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Abstract
The Cox proportional hazards model is used extensively in clinical and epi-
demiological research. A key assumption of this model is that of proportional
hazards. A variable satisfies the proportional hazards assumption if the effect
of that variable on the hazard function is constant over time. When the propor-
tional hazards assumption is violated for a given variable, a common approach is
to modify the model so that the regression coefficient associated with the given
variable is assumed to be a linear function of time (or of log-time), rather than
being constant or fixed. However, this is an unnecessarily restrictive assumption.
We describe two different methods to allow a regression coefficient, and thus the
hazard ratio, in a Cox model to vary as a flexible function of time. These meth-
ods use either fractional polynomials or restricted cubic splines to model the
log-hazard ratio as a function of time. We illustrate the utility of these methods
using data on 12 705 patients who presented to a hospital emergency department
with a primary diagnosis of heart failure. We used a Cox model to assess the
association between elevated cardiac troponin at presentation and the hazard
of death after adjustment for an extensive set of covariates. SAS code for imple-
menting the restricted cubic spline approach is provided, while an existing Stata
function allows for the use of fractional polynomials.
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1 INTRODUCTION

The use of the Cox proportional hazards models is ubiquitous in modern medical and epidemiological research.1 This
model regresses the hazard of the occurrence of the outcome on a set of covariates: log(h(t)) = log (h0(t)) + 𝛃X, where h(t)
denotes the hazard function at time t, h0(t) denotes the baseline hazard function for a subject whose covariates are equal
to zero, X denotes a vector of covariates, and 𝛃 denotes a vector of regression coefficients. The model can also be written
in multiplicative form as: h(t) = h0(t)e𝛃X. A key assumption of the model is the proportional hazards assumption, which
states that the hazard ratio associated with any specific difference in any value of any covariate is constant over time.
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Analysts should assess whether model covariates satisfy the proportional hazards assumption. In a review of papers
published in the cancer literature in an earlier period and whose findings may not pertain to current statistical practice,
Altman et al2 found that only 5% of papers assessed whether the assumptions of the Cox model were satisfied. Ngari
et al3 examined the quality of survival analyses in studies of tuberculosis outcomes published between 2010 and 2020.
Of the 67 studies that reported using a Cox proportional hazards model, 32 (48%) stated that the proportional hazards
assumption had been tested, while only 2 (3%) reported the results of such a test. Kuitunen et al4 reviewed the assess-
ment of non-proportionality in studies published between 1987 and 2019 (with the large majority published since 2000)
reporting on research in total joint arthroplasty. Out of 318 included studies, 127 (40%) reported assessing the propor-
tional hazards assumption. Thus, even in more recent eras, fewer than half of studies reported assessing the proportional
hazards assumption. When a covariate is found to not satisfy the proportional hazards assumption one option is to explic-
itly model the non-proportionality. This can be achieved by incorporating a time-varying covariate effect (ie, allowing
the regression coefficient for that variable to be a function of time). A common way to achieve this is by assuming that
the regression coefficient is a linear function of time (or of the logarithm of time). However, this may not be a realistic
assumption in all settings. Instead, in some settings, the log-hazard ratio may have a nonlinear relationship with time.
A nonlinear relationship could arise in settings where a variable exerts an initially strong effect that is then dampened
quickly, so that the effect of the varies decays exponentially. In studies comparing a surgical intervention with medical
care, there may be an initially elevated hazard of mortality immediately after surgery (eg, due to the risk of surgical com-
plications in the peri-operative period, etc.). However, the initial large hazard ratio for surgery may decrease rapidly as
the patient heals from the surgery and exits the peri-operative period. From that point onwards, one could expect that,
for patients who survive the peri-operative period, the hazard of mortality may be lower in those who underwent surgery
compared to those receiving only medical care. Quantin et al5 found a non-monotone relationship between cancer stage
and mortality in patients with colon cancer. Similarly, Tsang et al6 found that the hazard ratio for all-cause mortality com-
paring those with heart failure and adult congenital heart disease to those with heart failure without adult congenital
heart disease displayed a U-shaped relationship with time.

Methods to allow for modeling of time-varying effects in the Cox model have been described by many different authors.
Cox suggested that the time-varying covariates could be incorporated by considering interactions between covariates and
functions of time.1 Hess7 described using cubic splines to model covariates as a function of time. Similarly, Gray8 used
splines to allow covariate effects to vary as a function of time. Abrahamowicz et al9 used regression splines to model
the hazard ratio as a function of time and developed tests of non-proportionality and of no association. Note that the
test of non-proportionality that they developed does not assume that the hazard ratio is a linear function of time under
the alternate hypothesis. Kooperberg et al10 developed hazard regression models that use linear splines and tensor prod-
ucts to model the logarithm of the hazard function. These models contain proportional hazards models as a subclass,
and thus allow for assessing the proportional hazards assumption. Hastie and Tibshirani11 developed varying-coefficient
models in which coefficients are allowed to vary as smooth functions of other variables. Grambsch and Therneau12

describe how, in a Cox model, the regression coefficient as a function of time can be visualized by using a smoothed plot
of the standardized Schoenfeld residuals. Buchholz and Sauerbrei13 reviewed different methods for assessing whether
coefficients in a Cox model vary over time, and how they do so if non-proportionality is present. Similarly, Ander-
sen et al14 briefly reviewed different methods that can be used to explicitly account for non-proportionality of a given
effect.

In this tutorial article, we describe two flexible methods to account for non-proportionality in a covariate. We consider
the use of fractional polynomials (FPs) and restricted cubic splines to model time-varying covariate effects, thereby explic-
itly incorporating non-proportional effects into the fitted Cox model. This article is structured as follows. In Section 2,
we describe two (among many) existing methods to flexibly model non-proportionality. In Sections 3 and 4, we provide a
case study illustrating the application of these methods. Finally, in Section 5, we summarize our findings and place them
in the context of the existing literature.

2 DESCRIPTION OF THREE (AMONG MANY) EXISTING STATISTICAL
METHODS TO ACCOUNT FOR NON-PROPORTIONALITY

In this section, we describe three (out of many) existing statistical methods that account for non-proportionality by model-
ing the regression coefficient as a function of time. The proportional hazards assumption can be relaxed by modifying the
Cox model as follows: log(h(t)) = log (h0(t)) + 𝛃(t)X, so that the regression coefficients are a function of time. We describe
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three different methods to account for non-proportionality: (i) modeling the regression coefficient as a linear function of
time; (ii) using FPs; (iii) using restricted cubic splines (RCS). In the description that follows, we relax the proportionality
assumption for a single variable. We assume the following model: log(h(t)) = log (h0(t)) + 𝛽(t)X + 𝛂Z, where X denotes
a single variable for which we want to relax the proportional hazards assumption, while Z denotes a vector of variables
for which the proportional hazards assumption is assumed to hold. In Section 2.4, we describe how these methods can
be extended to allow for non-proportionality for multiple variables.

2.1 The regression coefficient is a linear function of time

A common method in the medical literature to account for non-proportionality is to allow the regression coefficient to vary
as a linear function of time.15 The proportional hazards model is modified to: log(h(t)) = log (h0(t)) + (𝛽1 + 𝛽2t)X + 𝛂Z.
The hazard ratio at time t comparing two subjects who differ by one unit in the variable X (and have identical values of
Z) is exp (𝛽1 + 𝛽2t).

2.2 The regression coefficient is modeled as a function of time using FPs

FP is a method to allow for nonlinear transformation of a strictly positive continuous variable by considering a num-
ber of pre-specified polynomial transformations of that variable.16 Royston and Sauerbrei proposed two classes of FP
transformations: FP1 transformations and FP2 transformations. Given a continuous strictly positive variable x, the FP1
transformations are defined as xp1 , while the FP2 transformations are defined as xp1 + xp2 . The exponents p1 and p2 are
taken from the set S = (−2, −1, −0.5, 0, 0.5, 1, 2, 3), with the convention that x0 = log(x) (ie, the transformation associated
with p1 = 0 or p2 = 0 is the logarithmic transformation). Furthermore, for p1 = p2 = p, the associated FP2 transforma-
tion is defined by xp + xp log(x). Thus, there are 8 FP1 transformations and 36 FP2 transformations, for a total of 44 FP
transformations. We use the notation FP1(p1) and FP2(p1, p2) to denote a given FP1 or FP2 transformation, respectively.

One fits 44 different regression models, 1 for each of the 44 FP transformations. When considering an FP1
transformation, the following model is fit: log(h(t)) = log (h0(t)) + 𝛽1X + 𝛽2tp1 X + 𝛂Z. When considering an FP2 trans-
formation, the following model is fit: log(h(t)) = log (h0(t)) + 𝛽1X + (𝛽2tp1 + 𝛽3tp2)X + 𝛂Z, for p1 ≠ p2 and log(h(t)) =
log (h0(t)) + 𝛽1X +

(
𝛽2tp + 𝛽3tp log(t)

)
X + 𝛂Z, for p1 = p2 = p. Royston and Sauerbrei16 described an FP transforma-

tion selection procedure based on a sequence of likelihood ratio tests to determine which FP transformation to use.
When used to model time-varying covariates, the FP1 transformations are restricted to modeling the covariate as a
monotone function of time, while the FP2 transformations allow for the covariate to be a non-monotone function
of time.

2.3 The regression coefficient is modeled as a function of time using
restricted cubic splines

In this paragraph, we define restricted cubic splines in the context of a generic continuous variable. Cubic splines are
a method to represent nonlinear relationships using a set of cubic polynomials, each over a different domain, to rep-
resent a continuous variable.17 Cubic splines require the analyst to specify a set of knots, which are specific values
of the continuous variable X . In practice, three, four, or five knots are often used. When three knots are selected, the
recommended locations of the knots are the 10th, 50th, and 90th percentiles of the continuous variable. When four
knots are used, the recommended locations are the 5th, 35th, 65th, and 95th percentiles of the continuous variable,
while when five knots are used the locations are often selected as the 5th, 27.5th, 50th, 72.5th, and 95th percentiles (we
refer to these as Harrell’s suggested knot locations, to distinguish them from those described below).17 A separate cubic
polynomial is fit in each of the intervals defined by the knots (with k knots there are k+ 1 intervals). The cubic poly-
nomials are fit such that the cubic polynomials meet smoothly at each of the k knots (eg, the polynomial in the first
interval and the polynomial in the second interval meet smoothly at the first knot). Cubic splines can behave poorly
in the tails (ie, before the first knot and after the last knot).17 Restricted cubic splines address this limitation by con-
straining the function to be linear in the tails. Given a continuous variable X and k knots t1, t2, … , tk, the restricted
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cubic spline function for X is f (X) = 𝛽0 + 𝛽1X1 + 𝛽2X2 + · · · + 𝛽k−1Xk−1, where X1 = X and for j = 1, … , k − 2, Xj+1 =(
X − tj

)3
+ − (X − tk−1)3

+
(

tk − tj
)
∕ (tk − tk−1) + (X − tk)3

+
(

tk−1 − tj
)
∕ (tk − tk−1) , where (u)+ =

{
u, u > 0
0, u ≤ 0 .

17

The definition and location of knots in the previous paragraph was in the context of a generic continuous variable.
When using RCS to model the effect of covariate on time, time is the variable whose relationship with the regression coef-
ficient is being modeled. As such, the knots are defined at specific event times. When using RCS to model a time-varying
covariate effect, the analyst must select the number and location of the knots. There is limited guidance on selecting the
number of knots. The number of knots selected should be influenced by the sample size or by the number of observed
outcome events. Hess7 suggested that three to five knots is usually adequate and that the knots be placed at quan-
tiles of the observed follow-up times (ie, considering both the censoring and event times). When using four knots, he
suggested using the 5th, 25th, 75th, and 95th percentiles of observed follow-up times, which differs slightly from the
percentiles suggested by Harrell above in the context of a generic continuous covariate (Harrell suggested equidistant per-
centiles). In contrast to this, Abrahamowicz et al9 suggested choosing the knots so that there are an approximately equal
number of outcome events within each interval (their suggestion was in the context of using regression splines, rather
than RCS).

2.4 Extensions to modeling the time-varying effect of multiple covariates

The methods described in Sections 2.1 to 2.3 permit for modeling the effect of one covariate as a function of time. Wynant
and Abrahamowicz18 found that it was important to account for the possible time-dependent effect of all covariates
when estimating the time-dependent effect of a main exposure of interest. Similarly, Buchholz and Sauerbrei13 state that
“spurious time-varying effects may also be introduced by mismodeling other parts of the multivariable model.” Thus,
it is important to be able to relax the proportional hazards assumption for multiple covariates simultaneously. The RCS
approach can be easily extended to use RCS to model the relationship between each regression coefficient and time. Using
RCS to model time-dependent effects for all covariates can result in a very complex model. Wynant and Abrahamowicz18

described a backwards selection approach that can result in a more parsimonious model. One begins by fitting the full
model in which time-varying effects are incorporated for all the covariates. Then, for each covariate, the full model is
compared to the model in which only that covariate is assumed to have a time-invariant effect and all the other covariates
are allowed to have time-varying effects. A likelihood ratio test is used to produce a P-value testing the null hypothesis
that the given covariate has a time-invariant effect. This process is done sequentially for all covariates and the model is
modified so that the covariate with the largest P-value (assuming it is >0.05) is assumed to be time-invariant. This pro-
cess is then repeated until all the obtained P-values are ≤0.05. When using FP, Sauerbrei et al19 described an algorithm to
(i) select covariates; (ii) select appropriate transformations for continuous covariates; (iii) select appropriate functions to
model time-varying covariate effects. It is important to note that the both the selection algorithm described by Wynant and
Abrahamowicz and by Sauerbrei et al allow for selection of both nonlinear effects (continuous covariates having a non-
linear relationship with the log-hazard function) and time-dependent effects (the log-hazard ratio varying as a function
of time).

2.5 Statistical software for implementing these methods

The methods described above can be implemented in any statistical software package that permits the inclusion of
time-varying covariate effects in the Cox regression model. In SAS, the methods can be implemented using the PHREG
procedure. A SAS macro for modeling time-varying covariate effects using restricted cubic splines is available from the
authors (contact: jiming.fang@ices.on.ca). A Stata function (stmfpt) has been developed by Patrick Royston (https://mfp.
imbi.uni-freiburg.de/software) to fit Cox models in which FPs are used to model time-varying covariate effects. This
function uses FP1 transformations to allow the log-hazard ratio to be a monotone function of time and FP2 transforma-
tions to allow the log-hazard ratio to be a non-monotone function of time. In the selection algorithm, the default FP1
transformation is the FP(0) transformation, in which the log-hazard ratio is a function of the logarithm of time.

In PROC PHREG in SAS, the ZPH option in the PROC PHREG statement allows for assessing the validity of the pro-
portional hazards assumption using weighted Schoenfeld residuals. This includes both a graphical assessment as well
as a formal statistical test of non-proportionality. The formal test is based on testing for a nonzero slope when fitting a

https://mfp.imbi.uni-freiburg.de/software
https://mfp.imbi.uni-freiburg.de/software
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univariate regression model in which the weighted Schoenfeld residuals are regressed on one of four transformations of
event times (the identity transformation, the logarithmic transformation, the complement of the Kaplan-Meier transfor-
mation, and the rank transformation).20 Similarly, the cox.zph function in the survival package for R tests the proportional
hazards assumption for a fitted Cox regression model.12

3 CASE STUDY: METHODS

We used data from a previously published study examining the effect of elevated cardiac troponin in patients with acute
heart failure syndromes.21 Cardiac troponins are heart muscle-specific proteins that are released during myocyte injury
and may indicate the presence of underlying ischemic heart disease. The presence of elevated cardiac troponin in acute
decompensated heart failure indicates heightened risk for adverse outcomes.22 However, the leakage of troponin during
cardiac events is most marked early after injury and diminishes over time. We used data on 12 705 patients aged ≥18 years
who presented to a hospital emergency department (ED) in Ontario, Canada with a primary diagnosis of heart failure.
Patients presented to hospital between April 1999 and March 2001 and between April 2004 and March 2007. Mortality
following ED presentation was determined through linkage with the provincial death registry. Subjects were followed
for up to 2 years and subjects were censored after 2 years if death had not yet occurred, as in the original study.21 Of the
12 705 patients, 4495 (35.4%) died within 2 years of ED presentation, with the remaining 64.6% of patients being censored
at 2 years.

We fit a Cox regression model in which the hazard of death was regressed on a binary variable denoting elevated
troponin in addition to the following variables: age, sex, transport by emergency medical services, systolic blood pressure,
heart rate, oxygen saturation, serum creatinine, serum potassium, use of metolazone, myocardial infarction, previous
heart failure, coronary artery bypass graft surgery, percutaneous coronary intervention, diabetes mellitus, hypertension,
active and metastatic cancer, unstable angina, stroke, functional disability, cardiopulmonary respiratory failure and shock,
pneumonia, chronic pulmonary obstructive disease, protein calorie malnutrition, dementia, trauma, major psychiatric
disorders, peripheral vascular disease, chronic liver disease, chronic atherosclerotic disease, valvular disease, and time
period of ED presentation (1999-2001 vs 2004-2007). As our focus was on modeling time-varying covariate effects, we
made the simplifying assumption that each continuous variable was linearly related to the log-hazard of death in all
regression models.

The proportional hazards assumption for the elevated troponin variable was rejected using a Kolmogorov-Smirnov
supremum-type test on 1000 resamplings of the cumulative sums of martingale residuals (P< 0.0001).23 We then applied
the methods described in Section 2 to model the time-varying hazard ratio for elevated troponin. We estimated the elevated
troponin hazard ratio at days 0 to 730 (ie, 2 years).

While our focus was on estimating the time-varying effect of elevated troponin on the hazard of mortality, we allowed
the effect of each of the other covariates to vary as a function of time. The same method was used to model the time-varying
effect of each covariate as was used for elevated troponin.

When using RCS to model the time-varying effect of elevated troponin we used three knots. The location of the knots
was selected so that there was an approximately equal number of outcome events within each of the four intervals (we
thus followed Abrahamowicz’s suggested location of knots when using regression splines in a similar context). Note that
using Hess’s suggestion to determine the knot locations based on the percentiles of survival time would not work well in
our setting as 65% of the subjects were censored at 2 years, and thus had survival times of 730 days.

FPs require that all values of the variable under consideration (in this case, time) be strictly positive. Thus, when using
FPs, subjects who had a survival time of 0 (ie, who died on the day of ED presentation) had their survival time changed to
0.5 (ie, they were recorded as having died a half-day after ED presentation). The Stata function stmfpt was used to select
the FP transformations. This function requires that time is divided up into intervals. We used intervals of length 5 days.
Once the final model had been selected we refit the final model using PROC PHREG in SAS, which does not require that
the time scale be divided into intervals.

Ninety-five percent confidence intervals for each day-specific hazard ratio (from day 0.5 to day 730, in increments of
1 day) were computed using model-based standard errors.

For comparative purposes, we examined two other methods for modeling the time-varying effect of elevated troponin.
First, we allowed the log-hazard ratio to vary as a linear function of time. To mirror what was done above, the log-hazard
ratio for each covariate was allowed to vary as a linear function of time. Second, we partitioned the time axis into four
intervals of equal length: date of ED presentation to 6 months, 6 to 12 months, 12 to 18 months, and 18 to 24 months.
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We then fit a model in which the log-hazard ratio was constant within each of these four time intervals. This “piecewise
proportional hazards model” was proposed by Moreau et al24 as a test of the proportional hazards assumption. Quantin
et al5 compared the use of the piecewise proportional hazards model with that of an approach that used regression splines
for modeling time-varying effects. To reflect what was done above, we forced the log-hazard ratio for each of the model
covariates to be constant within each of these intervals, but allowed the log-hazard ratios to vary across intervals.

We also examined the sensitivity of the RCS results to the number of knots and the method for selecting the location
of the knots. We considered three different methods for selecting the location of the knots: (i) the knots were selected
so that there were an equal number of deaths within each interval; (ii) the knots were placed so that adjacent knots
were equidistant (ie, so that tj+1 − tj = d, j = 1, … , k − 1); (iii) using the percentiles of observed times of death for those
subjects who died. When using percentile-based locations for the knots, we used Harrell’s suggested percentiles. We did
not use Hess’s suggestion to place knots at specified percentiles of the observed survival times due to the large percentage
of subjects who were censored (65%) and who thus had survival times of 730 days. We also conducted analyses with 3, 4,
and 5 knots, for a total of 9 analyses (3 methods for selecting the locations of the knots × 3 different numbers of knots).

4 CASE STUDY: RESULTS

The time-invariant troponin hazard ratio from a Cox model that assumed a proportional hazards effect for elevated tro-
ponin was 1.47 (95% confidence interval: 1.35-1.59). Thus, over the course of follow-up time, an elevated troponin at ED
presentation was associated with a 47% increase in the instantaneous hazard of death.

The time-varying hazard ratio for elevated troponin for each of the three methods (linear relationship, RCS, FP)
are reported in Figure 1, both without the associated 95% confidence intervals (left panel) and with the associated 95%
confidence intervals (right panel). When using the FP method, the selected FP transformation was the FP1(0)

F I G U R E 1 Comparison of different time-varying hazard ratios
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T A B L E 1 Measures of model fit for different regression models

Model Model df Deviance AIC BIC

Constant hazard ratio 35 80 892.525 80 962.525 81 186.900

Log-hazard ratio a linear function of time 70 80 766.060 80 906.060 81 354.811

Restricted cubic splines to model log-hazard ratio 105 80 664.393 80 874.393 81 547.519

Fractional polynomials to model log-hazard ratio 46 80 729.062 80 821.062 81 115.955

Piecewise constant hazard ratio 140 80 692.439 80 972.439 81 869.940

transformation. Thus, the regression coefficient for elevated troponin varied as a function of the logarithm of time. The FP
analysis indicated that initially the hazard ratio for elevated troponin was very high (hazard ratio = 3.5) and that it then
decreased rapidly, until about 6 months, after which the rate of decrease was substantially attenuated. The RCS analysis
indicated that the hazard ratio for elevated troponin followed an approximately J-shaped relationship. The hazard ratio
was initially high (2.0), decreased to a nadir around 10 months, and then increased gradually from that time onwards. In
contrast to these two analyses, the analysis that assumed that the log-hazard ratio was a linear function of time indicated
that the initial hazard ratio was modest (1.76) and then decreased over time.

The deviance (−2 log-likelihood), Akaike’s information criterion (AIC), and Bayesian information criterion (BIC) for
each of the models are reported in Table 1. AIC = deviance+ p, while BIC = deviance+ p × log(d), where p is the number
of model parameters and d is the number of deaths that were observed to occur.25 Given the large number of model
parameters (range: 35-140) and the large number of deaths that occurred (4495), BIC may be overly conservative, and we
will focus on the AIC in comparing the different models. The AIC ranged from a high of 80 972.439 (model with piecewise
constant hazard ratio) to a low of 80 821.062 (the model using FPs to model the time-varying covariate effects). While the
deviance was lower for the RCS model than for the FP model, the larger number of model parameters (105 vs 46) resulted
in a greater penalty for the former model. Consequently, the use of AIC favored the FP model over the RCS model. It
should be noted that while the selected FP model used 46 degrees of freedom, a selection algorithm had been used and it
is not clear what the effect of such a selection algorithm would be on AIC. Note that the model degrees of freedom for the
FP model (46) reflects the degrees of freedom of final selected model. This does not reflect the fact that at each step of the
selection algorithm, 44 transformations were considered for each time-dependent effect. A reviewer suggested that for
each selected variable, one could add one degree of freedom for the choice between an FP1 and an FP2 transformation
and an additional degree of freedom for the choice of specific transformation within either the FP1 or FP2 families of
transformations. Subsequent research is necessary to determine how best to inflate the apparent degrees of freedom to
account for the selection process.

The time-varying hazard ratios from the nine analyses that varied the number of knots for the RCS and how the
locations of the knots were selected are reported in Figure 2. Neither the number of knots nor how the locations of
the knots were selected had a meaningful effect on the qualitative interpretation of the pattern of change in the haz-
ard ratio for troponin over time. The AIC statistics for the nine different RCS models are reported in Table 2. For a
given method of selecting the locations of the knots, AIC decreased with a decreasing number of knots. AIC was low-
est with 3 knots chosen so that there was an equal number of deaths per interval (however, the AIC for the model with
3 knots chosen using equidistant percentiles of event time was very similar). The two curves (5 knots chosen for an
equal number of events in each interval and 5 knots chosen using equidistant percentiles of event times) that were most
different from the other seven curves were from models that had relatively little support compared to the models with
3 or 4 knots.

When we fit the model that assumed a piecewise constant hazard ratio for elevated troponin, the estimated hazard
ratios were 1.78 (95% CI: 1.59-1.99) over 0 to 6 months, 1.06 (95% CI: 0.87-1.29) over 6 to 12 months, 1.30 (95% CI: 0.98-1.74)
over 12 to 18 months, and 1.21 (95% CI: 1.01-1.46) over 18 to 24 months. These estimated hazard ratios display a pattern
that is similar to the relationship identified using RCS above.

We used the Kolmogorov-Smirnov supremum-type test on 1000 resamplings of the cumulative sums of martingale
residuals to assess the validity of the proportional hazards assumption for all model covariates. In addition to elevated tro-
ponin, 11 variables were identified for which the proportional hazards assumption was violated: systolic blood pressure
(P< 0.0001), transport to hospital by emergency medical services (EMS) (P< 0.0001), heart rate (P< 0.0001), pneumonia
(P< 0.0001), male sex (P = 0.0070), oxygen saturation (P< 0.0001), myocardial infarction (P = 0.0200), cardiopulmonary
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F I G U R E 2 Comparison of different methods for selecting knots for RCS

T A B L E 2 AIC statistics for the nine different RCS models

Method to select location of knots

Number of knots Equal number of deaths per interval Equidistant knots Equidistant percentiles

3 80 874.393 80 886.104 80 875.787

4 80 906.441 80 921.564 80 905.902

5 80 923.246 80 955.543 80 917.574

respiratory failure and shock (P = 0.0060), renal failure (P = 0.0020), dementia (P = 0.0450), and metastatic cancer
(P = 0.0160).

The FP selection algorithm identified nine covariates (apart from elevated troponin) that displayed a time-varying
covariate effect: systolic blood pressure, transport to hospital by EMS, heart rate, history of pneumonia, male sex, history
of heart failure, history of psychiatric disorder, history of hypertension, and oxygen saturation. Transport to hospital by
EMS used the FP(−0.5, 3) transformation, while history of hypertension used the FP(−2) transformation. The other seven
covariates used a FP(0) transformation. Note that the FP selection algorithm uses the FP(0) transformation as the default
time-varying FP1 transformation (ie, that the log-hazard ratio is a logarithmic function of time). The selected function
relating the log-hazard ratio to time for each covariate is reported in Table 3. The relationship between time and the
time-varying hazard ratio for these nine covariates are displayed in Figure 3. Estimates of the time-varying hazard ratio
obtained using both FPs and restricted cubic splines are illustrated in this figure.

Note that there were five variables that were identified as violating the proportional hazards assumption using the
supremum-type test that were not identified as such using the FP selection algorithm (myocardial infarction, cardiopul-
monary respiratory failure and shock, renal failure, dementia, and metastatic cancer). Similarly, there were three variables
that were identified as having time-varying effects using the FP selection algorithm that were not identified as such using
the supremum-type test (history of heart failure, history of psychiatric disorder, and history of hypertension). This differ-
ence likely reflects the fact that different methods for testing the proportional hazards assumption have different statistical
power.26

The confidence intervals reported above were constructed using normal-theory methods based on model-based esti-
mates of SEs. We conducted a secondary set of analyses to examine the degree to which these model-based confidence
intervals reflected the variation induced by the selection process. For computational reasons, we used a simplified model
in which only the effect of elevated troponin was allowed to vary as a function of time. The remaining covariates were



620 AUSTIN et al.

T A B L E 3 Function describing the log-hazard ratio as a function of time for the
variables identified as having non-proportional effects using the FP selection algorithm

Variable Log-hazard ratio as a function of time

Elevated troponin 0.949− 0.122log(t)

Transport by EMS −0.072− 1.350t−0.5 − 0.000000001t3

Systolic blood pressure −0.025+ 0.002log(t)

Heart rate 0.014− 0.003log(t)

Pneumonia 0.576− 0.095log(t)

Heart failure −0.121+ 0.058log(t)

Male sex −0.229+ 0.063log(t)

Psychiatric disorder −0.225+ 0.113log(t)

Hypertension −0.151− 0.297t−2

Oxygen saturation −0.026+ 0.004log(t)

F I G U R E 3 Time-varying hazard ratios for other covariates

assumed to have time-invariant effects. For both the RCS approach and FP approach, we used bootstrap-based methods
to estimate the SEs of the estimated log-hazard ratios at each time. For the FP approach, we drew 200 bootstrap samples
and applied the FP selection algorithm in each bootstrap and then estimate the log-hazard ratio at each time (day 1 to
day 730) in each bootstrap sample. Then, at each day (day 1 to day 730), we computed the SD of the estimated log-hazard
ratio across the 200 bootstrap samples and used this as an estimate of the standard error of the estimated log-hazard
ratio obtained in the original sample. Confidence intervals were then constructed using normal-theory methods. For the
RCS method, the identical approach was used. We also examined a second bootstrap approach for the RCS method. In
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F I G U R E 4 Comparison of model-based and bootstrap confidence intervals

this second approach, we drew 2000 bootstrap samples and computed bootstrap percentile-intervals using the 2.5th and
97.5th percentiles of the estimated hazard ratio across the 2000 bootstrap samples. Results are reported in Figure 4. The
left panel has results for the RCS method while the right panel has results for the FP approach. In each panel, confidence
intervals constructed using bootstrap methods are compared with conventional model-based standard errors.

For the RCS analysis, there was very good agreement between the three different sets of confidence intervals. When
comparing the model-based normal-theory confidence intervals with the normal-theory bootstrap confidence intervals,
the minimum and maximum differences in the widths of the confidence intervals across the 731 times were −0.022 and
0.028, respectively. When comparing the model-based normal-theory confidence intervals with the bootstrap percentile
confidence intervals, the minimum and maximum differences in the widths of the intervals were−0.022 and 0.018, respec-
tively. When comparing the normal-theory bootstrap confidence intervals with the bootstrap percentile intervals, the
minimum and maximum differences in the widths of the intervals were −0.033 and 0.031, respectively. For the FP anal-
ysis, the minimum and maximum differences in the widths of the confidence intervals were 0.052 and 3.252, while the
median difference was 0.139 (25th and 75th percentiles: 0.094 and 0.167). The greatest differences in the widths occurred
at the extremes of time. Thus, there is some evidence that, in this specific setting, the model-based standard errors for the
selected FP model do not adequately reflect the true sampling variability that is induced by the FP selection algorithm.

5 DISCUSSION

We described two methods, the first based on FPs and the second based on RCS, to model hazard ratios as a smooth
nonlinear function of time.

There are advantages and disadvantages to each method. A limitation of the RCS method is that it requires selecting
both the number of knots and the location of the knots. In our application, we found that the estimated time-specific



622 AUSTIN et al.

hazard ratios were relatively insensitive to these choices. However, this may not be so in all applications (however, it has
been suggested that, as long as the location of knots are chosen sensibly, the location of knots will have a minimal impact
on the subsequent analysis17). In contrast to this, the FP method provides a structured procedure for choosing between the
44 different FP1 and FP2 transformations. An advantage to the FP method is that the available transformations include
the logarithmic transformation, which was found to work well in our application. A drawback to the FP method is that
it is substantially more computationally demanding. Fitting the model that used RCS to model time-varying effects for
all covariates required approximately 3 hours and 40 minutes (using SAS), while the FP selection algorithm required
approximately 268 hours (using Stata) on the same computing environment.

In our application, the estimated hazard ratios from the FP approach are more clinically plausible than are those from
the RCS analysis. It is more likely that elevated troponins exert an initial strong effect which then declines over time. This
pattern of initial risk escalation with elevated troponin has multiple potential mechanisms, including acute cardiac injury
or ischemia, inflammatory cytokine release, and other early effects.27 From a clinical perspective, there is no rationale for
the troponin hazard ratio to decline to a nadir at 10 months and then to subsequently increase over time. Indeed, in the
context of non-ST-elevation myocardial infarction, another condition characterized by acute cardiac injury and troponin
release, an early acceleration of mortality was demonstrated in a merged analysis of 14 trials from the thrombolysis in
myocardial infarction (TIMI) investigators.28

The methods described in the current study are not novel. When using FPs to model time-varying covariate effects, our
approach was based on that described by Sauerbrei et al19 and described above. Similarly, Hess described methods to use
RCS to model time-varying covariate effects in the Cox model. Abrahamowicz et al9 used regression splines (which differ
from RCS) to model the hazard ratio as a flexible function of time. There is an approach to addressing non-proportionality
that we did not consider. An alternative approach is to stratify on the variable that violated the proportional hazards
assumption.15 In doing so, one is allowing the baseline hazard to vary across strata defined by levels of this variable.
However, in doing so, one is no longer able to estimate the effect of that covariate on the hazard function. When the
variable in question is the primary variable or exposure of interest, this option is not possible as one can no longer make
inferences about this variable.

In the current study, we have focused on methods to model the non-proportional effects of covariates as smooth func-
tions of time. We have not examined issues around simultaneously relaxing the assumption that a continuous covariate
is linearly related to the log-hazard of the outcome. Abrahamowicz and MacKenzie29 described methods based on regres-
sion splines to relax both the proportional hazards assumption and the assumption that covariates are linearly related
to the log-hazard function. Both Abrahamowicz and MacKenzie29 and Wynant and Abrahamowicz18 demonstrated that
estimation of nonlinear effects and time-dependent effects are dependent on one another and that mismodeling of one
aspect can lead to biased estimation of the other aspect. Similarly, as noted above, Sauerbrei et al19 describe how FPs can
be used to identify nonlinear transformations of continuous covariates and allow for non-proportional hazards.

In the current study we have focused on time-invariant covariates. Kooperberg and Clarkson30 extended the hazard
regression model, earlier developed by Kooperberg, to allow for the inclusion of time-dependent covariates. Heinzl et al31

described methods to use cubic spline functions to allow the hazard ratio for time-dependent covariates to vary as a
function of time. Wang et al32 described a method based on B-splines to model time-varying effects of time-dependent
covariates.

If one ignores the violation of the proportional hazards assumption and fits a model in which the effect of a covariate is
assumed to be constant over time, the resultant hazard ratio can be interpreted as the weighted average of the time-specific
hazard ratios, where the weights reflect the distribution of event times (not survival times).33 In our case study, the naïve
adjusted hazard ratio for elevated troponin when we assumed a time-constant hazard ratio was 1.47. The weighted average
of the time-specific hazard ratios obtained using the FP and RCS approaches were both equal to 1.44. We suspect that when
the proportional hazards assumption is violated and as the duration of follow-up increases, reporting a time-averaged
hazard ratio may be of less utility than reporting time-specific hazard ratios.

In the case study, we considered an alternative approach which involved partitioning time into distinct intervals
and allowing the hazard ratio to be constant within each interval. There are several limitations to this approach. First,
it involves categorizing time, which is an inherently continuous variable. In general, the categorization of continuous
variables has been criticized because of the inherent loss of information.17,34 Second, the resultant hazard ratio is a step
function of time. From a biological perspective step functions often lacks plausibility. In our context, it is unlikely that
the hazard ratio changes discretely at a given point in time and is then constant over the next duration of time. Third,
the choice of number of time intervals and their duration is somewhat subjective. We suspect that the estimated hazard
ratios using this approach are more affected by the choice of the number of intervals and their duration than the estimated
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hazard ratios obtained from an RCS analysis are affected the number and location of the knots. Quantin et al5 noted that
the use of the piecewise proportional hazard model can result in “jumpy” estimates that may be clinically implausible
and that the results may depend on the number of time intervals and how they are constructed.

When including continuous variables as predictors in regression models (eg, age), analysts are increasingly encour-
aged to not categorize the variable and also to not assume a linear relationship between the continuous predictor and
the outcome.16,17,34 Categorization entails an implicit loss of information and imposes an assumption that the underlying
relationship involves a step function, which is often clinical implausible. Similarly, imposing an assumption of linearity
is often unnecessarily restrictive. Consequently, authors are increasing using flexible methods such as RCS and FPs to
allow for nonlinear association between predictors and outcomes. The methods that we have summarized in this article
allow authors to extent these flexible modeling methods to time-varying covariate effects, not just the effect of covariates
on the outcome.

In conclusion, we have described two flexible methods to relax the proportional hazards assumption for a variable
in a Cox regression model. Both methods allow the estimated regression coefficient, and thus the hazard ratio, to vary
smoothly as a function of time. These methods permit a more detailed examination of the effect of a covariate on the
hazard function over time than more simplistic methods such as assuming that the log-hazard ratio is a linear function
of time.
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