr-
oidism for at least 3 years and showing compensated
hypothyroidism—characterized by the maintenance of
euthyreosis in peripheral blood. Exclusion criteria were
taking drugs except LT4, metabolic disorders or others that
affect basal energy expenditure (such as nervous system and
musculoskeletal disorders or serious heart disease) and
pregnancy.

Study design

All tests were carried out between 7:00 and 12:00 a.m., at
the room conditions of 22–24 °C and 40–50% humidity.
The subjects attended to the laboratory following an over-
night fast for the blood assessment. A catheter was inserted
into the antecubital vein in one of subjects arm and allowing
the resting in a supine position. Baseline/fasting blood
samples were taken after 30 min of resting. Thereafter, the
subjects were submitted to the 120-min oral Glu tolerance
test (OGTT), in supine position, by drinking a solution
containing 75 g of Glu dissolved in 200 ml of lukewarm
water, with repeated samples of blood collected at before
ingestion, and at 30th, 60th, 90th, and 120th min. Fasting
Glu, Ins, TSH, free triiodothyronine (fT3), free thyroxine
(fT4), total cholesterol, high-density lipoproteins choles-
terol, low-density lipoproteins cholesterol, and triglycerides
plasma concentrations were analyzed. Glu and Ins were also
analyzed during the whole OGTT timepoints, as well as
plasma adrenaline (A) and noradrenaline (NA) concentra-
tion’s peak from resting, minute 90th and 120th of OGTT as
demonstrated by Mathias et al. [24]. OGTT was chosen as a
protocol, also because it is a standardized model of carbo-
hydrate meal commonly used in postprandial thermogenesis
researches. Indirect calorimetry was used during 20 min
before the Glu ingestion for RMR calculation. VO2 and
VCO2 were recorded from the last 5 min of every quarter of
hour of OGTT for postprandial energy expenditure calcu-
lation. Oxygen uptake (VO2) and carbon dioxide production
(VCO2) were determined by Vmax29-Sensor Medics
(CareFusion, San Diego, CA, USA) gas analyzer, with the

Table 1 The general characteristics of the subjects

Control group PCH P value

n 18 18

Age (yr) 39.72 ± 2.85 40.17 ± 3.06 NS

BMI (kg/m2) 28.22 ± 1.37 28.51 ± 1.13 NS

TSH (mIU/L) 1.99 ± 0.22 2.16 ± 0.19 NS

fT3 (ng/L) 4.11 ± 0.07 3.95 ± 0.05 NS

fT4 (ng/L) 13.81 ± 0.66 14.58 ± 0.53 NS

fT3/fT4 0.23 ± 0.01 0.22 ± 0.01 NS

Triglycerides (mg/dL) 65.89 ± 7.14 66.61 ± 6.43 NS

Total cholesterol (mg/dL) 145.89 ± 6.48 144.61 ± 8.53 NS

High density lipoproteins
cholesterol (mg/dL)

47.56 ± 3.18 46.10 ± 3.93 NS

Low density lipoproteins
cholesterol (mg/dL)

88.84 ± 5.49 82.24 ± 6.70 NS

Values are disposed in means and standard error

BMI body mass index, TSH thyroid-stimulating hormone, fT3 free
triiodothyronine, fT4 free thyroxine

Endocrine (2021) 71:96–103 97



accuracy of ±0.02% for O2 and ±0.02% for CO2. Subjects
were laying in supine position during the whole test.

Biochemical determinations

TSH, fT3, and fT4 were assayed by electro-
chemiluminescence immunoassay “ECLIA” from Roche
Diagnostics GmbH (Mannheim, Germany) on cobas e 601
immunoassay analyzer. CV 3.3–7.2% for TSH, 2.0–3.4%
for fT3, and 2.7–3.6% for fT4. Lipid profile was assayed by
enzymatic colorimetric test on cobas c 502 analyzer: high-
density lipoproteins cholesterol by HDLC3 test, total cho-
lesterol by CHOL2 test, triglycerides by TRIGL test all
from Roche Diagnostics GmbH (Mannheim, Germany). CV
0.9% for high-density lipoproteins cholesterol, 1.8–1.9%
for triglycerides, and 1.4–1.6% for total cholesterol. Frac-
tion of low-density lipoproteins cholesterol was calculated
using the Friedewald [25] formula: low-density lipoproteins
cholesterol= total cholesterol−high-density lipoproteins
cholesterol–triglycerides/5 (mg/dL). Plasma Glu concentra-
tion was determined spectrophotometrically using Glu
oxidase with a Glu test from BioMaxima S. A. (Lublin,
Poland) (CV < 3.00%). Plasma Ins was assessed by immu-
noradiometric assay using an INS-IRMA Kit from DIA-
source ImmunoAssays S.A. (Louvain-la-Neuve, Belgium)
(CV 6.5–6.1%). Plasma A and NA levels were determined
by radioimmunoassay with a reagent kit 2-CAT RIA from
BioSource Europe S. A. (Nivelles, Belgium) with CV
5.6–6.1% for A and 10.1–6.1% for NA.

Calculations

Areas under the curves were calculated using trapezoidal
method. The indices of β-cell function were calculated:
insulinogenic index (IGI)–[IGI= (Ins at 30th min–fasting
Ins (mU/L))/(Glu at 30th–fasting Glu (mg/dL))], oral dis-
position index (oDI)–[oDI= IGI/fasting Ins (mU/L)], area
under the Ins curve (Insauc) and ratio of Insauc to area under
the Glu curve (Gluauc) (Insauc/Gluauc). Ins sensitivity was
estimated in four ways: by fasting Ins level, the homeostasis
model of Ins resistance (HOMA-IR)–[HOMA-IR= fasting
Ins (mU/L) × fasting Glu (mmol/L)/22.5], the quantitative
Ins sensitivity check index (QUICKI)–[QUICKI= 1/(log
(fasting Ins (mU/L)+ log(fasting Glu (mg/dL)))] and the
Matsuda index–(ISI(comp))–[ISI(comp)= 10,000/SQRT (fast-
ing Glu (mmol/L) × fasting Ins (mU/L) × mean Glu(0-120)
(mmol/L) × mean Ins(0–120) (mU/L))]. The values of Ins
resistance indices were assessed in relation to limiting
values of indicators for Polish population [26]. Basal daily
energy expenditure were calculated on the basis of RMR
and Harris–Benedict formula [27]. Mean values of VO2 and
VCO2 recorded during a 20 min gap before the Glu

ingestion were used to calculate RMR (expressed in kJ/h/
kg). The areas under the curves of postprandial energy
expenditure were used to determinate postprandial ther-
mogenesis (expressed in kJ).

Statistical analysis

Data are presented as means with standard errors (±SE).
Normality of variables was assessed by Shapiro–Wilk test.
Student’s t-test or the Cochran and Cox test were used for
the parametric data, depending on homogeneity of variance
(assessed by Levene and Brown–Forsythe tests). Non-
parametric data were compared by Mann and Whitney U
test. Comparison of dependent variables of a given groups
was calculated by dependent t-test for paired samples or the
Wilcoxon signed-rank test. P < 0.05 was accepted as the
level of significance. Statistica version 5 package was used
(Statsoft Inc., Tulsa, OK, USA). Energy expenditure and
blood Glu concentration were compared between groups by
two-way analysis of variance (ANOVA) followed by mul-
tiple comparisons Newman–Keuls test. Plasma Ins, A, and
NA were compared between groups by Mann and Whitney
U test. Intra-group analysis of these variables were per-
formed using the Wilcoxon signed-rank test.

Results

Energy expenditure

RMR and the energy expenditure throughout the test were
significantly lower in PCH than in the controls (P < 0.0001).
Two-way analysis of variance demonstrated a significant
time factor (P < 0.001) and group factor (P < 0.0001) for
energy expenditure. There was no time × group factors
interaction. Post-hoc analysis revealed that energy expen-
diture was significantly lower (P < 0.0001) in PCH than in
the controls at each time point (Fig. 1).

After Glu ingestion, the energy expenditure significantly
increased already at minute 15th (P < 0.05) and remained
elevated throughout OGTT (P < 0.01), but only in control
group. Postprandial thermogenesis values in PCH was
lower than in the controls (16.98 ± 6.29 vs. 47.29 ± 9.36 kJ)
(P < 0.03).

In PCH, values of basal daily energy expenditure based
on RMR and Harris–Benedict’s were 1144.67 ± 50.63 and
1547.89 ± 40.14 kcal/d, respectively. The measured RMR
values were lower than the calculated by Harris–Benedict's
(P < 0.0001). In the controls, Harris–Benedict’s were
1487.62 ± 45.83 kcal/d. There was no significant differ-
ence from the values obtained from RMR (1561.82 ±
126.21 kcal/d).
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Glu tolerance

Fasting Glu and Ins concentrations were not different
between the groups. Two-way ANOVA showed a sig-
nificant factor of time (P < 0.0001) and group (P < 0.05) for
the mean values of Glu during OGTT (Fig. 2a). There was
no time × group factors interaction. Post hoc analysis
revealed that Glu values were significantly higher in PCH
than in the controls at min 30th (P < 0.001) and 120th (P <
0.05). The Glu curve achieved the highest point at min 30th
in PCH and min 60th in the controls. Maximal values of Glu
were not different between groups. At min 120th, the Glu in
PCH remained significantly elevated compared to baseline
(P < 0.001). There was no significant difference between
baseline and min 120th for the controls Glu (Fig. 2a). Gluauc
was significantly different (P < 0.05) (Table 2).

No difference between PCH and the controls was iden-
tified in the Ins curve with maximal values achieved at min
90th in both groups and remained significantly elevated
until min 120th (P < 0.01) (Fig. 2b). There was no differ-
ence in calculated IRIauc between groups. IRIauc to Gluauc
ratio (IRIauc/Gluauc) was significantly smaller (P < 0.05) in
PCH when compared to the controls. IGI and oDI were
significantly lower in PCH than in control group (P < 0.05).
No difference were found in fasting Ins, HOMA, QUICKI,
and ISI(comp) between groups (Table 2).

Plasma catecholamine pre–post Glu

Plasma A concentrations were significantly increased in
PCH than in the controls both at rest (P < 0.05), and at min
90th and 120th of OGTT (P < 0.001). At min 90th, plasma
A concentrations were significantly decreased in the con-
trols (P < 0.01) and increased in PCH (P < 0.05), compared
to baseline. At min 120th, plasma A concentrations were

still elevated in PCH and reduced in the controls (P < 0.05)
(Fig. 3a).

Plasma NA concentrations were found to be significantly
higher in PCH than in the controls in all time points

Fig. 1 Changes in energy expenditure during 120 min oral glucose
tolerance test in treated hypothyroid subjects (▴) and healthy control
(▵). Values are disposed in means and standard error. “X” represents
differences from fasting values (P < 0.05), “XX” (P < 0.01). “*”
represents differences between groups (P < 0.001)

Fig. 2 Plasma glucose and insulin concentrations at fasting state and
during oral glucose tolerance test in treated hypothyroid subjects (▴)
and healthy control (▵). Values are disposed in means and standard
error. “X” represents differences from fasting values (P < 0.01), “*”
represents differences between groups (P < 0.05)

Table 2 Area under the curve of glucose (Gluauc), indices of β-cell
function, and insulin resistance indicators of the subjects

Control group PCH P value

Gluauc (mmol/L min) 228.45 ± 22.49 311.74 ± 31.56 <0,05

Insauc (mU/L min) 6215.21 ± 599.00 5738.79 ± 1084.83 NS

Insauc/Gluauc 31.50 ± 4.35 17.53 ± 2.99 <0.05

IGI 2.21 ± 0.64 0.79 ± 0.21 <0.05

oDI 0.22 ± 0.06 0.08 ± 0.02 <0.05

Fasting Ins
(mIU/L)

(IR > 8.8) 11.84 ± 1.18 10.36 ± 0.88 NS

HOMA (IR > 2.1) 2.52 ± 0.30 2.16 ± 0.17 NS

QUICKI (IR < 0.34) 0.34 ± 0.01 0.34 ± 0.00 NS

ISI(comp) (IR < 7.3) 4.32 ± 0.42 4.95 ± 0.65 NS

Insauc—AUC of insulin, Insauc/Gluauc—ratio of AUC of insulin to
AUC of glucose, IGI—insulinogenic index, oDI—oral disposition
index, HOMA—homeostasis model of insulin resistance, QUICKI—
quantitative insulin sensitivity check index, ISIcomp—Matsuda index,
(IR…) presents insulin resistance limiting values of indicators for the
Polish population [26]. Values are disposed in means and
standard error.

Endocrine (2021) 71:96–103 99



(P < 0.001). At min 90th, there was a significant increase in
plasma NA concentration in PCH (P < 0.01) which
remained elevated at min 120th (P < 0.05). No changes
were observed for the controls (Fig. 3b).

Discussion

Based on results, it is possible to affirm that the metabolic
response to carbohydrates is not properly restored in
patients participating in our study, who are hypothyroid
under L-T4 treatment. Disturbances in Glu tolerance can be
manifested by the fasting and post-Glu ingestion levels [6].
In our study, both control and PCH group showed normal
Glu tolerance. Also, the levels of plasma Glu and Ins in
fasting state did not differ between groups, in coherence
with previous studies [14, 28]. However, some studies have
reported both lower Glu [13, 29] and higher Glu and Ins in
PCH [30].

In the present study, although the fasting Glu did not
differ from the controls, the plasma Glu levels in PCH were
higher at the first stage and at the end of OGTT, producing a
greater Gluauc. Taking into consideration, that there were no

differences in insulin level at any measurement point,
higher plasma Glu levels at the first stage of OGTT indicate
a delay in Glu uptake. That is in line with the general
metabolic slowdown in the PCH group and it was con-
firmed by still higher Glu levels in PCH than in the fasting
and control conditions. Glu uptake delay with greater Gluauc
was also observed in untreated hypothyroid patients com-
pared to the healthy controls matched by age and BMI in
our previews study. Importantly, in the untreated patients
Glu levels returned to basal values at the end of OGTT [2].

In this study, there was no difference in Ins resistance in
both groups. According to the analyzed indicators (fasting
Ins, HOMA, QUICKI, and ISI(comp)), both groups were
found to be insulin-resistant. Since Ins resistance is strongly
associated with high BMI [31] and that both of our groups
were overweight, we believe that the Ins resistance, in this
case, was more likely to be a reflection of their BMI than
their hypothyroid condition [32]. According to the
mechanism proposed by Diamond et al. [33], even in
insulin resistance normoglycemia can be maintained by
adjusting β-cells insulin secretion to the body’s sensitivity
to insulin. When experiencing a reduction in insulin sensi-
tivity of 80% due to one of many possible causes (puberty,
pregnancy, infection, increased adiposity), an individual
would be predicted to mount a five-fold greater insulin
response [34]. Thus, even in insulin-resistance, as long as
these cells are able to enhance Ins secretion, the Glu tol-
erance remains normal. Glu intolerance occurs when an Ins
resistance can no longer be compensated by pancreas β-cells
production of Ins. With time, the β-cells begin to fail and
initially, the postprandial plasma glucose levels and subse-
quently, the fasting plasma glucose concentration begin to
rise, leading to the onset of overt diabetes [35, 36]. β-cell
function indicators: Insauc/Gluauc, IGI, and oDI in PCH were
lower than in controls as was the case observed in other
studies [9]. Therefore, we believe that in PCH there is a
gradual deterioration in β-cell function, which is manifested
through a loss of pancreas Ins secretion compensatory
capability, during ongoing hypothyroidism, despite LT4
therapy. This resulted in higher glucose level paralleled
with lower insulin secretion after glucose consumption
observed in PCH. We believe that physiological insulin
resistance in our healthy controls was compensated by their
β-cells insulin secretion at sufficient level to maintain nor-
moglycemia, while in the PCH the capacity of β-cells
insulin secretion began to be insufficient. Thus, we
observed the early stage of glucose intolerance.

Compiling results from both studies, it is observable that
the Glu tolerance decays in time with hypothyroidism.
Moreover, long-term LT4 therapy does not restore normal
Glu tolerance in PCH. Regular evaluation of Glu metabolism
during treatment is not a recommendation, according to both
ATA, ETA, and AACE guidelines, for these patients [3, 4];

Fig. 3 Plasma adrenaline and noradrenaline concentrations at fasting
state and during oral glucose tolerance test in treated hypothyroid
subjects (▴) and healthy control (▵). Values are disposed in means and
standard error. “X” represents differences from fasting values (P <
0.05), “*” represents differences between groups (P < 0.05)
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and the Italian Association of Clinical Endocrinologists
(AME) & Italian Association of Clinical Diabetologists
(AMD) [37] endorse to repeat Glu metabolism evaluation (by
OGTT) only once, after the restoration of normal thyroid
function. We would suggest considering a periodically
OGTT for PCH regardless of the stabilization of TH.

RMR was lower in PCH. TH play a key role in shaping
the RMR which has been already used for diagnosis and
titrations in hypothyroidism [38]. While lower RMR is a
characteristic of hypothyroid state, patients undergoing
treatment should demonstrate normalized RMR levels. Such
normalization was reported by Wolf et al. (1996), however,
TSH-suppressive doses were used for this [39]. Although,
lack of RMR increases despite increasing plasma fT3 level,
was also reported [22]. The normalized TH blood con-
centration with slower RMR suggests a state of “tissue
hypothyreosis condition” characterized by a difference
between plasma THs and THs concentration and/or activity
inside cells which is assumable when considering the
complexity of mechanisms governing the proper tissue
response to TH stimulation [40, 41]. Such phenomenon has
already been observed in NA dynamics in non-treated
hypothyroid subjects [42]. Other possible explanation of
lower RMR can be resulting from deficiencies in other than
triiodothyronine and thyroxine active substances secreted
by the thyroid gland and/or THs-active intermediate meta-
bolites [3, 43]. Some of the active substances from thyroid
gland are present in desiccated thyroid extract, which may
be one of the explanations of increased satisfaction with the
therapy of patients taking desiccated thyroid extract than
patients taking LT4 as noticed by Peterson et al. [5].

Likewise, postprandial thermogenesis was lower in PCH
than control group, corroborating with the slow RMR.
There are not many studies reporting postprandial thermo-
genesis in PCH. Similar to our results, no significant
changes in postprandial thermogensis was observed either
in hypohyroid, hyperhyroid, or euthyroid state by Al-
Adsani et al. [20] although they were not compared to
healthy control group, so that, those authors stated that
postprandial thermogenesis values obtained in PCH were
lower comparing to healthy standards [44, 45].

Additionally, PCH sympathetic activity was higher than
healthy control group. In the present study pre-and post Glu
ingestion A and NA levels were higher in PCH than in the
controls as it has been also observed in untreated hypo-
thyroid patients [2, 16]. This indicates that the PCH adre-
nergic reaction is not restored to the observed in healthy
people. The increased sympathetic activity in untreated
hypothyroid subjects may be a compensatory mechanism
to achieve an appropriate level of tissue response to sti-
mulation, since β-adrenoceptors responsiveness in
hypothyroidism is reduced [16, 46]. Moreover, the rise in
the level of A is an opposite reaction to that observed in

healthy subjects [47, 48]. Since A is the hormone that
exerts a strong thermogenic effect, it could be a way to
increase thermogenesis which is reduced in hypothyr-
oidism. However, if so, in both this and earlier study [2] it
was ineffective.

It should be reported that this study addressed only
female individuals and they might present different luteal
phases. However, despite the heterogeneity of the groups in
terms of their luteal phases, the analysis of the measured
indicators showed no presence of distinct subgroups.

Concluding, we believe that although the currently
recommended treatment for hypothyroidism does compen-
sate THs level in blood, they do not accomplish to fully
restore euthyreosis.
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