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ADAR1 is essential for intestinal homeostasis and
stem cell maintenance

W Qiu1,5, X Wang1,5, M Buchanan2, K He1, R Sharma3, L Zhang2, Q Wang*,3 and J Yu*,1,4

Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA-editing enzyme that converts adenosine (A) to inosine
(I), and essential for normal development. In this study, we reported an essential role of ADAR1 in the survival and maintenance
of intestinal stem cells and intestinal homoeostasis by suppressing endoplasmic reticulum (ER) stress and interferon (IFN)
signaling. ADAR1 was highly expressed in the Lgr5þ cells, and its deletion in adult mice led to a rapid apoptosis and loss of
these actively cycling stem cells in the small intestine and colon. ADAR1 deletion resulted in a drastic expansion of progenitors
and Paneth cells but a reduction of three other major epithelial lineages. Moreover, loss of ADAR1 induced ER stress and
activation of IFN signaling, and altered expression in WNT targets, followed by intestinal inflammation. An ER stress inhibitor
partially suppressed crypt apoptosis. Finally, data from cultured intestinal crypts demonstrated that loss of ADAR1 in the
epithelial cells is the primary cause of these effects. These results support an essential role of ADAR1 and RNA editing in tissue
homeostasis and stem cells.
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The intestinal epithelium is the most rapidly self-renewing
tissue in adult mammals, which renews every 3–5 days in
mice.1 Homeostasis of the intestinal epithelium is dependent
on intestinal stem cells (ISCs) and a balance among cell
proliferation, migration, differentiation, and cell death.1,2

Several ISC populations with possible overlap have recently
been identified in mouse, including the actively cycling
columnar cells at the crypt base (CBCs) marked by Lgr5 or
CD133, and the slow cycling cells in the þ 4 area marked by
Bmi1, DCLK-1 (also known as DCAMKL-1), or mTERT.
Ablation of certain lineage revealed inter-conversion of ISC
populations and re-establishment of more diverse ISC
populations upon repair.3 Epithelial injury and compromised
repair have been linked to a wide range of diseases, including
chronic inflammation, autoimmunity, and cancer. Develop-
mental pathways, such as Wnt/b-catenin, BMP, PI3K, and
Notch, are important in the maintenance of ISCs and intestinal
proliferation and differentiation,4 whereas the role of other
pathways remain largely unexplored and can help illuminate
pathogenesis of these diseases.

Adenosine-to-inosine (A-to-I) editing of primary transcripts
by ADAR enzymes (adenosine deaminase acting on RNA) is
the most prevalent RNA-editing mechanism in higher

eukaryotes.5,6 Three mammalian adenosine deaminase act-
ing on RNA (ADAR) genes are found in mammals, which
encode two active deaminases (ADAR1 and ADAR2) and one
inactive deaminase (ADAR3).5,6 ADARs act on double-
stranded RNA (dsRNA) structures in both messenger and
noncoding RNAs. The A–to-I conversion in dsRNA alters the
stabilities of the dsRNA helix, and can also lead to codon
changes as I is decoded as guanosine (G) during translation
that increases transcriptomic diversity.6,7 ADARs also edit
noncoding RNAs to affect microRNA processing,7 as well as
sites scattered in Alu repeat elements within human pre-
mRNAs.8 ADARs also catalyze hyper-editing of long dsRNAs,
whereby up to 50% of adenosines are converted to inosine
(I).9

ADAR1 is mutated in a rare autosomal-dominant human-
inherited skin pigmentation disease called dyschromatosis
symmetrica hereditaria, and over 90 mutations have been
identified in patients.10 Most of these mutations are predicted
to produce truncated proteins. In mice, ADAR1 deletion
causes widespread apoptosis, defective hematopoiesis, and
embryonic lethality, suggesting an essential role of ADAR1
for embryo development and cell proliferation and differentia-
tion.11,12 Using conditional knockout models, ADAR1 was
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found to be required for the maintenance of hematopoietic
stem cells and hematopoietic progenitor cells13,14 by suppres-
sion of interferon (IFN) signaling.13,15 Loss of ADAR1 in the
skin led to massive cell death in the epidermis and loss of hair
follicles.16

In this study, we investigated the role of ADAR1 in the
intestinal tract using a conditional knockout mouse model.
ADAR1 was expressed highly in the Lgr5þ population, and
its deletion in adult mice induced a rapid apoptosis and loss of
stem cells in the small intestine and colon. ADAR1 deletion led
to marked changes in intestinal differentiation, an expansion
of transient amplification (TA) cells, and severe intestinal
injury and inflammation. Loss of ADAR1 induced endoplasmic
reticulum (ER) stress and IFN signaling in intestinal epithelial
cells. Data from cultured crypts strongly suggest that ADAR1
suppresses epithelial cell death through a cell-autonomous
manner. These data reveal a critical role of ADAR1 in
maintaining intestinal homeostasis and ISC survival, and a
potential involvement of RNA editing in digestive diseases.

Results

ADAR1 loss leads to crypt apoptosis and intestinal
damage in mice. To investigate the role of ADAR1 in the
small intestine, 6- to 10-week-old CreER; ADAR1f/f mice
were administered with 120 mg/kg tamoxifen on day 0, 1, 3,
and 4 to excise floxed ADAR1 alleles (Supplementary
Figure 1A). ADAR1f/f mice treated with tamoxifen were used
as controls in all experiments. The deletion efficiency of
ADAR1 in the small intestine mucosa was over 50 and 70%
on day 3 and 5, respectively in CreER; ADAR1f/f mice
(Figure 1a). Western blotting confirmed reduction of ADAR1
protein (Figure 1a). ADAR1 deletion can be detected on day
1 (1� TM), whereas the deletion efficiency on day 2 and 3
(2x TM) were similar as expected (Figure 1a and
Supplementary Figure 1B). Based on these observations
and a 3–5 day renewal cycle of intestinal epithelium,1,2 we
examined tissue harvested on or before day 5 in our following
analyses.

There was no discernable difference in the histology of the
small intestine between ADAR1f/f and CreER; ADAR1f/f mice
without tamoxifen treatment (Figure 1b). However, tamoxifen
treatment resulted in shortened villi in CreER; ADAR1f/f mice
on day 3, and a severe loss of crypts and epithelial integrity on
day 5. Terminal deoxynucleotidyl transferase-mediated deox-
yuridinetriphosphate nick end labeling (TUNEL) staining and
active caspase 3 immunohistochemical (IHC) indicated
apoptosis in the intestinal crypts (Figures 1c–e). Notably,
apoptosis was concentrated in the bottom of crypts
(Supplementary Figures 1C and D) and could be detected
as early as day 2 in the CBC area, whereas little or no
apoptosis was detected in the villi (Supplementary Figures 1E
and F). ADAR1 deletion resulted in significant crypt loss
accompanied by crypt fission in the colon on day 5
(Supplementary Figure 2A), which was not pronounced on
day 3. TUNEL staining confirmed induction of cell death in the
colonic crypts (Figure 1f, Supplementary Figures 2B and C).

Furthermore, we examined the effect of ADAR1 deletion on
the stomach, bone marrow, and spleen. Significant cell death

in CreER; ADAR1f/f was detected on day 5, accompanied by
apparent hypo-cellularity and damage (Supplementary
Figure 3). Little or no structural changes or cell death were
detected in all organs examined in ADAR1f/f mice
(Supplementary Figure 3). These results demonstrate that
ADAR1 has an important role in the homeostasis of GI tract
and hematopoietic system, which are highly proliferative and
contain a well-defined stem cell compartment.

ADAR1 is required for maintenance of ISCs. To probe a
potential role of ADAR1 in ISC survival, we analyzed the
expression of a robust CBC marker Olfm4 by RNA in situ
hybridization (ISH).17 Olfm4 expression (blue) was restricted
in crypt bottom and CBCs areas in CreER; ADAR1f/f and
control mice (Figure 2a). Tamoxifen treatment induced a
significant loss of Olfm4 signals, especially in between the
Paneth cells in CreER; ADAR1f/f mice on day 3 and by 80%
on day 5 (Figures 2a and b). The mRNA level of Lgr5
(Leucine-rich repeat-containing G-protein coupled receptor
5), but not that of the þ 4 cell-marker Bmi1, was decreased
on day 2, before massive epithelial injury was detected
(Figure 2b). Importantly, TUNEL staining co-localized with
Olfm4 ISH (Figures 2c, d and Supplementary Figure 4A).
RT-PCR analysis showed that ADAR1 was expressed highly
in Lgr5 high population compared with Lgr5 low or
unfractionated crypts (Figure 2e). Loss of Paneth cells under
certain conditions can lead to loss of Lgr5þ or Olfm4þ
cells.18 However, cell death was not detected in Paneth cells
on day 3 or 5 (Supplementary Figure 4B and data not
shown). Loss of Olfm4þ or increase in TUNELþ cells was
not observed in control mice (Figure 2 and Supplementary
Figure 4). These data demonstrate that ADAR1 selectively
suppresses cell death in actively cycling ISCs.

ADAR1 loss impairs intestinal differentiation. Differen-
tiaton can be used to measure stem cell quality. We
examined four major differentiated intestinal epithelial
lineages using established markers. Tamoxifen treatment
induced a sharp decrease in the numbers of enterocytes,
goblet cells, and enteroendocrine cells in CreER; ADAR1f/f

mice on days 3 and 5 (Figures 3a, b, and Supplementary
Figure 5). In contrast, a drastic expansion and mislocalization
of Paneth cells was observed (Figures 3a and b, and
Supplementary Figure 6). These changes were absent in
ADAR1f/f mice, suggesting ADAR1 deletion impairs differ-
entiation of progenitor or TA cells.

Given a key role of Wnt/b-catenin pathway in intestinal
homeostasis, proliferation, and differentiation,19 we examined
the effects of ADAR1 deletion on the expression of several
Wnt targets using quantitative RT-PCR. These include
cyclinD1, c-Myc, EphB2, EphB3, Lef1, Cdx1, Sox9, and Wnt 3A.
Among them, c-Myc, Sox9, EphB2, EphB3, and Lef1, were
significantly induced in the mucosa of CreER; ADAR1f/f

mice by day 3, compared with ADAR1f/f mice. The increased
expression of Sox9 and c-Myc was most notable (Figure 3c).
Immunostaining revealed a drastic expansion of Sox9þ
cells (Figure 3d and Supplementary Figure 6D) and
bromodeoxyuridineþ (BrdUþ ) cells (Figures 3e and f).
In addition, the expression of editing defective ADAR1 mutant
910K/912E significantly activated the TCF4 reporter in HCT

ADAR1 and intestinal stem cells
W Qiu et al

2

Cell Death and Disease



116 colon cancer cells. However, the expression of WT
ADAR1 did not suppress elevated basal activity of TCF
reporter because of APC mutation in these cells20 (Figure 3d
and Supplementary Figure 6E). These data suggest that
ADAR1 deletion leads to an expansion of progenitors and
skewed Paneth cell fate, associated with abnormal Wnt
signaling.

ADAR1 deletion induces ER stress and activation of IFN
signaling in the intestinal epithelium. ER stress can
induce death in the intestinal epithelial cells,21 which is
associated with decreased number of goblet cells, and
expansion and mislocalization of Paneth cells.22–25 To test
a potential role of ER stress in cell death following ADAR1

deletion, we measured several markers of ER stress such as
glucose-regulating peptide 78 (Bip) and C/EBP homologous
protein (CHOP).21 Tamoxifen administration induced Bip and
CHOP in the mucosa of CreER; ADAR1f/f mice, compared
with control mice (Figure 4a). Furthermore, administration of
an ER stress inhibitor Salubrinal blunted cell death
(Figure 4b) and the expression of Bip and CHOP (Figures
4c and d).

ADAR1 suppresses IFN signaling in hematopoietic stem
cells,13 whereas IFNs can induce apoptosis through the ER
stress pathway.26–28 We therefore examined a panel of IFN-
regulated genes by quantitative RT-PCR in intestinal mucosa
and isolated crypts, following ADAR1 deletion. These genes
include the signal transducers and activators of transcription 1

Figure 1 ADAR1 loss leads to crypt apoptosis and epithelial damage in the small intestine and colon in mice. ADAR1f/f and CreER; ADAR1f/f mice were subjected to
120 mg/kg tamoxifen (TM) administration(s) as in Supplementary Figure 1. Intestinal tissues were harvested at the indicated days (D). (a) Upper: ADAR1 deletion in the
intestinal mucosa detected by genomic PCR in ADAR1f/f and CreER; ADAR1f/f. The upper and lower bands indicated the deletion of ADAR1 (D) or intact or floxed (f/f) ADAR1,
respectively. Lower: ADAR1 and b-actin protein levels were analyzed by western blotting. (b) Representative H&E staining, magnification � 200. (c) Representative TUNEL
IHC in the small intestine. Arrow heads indicate examples of TUNELþ cells. (d) Quantification of TUNEL staining in the crypts. (e) Qualification of active caspase 3 staining in
crypts. (f) Quantification of TUNEL staining in the colonic crypts. **Po0.01, ***Po0.001
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(STAT), the IFN regulatory factors IRF7 and IRF9, the RNA-
activated protein kinase PKR, and the IFN-induced proteins
Ifi35.13 IRF-7, STAT1, and PKR, but not IRF9 and Ifi35, were
significantly induced in the crypts of CreER; ADAR1f/f mice as
early as day 2 or day 1, compared with control mice (Figures
4e, f and Supplementary Figure 7), which preceded apoptosis
(Figure 1). These data indicate that ADAR1 deletion lead to
ER stress and activation of IFN signaling to induce intestinal
epithelial cell death.

ADAR1 deletion induces intestinal inflammation.
ADAR1 deletion induced progressive intestinal epithelial
damage and inflammation in the lamina propria and
submucosa (Figure 1b). To rule out immune cell infiltration
as a primary cause of the IFN signaling or ER stress, we

examined major immune cell types in the intestine by
immunostaining, including neutrophils, T (Cd3eþ ),
B (B220þ ), and myeloid (Ly6Gþ ) cells. Increased infiltra-
tion of neutrophils, T, and B cells, but not myeloid cells, was
present in the lamina propria of CreER; ADAR1f/f mice on
day 3 and 5 after tamoxifen treatment (Figure 5 and
Supplementary Figure 8). Consistent with intestinal inflam-
mation, the expression of inflammatory cytokines IL-1a,
IL-1b, IL-6, and TNFa was significantly elevated in the small
intestinal mucosa on day 5 (Figures 5e and f). Interestingly,
induction of IL-6 and TNFa was detected as early as day 2 in
both mucosa and isolated crypts, before immune cell
infiltration (Figures 5e and 5f, and data not shown).
The expression of leukocyte adhesion molecules ICAM-1
and VCAM-1 did not change (Figures 5e and f). Little or no

Figure 2 ADAR1 is required for the maintenance and survival of intestinal stem cells. ADAR f/f or CreER; ADARf/f mice were subjected to tamoxifen (TM) administration(s)
as in Supplementary Figure 1. Intestinal tissues were harvested at the indicated days (D). (a) Olfm4 ISH staining (blue), magnification � 200. Lower panels, enlarged views of
the selected areas. (b) Upper, quantification of Olfm4 ISH in crypts. Lower, expression of Lgr5 and Bmi1 transcripts in isolated crypts was analyzed by real-time RT-PCR.
Values are means±S.D. n¼ 3 mice in each group. (c) Representative pictures of staining of Olfm4 ISH, TUNEL, and DAPI (nuclei) in crypts on day 3, magnification � 400.
Arrow heads indicate examples of Olfm4þ /TUNELþ cells. (d) Quantification of TUNEL staining in the Olfm4þ cells in crypts. (e) Expression of ADAR1, Lgr5, and Bmi1
transcripts in intestinal crypts, Lgr5 high, or Lgr5 low cells was analyzed by real-time RT-PCR. Values are means±S.D.
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change in intestinal inflammation was present in ADAR1f/f

mice (Figure 5 and Supplementary Figure 8). These results
demonstrated that immune cell infiltration occurs primarily
after ISC apoptosis following ADAR1 deletion and likely
exacerbates intestinal injury.

Loss of ADAR1 induces apoptosis in isolated intestinal
crypt cells. To directly investigate a role of ADAR1 in the
intestinal epithelial cells, we cultured intestinal crypts isolated
from mice, and induced ADAR1 deletion in vitro. Tamoxifen

treatment (1 or 2 nM) induced massive apoptosis in cultured
crypts from CreER; ADAR1f/f mice within 24 h, but not in
those from the control mice (Figure 6a and Supplementary
Figure 9A; Figure 6b and Supplementary Figure 9B).
Apoptosis was correlated with decreased expression of
Lgr5, but not Bmi1 (Figure 6c). Consistent with our in vivo
data, ablation of ADAR1 in cultured crypts also led to a
dramatic increase in c-Myc and Sox9 (Figure 6d), CHOP
(Figure 6e and Supplementary Figure 9C), and induction of
IFN-regulated genes (Figure 6f). A significant reduction in

Figure 3 ADAR1 loss impairs intestinal differentiation. ADAR f/f or CreER; ADARf/f mice were subjected to tamoxifen (TM) administration(s) as in Supplementary Figure 1.
Intestinal tissues were harvested at the indicated days (D). (a) Representative pictures of Paneth cells, Goblet cells, enteroendocrine cells, and enterocytes examined by
differentiation markers MMP7, Muc2, chromogranin A (ChA), and alkaline phosphotase (AP), respectively, magnification � 200. Arrow heads indicate examples of staining
positive cells. (b) Quantification of MMP7, Muc2, ChA, AP (relative height) staining in the villus. *Po0.05, **Po0.01, ***Po0.001. (c) Expression of Wnt-regulated genes in
the mucosa was analyzed by real-time RT-PCR. *Po0.05, **Po0.01. Values are means±S.D. n¼ 3 mice in each group. The values were normalized to the ratio of CreER;
ADARf/f/ADAR f/f (ERþ versus ER- as 1) on day 0 (un). (d) TCF4 reporter assays following expression of murine WT ADAR1 and editing mutant 910K/912E at 48 h in HCT 116
colon cancer cells. The TCF-specific relative luciferase activity (RLA) was calculated following normalization to the transfection control and that of the reporter containing
mutant TCF-binding sites (Fopflash) set as 1. (e) Quantification of BrdU staining. **Po0.01. (f) Representative pictures of BrdU incorporation (brown), magnification � 400
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Wnt 3A was also observed following ADAR1 deletion
(Figure 6d), and could potentially contribute to ISC loss or
the lack of crypt growth.18 Moreover, changes in Wnt targets
including c-Myc, Sox9, and Wnt 3A following ADAR1 deletion
differed significantly in the intestinal crypts, MEFs, and
hepatocytes (Supplementary Figure 10). These data strongly
suggest that ADAR1 suppresses ER stress and IFN signaling
to maintain crypt survival and intestinal lineage commitment.

Discussion

Intestinal epithelial injury, particularly that related to the stem
cells29 and ER stress,21 is implicated in common digestive
diseases, including inflammatory bowl diseases and inflam-
mation-associated cancer.30 Developmental pathways such
as Wnt/b-catenin, BMP, and Notch are important in the
maintenance of ISCs and intestinal homeostasis. In contrast,
the p53/PUMA/p21 axis has a key role in the survival and
regeneration of ISCs following radiation injury, but is largely
dispensable for ISC survival and homeostasis.2,31,32 In this
study, we discovered an essential role of the RNA-editing
enzyme ADAR1 in maintaining intestinal homeostasis and

stem cells using whole mouse and isolate crypts. To our
knowledge, this is the first report on the requirement of RNA-
editing enzymes in intestinal homeostasis and supports that
active cycling CBCs are responsible for epithelial renewal
under homeostasis.1 Furthermore, ADAR1 appears to have
an important role in the maintenance of active stem cells and
early progenitors in hematopoietic system13,14 and skin,16

whereas its role in more quiescent stem cells remains to be
explored.

ADAR1 and cell death. Both IFN signaling13 and ER stress
are likely involved in the cell death triggered by ADAR1
deletion, and linked to a variety of human conditions
including intestinal epithelial injury and inflammation.21,33 In
mice, targeted deletion of the ER stress response transcrip-
tion factor X-box-binding protein 1, ER stress protein inositol-
requiring enzyme 1b, or missense mutations of Muc2 or
deletion of Anterior Gradient 2 (AGR2) cause ER stress and
death of intestinal epithelial cells in mice.22–25 Editing-
defective tRNA synthetase causes protein misfolding and
ER stress in neurons.34 The sensitivity of intestinal epithe-
lium to ER stress might be explained by the rapid proliferation

Figure 4 ADAR1 deletion rapidly induces endoplasmic reticulum (ER) stress and activation of interferon signaling in intestinal epithelium. ADAR f/f or CreER; ADARf/f mice
were subjected to 120 mg/kg tamoxifen (TM) administration(s) or the ER stress inhibitor Salubrinal at 1 mg/kg daily, alone, or in combination. Intestinal tissues were harvested
at the indicated days (D). (a) Bip, CHOP, and b-actin levels in the small intestinal mucosa were analyzed by western blotting. (b) Quantification of TUNEL staining in the crypts,
with or without Salubrinal. (c) Quantification of CHOP staining in the crypts, with or without Salubrinal. (d) Bip, CHOP, and b-actin levels in the small intestinal mucosa at day 3,
with or without Salubrinal, were analyzed by western blotting. (e) Expression of the indicated interferon-responsive genes in mucosa was analyzed by real-time RT-PCR.
**Po0.001, *Po0.01, and compared with the control (day 0, Un). (f) Expression of the indicated interferon-responsive genes in isolated crypts was analyzed by real-time
RT-PCR. **Po0.001, *Po0.01, and compared with the control (day 0, Un)
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of TA cells or progentiors, the presence of several secretory
lineages and polarized enterocytes, demanding a highly
funtional secretory pathway. The mechanism by which
ADAR1 suppresses IFN signaling is not known, and both
RNA editing7,10,15 or non-editing35 functions might be
involved. Recently, hyper-edited dsRNAs (IU-dsRNAs) was
shown to suppress the induction of IFN-stimulated genes and
apoptosis induced by poly(IC),9 which can cross talk with ER
stress pathway.26–28 It will be interesting to determine
whether IFN signaling engages ER stress to promote ISC
death or whether these two pathways act independently
upon the loss of ADAR1.

ADAR1 and differentiation. The Wnt/b-catenin pathway is
the master regulator of intestinal homeostasis.36 Loss of
ADAR1 led to upregulation of Wnt targets c-Myc and Sox9 in
the intestinal epithelium and crypts. It is possible that c-Myc
is involved in both the proliferation and cell death36 following
ADAR1 deletion. Sox9 is required for the differentiation of
Paneth cells.37 Expansion of Sox9þ cells might help explain
the large increase of Paneth cells and TA cells, whereas

goblet, enteroendocrine, and enterocyte lineages were
diminished. However, the increase in TA cells might also
reflect a compensatory proliferation of progenitors or
quiescent stem populations trigged by CBC depletion. The
minor but distinct skin pigmentation phenotypes in the
dyschromatosis symmetrica hereditaria individuals attributa-
ble to the loss of melanocytes10 perhaps suggest another
lineage-specific effect of ADAR1.

ADAR1 in intestinal injury and inflammation. Apoptosis
of ISCs and impaired differentiation can certainly contribute
to intestinal inflammation following ADAR1 deletion. Persis-
tent IFN signaling, production of inflammatory cytokines, ER
stress and possibly a feed-forward loop among them are
likely to exacerbate intestinal inflammation. Our data suggest
that the intestinal epithelial or crypt cells, rather than the
immune cells, are the primary source of these signals.
However, we could not exclude the possibility that ADAR1
deletion in other cell types contributes to or exacerbates ISC
loss. Given the dynamic nature of microbial interactions with
host immune and epithelial cells, further exploration of

Figure 5 ADAR1 deletion leads to intestinal inflammation. ADAR f/f or CreER; ADARf/f mice were subjected to tamoxifen (TM) administration(s) as in Supplementary
Figure 1. Intestinal tissues were harvested at the indicated days (D). Quantification of staining of (a) neutrophil antigen, (b) B220 (B-cell), (c) Cd3e (T-cell), and (d) myeloid
lineage Ly-6G (Gr-1). (e) Expression of the indicated inflammatory cytokines in the small intestinal mucosa was analyzed by real-time RT-PCR. (f) Expression of the indicated
inflammatory cytokines in isolated crypts was analyzed by real-time RT-PCR. Values are means±S.D. n¼ 3 mice in each group. The values were normalized to the ratio of
CreER; ADARf/f/ADAR f/f at day 0 (ERþ versus ER� as 1, Un). (e and f) **Po0.001, *Po0.01, and compared with the control (day 0)
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ADAR1 conditional and intestinal inflammation models
should shed more light on the roles of the unfolded protein
response/ER stress and IFN signaling in inflammatory bowel
disease.21,33

The role of A-to-I editing in the etiology or progression of
human diseases is emerging,7,10 and so is that of epithelial
and stem cell apoptosis38 and ER stress in IBD.21 Our studies
demonstrated an essential role of ADAR1 in ISC survival and
maintenance, and intestinal homeostasis, likely requiring
RNA editing much like other systems.5,39 Future work is

needed to understand the precise role and mechanisms of
ADAR1 in the GI epithelium, which might lead to new targets
for disease intervention or treatment.

Materials and Methods
Mice and treatment. The procedures for all animal experiments were
approved by the Institutional Animal Care and Use Committee at the University of
Pittsburgh. CreER; ADAR1flox/flox (CreER; ADAR1f/f ) and ADAR1f/f littermates
were generated from CreER; ADAR1f/f and ADAR1f/f crosses, and genotyping was
performed as described.16 CreER (CAG-CreER is expressed in various developing

Figure 6 Deletion of ADAR1 in vitro leads to rapid crypt apoptosis. Small intestinal crypts were isolated from ADAR f/f or CreER; ADARf/f mice and plated into Matrigel for
24 h (day 0) as described in methods. Cultured crypts were subjected to DMSO (Un), or 1 nM or 2 nM of tamoxifen (TM) and analyzed 48 h (2 days, 2D) later.
(a) Representative pictures of cultured intestinal crypts, magnification � 100. Arrow heads indicate crypt budding or growth, which is lacking in CreER; ADARf/f culture with
TM. (b) Quantification of apoptosis in cultured crypts by active caspase 3 staining (red). Values are means±S.D. n¼ 3 different wells from two different mice in each group.
A representative picture of active caspase 3/DAPI staining, magnification � 400. (c) The expression of Lgr5 and Bmi1 transcripts in the cultured crypt was analyzed by real-
time RT-PCR. Values are means±S.D. n¼ 3 different wells from three different mice in each group. (d) Expression of the indicated Wnt-regulated genes was analyzed by
real-time RT-PCR. **Po0.01 compared with the control. Values are means±S.D. n¼ 3 mice in each group. (e) Quantification of CHOP staining in the cultured crypts. Values
are means±S.D. n¼ 3 mice in each group. (f) Expression of the indicated interferon-regulated genes were analyzed by real-time RT-PCR. *Po0.01 compared with the
control (DMSO). The values of mRNA levels were normalized to the ratio of CreER; ADARf/f/ADAR f/f at day 0 (ERþ versus ER� as 1, Un)
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and adult tissues, Jackson laboratory, Bar Harbor, ME, USA, stock 004453);
ADAR1f/f16 mice were generated via two backcrosses with C57BL/6J (B6-F2). The
Lgr5-EGFP (Lgr5-EGFP-IRES-creERT2) mice have been described previously.40

Mice were housed in micro-isolator cages in a room illuminated from 0700 to 1900
hours (12:12-h light–dark cycle) and allowed access to water and chow ad libitum.

For tamoxifen treatment, tamoxifen (cat# T5648, Sigma, St. Louis, MO, USA;
120 mg/kg) was injected intraperitoneally (i.p.) into 6- to 8-week-old mice on day 1,
2, 4, and 5. Mice were killed at various times to collect the small intestine, colon,
liver, stomach, bone marrow, and spleen for histology analysis. Mice receiving the
eIF2a inhibitor, Salubrinal (cat#2347, R&D, Minneapolis, MN, USA),41,42 were
injected with 1 mg/kg i.p. once daily starting 1 day before tamoxifen treatment and
continued until 3 days after tamoxifen treatment. All mice were injected i.p. with
100 mg/kg of BrdU (cat# 858811, Sigma) 2 h before killing to label cells in S-phase.

Intestinal crypt culture and isolation of ISCs. The crypt was isolated
and cultured in Matrigel with supplementation of growth factors in 24-well plates
for 1 day as previously described,43,44 and subjected to tamoxifen treatment for 1
or 2 days. The intestinal crypts and Lgr5þ cells were isolated from 7- to 8-week-
old Lgr5-EGFP-IRES-creERT2 mice as previously described.40,43 Analyses on the
growth of cultured crypt, immunostaing, and RT-PCR were performed. Detailed
methods are found in Supplementary Materials.

Western blotting. Total protein was prepared from freshly isolated small
intestine as described.38,45–47 Extracts were analyzed by NuPage gel (Invitrogen,
Carlsbad, CA, USA) electrophoresis.48 Primary antibodies included ADAR1,12 Bip
(cat#3177, Cell signaling, Danvers, MA, USA), CHOP (cat# 2895, Cell signaling),
and b-actin (cat#5441, Sigma).

Total RNA extraction and real-time reverse transcriptase PCR.
Total RNA was prepared for tissues, isolated crypts, cultured crypts, or isolated
ISCs, and cDNAs were then generated for real-time PCR analysis.46

Histological analysis, TUNEL, and BrdU staining. Tissue was fixed
in 10% formalin for 24 h and stored in 70% ETOH before processing. Sections
(5mm) from paraffin-embedded tissue were subjected to hematoxylin and eosin
staining for histological analysis and various staining. Protocols for TUNEL and
BrdU staining have been described.31,46 The apoptotic or BrdU index was scored
in 100 crypts or villus/mouse and reported as mean±S.D. Three or more mice
were used in each group.

Alkaline phosphatase staining. Paraffin-embedded tissue was sectioned
(5-mm thick), rehydrated, and incubated with NBT/BCIP solution (B1911, Sigma)
for 30 min. When staining was completed, slides were washed in water and
mounted in Clear Mount (cat# 17985-16, Electron Microscopy Sciences, Hatfield,
PA, USA). The height of the staining in the crypt-villus units were measured and
plotted relative to that in the untreated control mice.

IHC, immunofluorescent, and RNA ISH. Slides were deparaffinized,
rehydrated, and treated with 3% hydrogen peroxide. Antigen retrieval was
performed by boiling the sections for 10 min in 0.1 M citrate buffer antigen retrieval
solution (pH 6.0). Non-specific antibody binding was blocked using 20% goat serum
for 30 min. For double staining, TUNEL staining was performed after RNA ISH for
Olfm417,38 or MMP7 IF staining.49 Cells with positive staining were scored in at
least 100 crypts or villa and reported as mean±S.D. Three or more mice were
used in each group. Detailed information is found in Supplementary Materials.

Transfection and reporter assays. Transfection of HCT116 human
colorectal cancer cells with lipofectamine 2000 (Invitrogen) was performed using
TCF4 luciferase reporter plasmids, modified Topflash and Fopflash,50 transfection
control pCMVb (Promega, Madison, WI, USA),51 and WT ADAR1, editing
defective mutant (H910K/A912E) ADAR1, or empty vector. All reporter
experiments were performed in triplicate and repeated on at least three
independent occasions. Details of transfection and ADAR1 expression constructs
are found in Supplementary Materials.

Statistical analysis. Statistical analysis was carried out using GraphPad
Prism V software (San Diego, CA, USA). Data are presented as mean±S.D.
Statistical significance was calculated with a Student’s t-test. Po0.05 was
considered to be significant. The means±1 S.D. are shown in the figures where
applicable.
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