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This study reports the first successful use of oral feeding dsRNA technique for functional
characterization of imaginal disc growth factors (IDGFs) genes (IDGF1, IDGF3_1,
IDGF4_0, IDGF4_1, and IDGF6) in melon fly Zeugodacus cucurbitae. Phylogenetic and
domain analysis indicates that these genes had high similarity with other Tephritidae fruit
flies homolog and contain only one conserved domain among these five genes, which
is glyco-18 domain (glyco-hydro-18 domain). Gene expression analysis at different
developmental stages revealed that these genes were expressed at larval, pupal, and
adult stages. To understand their role in different developmental stages, larvae were
fed dsRNA-corresponding to each of the five IDGFs, in an artificial diet. RNAi-mediated
knockdown of IDGF1 shows no phenotypic effects but caused mortality (10.4%), while
IDGF4_0 caused malformed pharate at the adult stage where insects failed to shed
their old cuticle and remained attached with their body, highest mortality (49.2%) was
recorded compared to dsRNA-green fluorescent protein (GFP) or DEPC. Silencing of
IDGF3_1 and IDGF4_1 cause lethal phenotype in larvae, (17.2%) and (40%) mortality
was indexed in Z. cucurbitae. IDGF6 was mainly expressed in pupae and adult stages,
and its silencing caused a malformation in adult wings. The developmental defects
such as malformation in wings, larval–larval lethality, pupal–adult malformation, and small
body size show that IDGFs are key developmental genes in the melon fly. Our results
provide a baseline for the melon fly management and understanding of IDGFs specific
functions in Z. cucurbitae.
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INTRODUCTION

RNA interference (RNAi) was simultaneously discovered as a
tool for functional genomics (Fire et al., 1998) and antiviral
resistance strategy (Waterhouse et al., 1998). Since then, it
has been explored and applied as an effective tool for the
control of aphids (Zhao et al., 2018; Tariq et al., 2019; Ullah
et al., 2020b), whiteflies (Grover et al., 2019), beetles (Mehlhorn
et al., 2020), and lepidopterans pests (Rana et al., 2020),
etc. Because of RNAi’s robustness and target precision, it has
lowered pesticide pressure on humans and the atmosphere
while minimizing negative effects on non-target and beneficial
insects. Furthermore, RNAi knockdown and knock-out variants
have opened new avenues in reverse genetics for functional
characterization of previously uncharacterized genes. Numerous
studies on RNAi use for transgenic insect resistance have been
reported, either in cellular cytoplasm (Chung et al., 2021) or
Chloroplast (Bally et al., 2018). Moreover, exogenous application
of dsRNA is effective against herbivorous insect pests, both
in the laboratory (San Miguel and Scott, 2016) and in field
trials (Mehlhorn et al., 2020). Additionally, RNAi also has
revolutionized sterile insect technique (SIT) through the use
of dsRNAs targeted at genes involved in fertility or fecundity
of insect pests (Darrington et al., 2017; Ullah et al., 2020b).
However, the selection of efficient target genes for RNAi-
mediated control strategy remains the pivotal player in the
overall success and efficacy (Scott et al., 2013; Xu et al., 2016).
In insects, the epithelial apical extracellular matrix (ECM)
contains many fibrous proteins and polysaccharides synthesized
or transmembrane, whose composition differs significantly, from
insect chitinase to plants cellulose (Cosgrove, 2005; Öztürk-
Çolak et al., 2016; Vuong-Brender et al., 2017). Exoskeleton
is essential for epithelial barrier formation, maintaining body
shape, homeostasis, and protect the insect from coming in
contact with agrochemical, predators, and parasitoids (Galko
and Krasnow, 2004; Yoshiyama et al., 2006; Turner, 2009;
Shibata et al., 2010; Uv and Moussian, 2010; Jaspers et al.,
2014). Many studies recently reported that ECM helps in the
shaping of different organs, like Drosophila wings (Fernandes
et al., 2010) and provide structural support to delicate internal
organs but also protects them against damage caused by various
environmental factors and microorganisms (Dittmer et al., 2015;
Mun et al., 2015).

Various genes involved in cuticular synthesis and maintenance
have been characterized (Pan et al., 2011). Among these,
imaginal disc growth factors (IDGFs), which belong to Chitinase
glycoside hydrolase 18 (GH18) family, are associated with insect’s
molting and cuticle maintenance (Zhao et al., 2020). IDGFs
were first identified from Drosophila imaginal disc cell cultures
by fractionating conditioned medium (Kawamura et al., 1999;
Zhu et al., 2008). IDGFs were confirmed to be the proteins
cooperating with insulin that promote cell lineages derived from
imaginal discs in Drosophila melanogaster (Kawamura et al.,
1999; Varela et al., 2002; Zurovcová and Ayala, 2002). RNAi
has been widely used to find out the functions of vital genes
in different insects of economic importance (Tomoyasu and
Denell, 2004; Chen et al., 2008; Gong et al., 2012; Asokan et al.,

2013; Zhang et al., 2013; Qi et al., 2015; Wang et al., 2017;
Ullah et al., 2020a). Recently, a study reported that silencing
of IDGF6 in Bactrocera correcta through RNAi significantly
decreases the expression of IDGF6, causes larval mortality
and wing malformation in adult flies (Zhao et al., 2020).
Similar reports using RNAi techniques for silencing essential
genes were recorded in severe phenotypes abnormalities in
different insect species (Zhu et al., 2008; Bellés, 2010; Scott
et al., 2013; Xi et al., 2015). Although in model insects
D. melanogaster, IDGFs have been reported systematically,
and specific functional information in Zeugodacus cucurbitae
are still unknown. In Drosophila, these five non-enzymatic
IDGFs (IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6) are
involved in the maintenance of ECM scaffold against chitinolytic
degradation, and plays a vital role in physiological processes
such as adult eclosion, development regulation, and blood sugar
reduction of insects (Galko and Krasnow, 2004). Among these
genes, the function of the IDGF4 gene has been recently described
in the defense barrier and development of Bactrocera dorsalis
(Diptera: Tephritidae) (Gu et al., 2019). However, very little
information is available on the rest of the member genes.
Targeting genes involved in cuticular formation may provide an
effective way for pest control.

Melon fly, Z. cucurbitae Coquillett (Diptera: Tephritidae) is
one of the most destructive pests that cause severe economic
loss to cucurbit crops (Gogi et al., 2009). Different researchers
reported its losses in various crops to range up to 30–100%
(Dhillon et al., 2005; Subedi et al., 2021). Researchers reported
many strategies to control fruit flies which includes pheromones
(Shelly et al., 2004; Panhwar, 2005), cultural practices (Gogi et al.,
2007, 2009), biological controls (Drew et al., 2003), lure mixtures
(Vargas et al., 2008, 2010), and hot water treatment (Panhwar,
2005). Insecticide applications are less effective due to larvae
developing and feeding inside the fruit, covered by fruit pulp,
and not exposed to direct insecticides (Yee et al., 2007; Gogi
et al., 2009; Sapkota et al., 2010). Also, insecticides contaminate
the environment, have a deleterious impact on predators and
parasitoids of insect pests, develop resistance, induces insect pest
populations and have maximum residue levels (MRLs) issues
(Desneux et al., 2007; Baig et al., 2009; Decourtye et al., 2013;
Gebregergis, 2018; Jactel et al., 2019; Ullah et al., 2019a,b).
Therefore, novel approaches such as RNAi will provide novel
ways to control Z. cucurbitae and provide insight into functional
genomics of the target genes in ECM formation.

In this paper, we cloned and identified full-length cDNA
of five IDGF family genes from Z. cucurbitae, which are
least characterized in Tehpritidae. We then analyzed gene
expression patterns in eight different developmental stages
of Z. cucurbitae using real-time quantitative PCR (RT-
qPCR). dsRNA-mediated RNAi technology was applied to
explore the function of five-member genes of IDGF family
in Z. cucurbitae at larval and adult stages. Knockdown of
IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6 genes led to various
types of developmental defects and mortality except IDGF1,
where the dsRNA treated larvae showed minimal mortality
and no visible phenotypes. Our data provide a baseline for the
role of IDGFs genes in developmental stages of Z. cucurbitae
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and identify the potential target for RNAi mediated pest
control strategy.

MATERIALS AND METHODS

Insects Rearing
Colony of Z. cucurbitae was reared for many generations in the
insect rearing room at 25 ± 1◦C and 75% relative humidity,
with a 14:10 h (light: dark) photoperiod at Hainan University,
Haikou, China. Larvae were fed with artificial food as described
previously (Liu et al., 2020). Fruit flies were reared on a ratio
of 3:1 of sugar and yeast for around 10–12 generations in
45 cm× 45 cm× 50 cm cages before the experiment to eradicate
local environmental impact.

Cloning of IDGFs Genes
To detect the expression pattern of five different genes
(IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6), total RNA
was isolated from eight different developmental stages of
Z. cucurbitae. Briefly, A total of ten individuals according to the
body size (Per replication: L2 20 larvae, L3-1 10 larvae, L3-2 10
larvae, P-E, P-M, P-L 5 pupae for each, A-E and A-M 2 adults for
each) were randomly collected and mixed for RNA extraction.
cDNA was synthesized using commercially available HiScript R©

III 1st Strand cDNA Synthesis Kit following the manufacturer’s
instructions. RT-qPCR was performed to verify IDGFs gene
fragment (Supplementary Table 3) from Z. cucurbitae using
Prime STAR R© HS DNA Polymerase (Takara, Japan) under the
following conditions: initial denaturation at 94◦C for 5 min;
followed by 30 cycles of Denaturation at 94◦C for 30 s, annealing
at 58◦C for 30 s, extension at 72◦C (according to the size of
each gene) and final extension at 72◦C for 5 min. Amplified
products were examined by 1.2% agarose gel electrophoresis and
purified using a Universal DNA Purification kit (Tiangen, China).
Amplified PCR products were cloned into a pMDTM18-T vector
(Takara, Japan), and verified by sequencing at Sangon Biotech
Company Shanghai, China.

Phylogenetic Analysis
We used MEGA 6.0 software to construct a phylogenetic tree
through the maximum likelihood method JTT matrix-based
model with 1,000 replications of bootstrap analysis (Tamura et al.,
2013). The full name of species used in this tree construction and
the short names used are all listed along with GenBank accession
numbers in Supplementary Table 1.

dsRNA Preparation and Feeding
dsRNA was synthesized using T7 RiboMAXTM Express
RNAi System (Promega, United States). Each primer used
for PCR contained a 5′ T7RNA polymerase binding site
(GAATTAATACGACTCACTATAGGGAGA) followed by the
sequence-specific for the target gene i.e., IDGF1, IDGF3_1,
IDGF4_0, IDGF4_1, and IDGF6 (Supplementary Table 3). These
primers were used to amplify the template for the synthesis
of forward and reverse RNA. dsRNA was purified according
to manufacturer’s instructions and the integrity and quantities

of all synthesized dsRNA products were determined by 1.2%
agarose gel electrophoresis. Their concentration was measured
using the NanoDrop2000 spectrophotometer. dsRNA of green
fluorescent protein (GFP) and DEPC was used as a negative
control. To investigate the biological functions of each chitinase
gene of Z. cucurbitae, dsRNA was fed to 2 days old third instar
larvae for 48 h and then shifted to the new food contain dsRNA
for another 48 h. Five biological replications were performed
with sixty individuals in each replicate. Each replicates fed with
6 g artificial food contained 60 µl dsRNA (1,000 ng/µl), dsGFP,
and DEPC. Larval body size, mortality, and phenotype were
examined 24 h post-feeding at each developmental stage till the
adult’s sexual maturity.

Detection of Gene Expression by
RT-qPCR
To understand the temporal gene expression profile of IDGF1,
IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6 of Z. cucurbitae, RT-
qPCR was performed at different developmental stages. RT-qPCR
was performed using SYBR R© Premix Ex TaqTM II (TliRNaseH
Plus) (Takara, Japan) on an ABI 7500 instrument (United States).
The PCR reaction includes 10 µl SYBER Green mix, 1 µl cDNA,
1 µl each of forward and reverse primers and 7 µl of ddH2O
with three technical and three biological replicates for each gene
expression. The elongation factor 1 alpha (EF1α) was used as
endogenous reference genes for data normalization, and a relative
transcript level of IDGFs was calculated with the 2−11Ct method
(Livak and Schmittgen, 2001). All the primers used in this study
are shown in Supplementary Table 3.

Silencing of Chitinase Genes of
Zeugodacus cucurbitae
To observe phenotype, third early-instar larvae (2 days old)
was fed with 6 g food mixed with 60 µl dsRNA or dsGFP
(1,000 ng/µl) or DEPC for 48 h and transferred to a new
artificial diet with the same treatment for another 48 h. After
96 h, larvae were shifted to soil for pupation. Two individuals
from each replication of each group were killed every 24 h
until the pupal stage to determine RNAi efficiency, while the
others continued to feed. Similarly, two individuals were killed
at the adult stage (24 h old), to test the RNAi efficiency. The
stability of dsRNAs in the artificial diet, 1 g of each diet was
collected 24 h post-feeding. The artificial diet was diluted in
50 µl distilled water, and the dsRNAs were observed in 1%
agarose gel electrophoresis. Mortality was recorded by counting
the flies number in each group after 24 h. The phenotype effects
were observed in each developmental stage until 10 days of the
adult’s emergence.

Statistical Analysis
Statistical analysis was performed to measure the significant
differences between each different group. Chitinase-like protein
expression was quantified in the larvae, Pupae, and adults treated
with dsRNA-GFP, DEPC, and gene-specific dsRNA. Statistical
significance of differences in gene expression levels among
samples was assessed using one-way ANOVA with a 0.05 level of
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FIGURE 1 | Phylogenetic analysis of IDGFs genes with model family Tephritidae (taxid: 7211) and Drosophilidae (taxid: 7214) are shown in the tree. The highlighted
part indicates our target genes. Tree indicates relationship between IDGFs gene and species tree. Maximum likelihood method was used to construct insects IDGFs
coding sequences phylogenetic tree. Complete details of all IDGFs are listed in Supplementary Table 1.

significance (95% confidence interval) GraphPad Prism 8.01 for
Windows (GraphPad Software, San Diego, CA, United States)1.

RESULTS

Characterization and Phylogenetic
Analysis of IDGFs of Zeugodacus
cucurbitae
Imaginal disc growth factors genes (IDGF1, IDGF3_1, IDGF4_0,
IDGF4_1, and IDGF6) were cloned from Z. cucurbitae
(Supplementary Table 2). They were compared with IDGF
genes with Tephritidae (taxid: 7211) and Drosophilidae
(taxid: 7214) as a model family (Supplementary Table 1).
The five IDGF genes were highly conserved and had

1www.graphpad.com

high homology with members of Tephritidae than
Drosophilidae (Figure 1).

Nucleotide sequence analysis shows that IDGF1 of
Z. cucurbitae had the maximum similarity with a homolog
Bison latifrons and B. dorsalis (92%) followed by Bactrocera oleae
(91%) and Ceratitis capitata (89%). Compared with similar in
Drosophila, the highest identity was recorded with Drosophila
virilis (69%). IDGF3_1 shows highest similarity with B. dorsalis
and B. latifrons (94%) followed by B. oleae (93%) and Rhagoletis
pomonella (91%). Compared with the similar Drosophilidae, the
highest identity was revealed with Drosophila hydei and D. virilis
(71%). For IDGF4_0, the maximum similarity was recorded with
B. latifrons and B. dorsalis (98%), followed by B. oleae (96%) and
C. capitata (92%). Compared to the similar in Drosophilidae, the
highest identity of IDGF4_0 revealed with D. hydei and D. virilis
(83%). Nucleotide sequence analysis revealed that the IDGF4_1
of Z. cucurbitae had highest identity with a homolog from
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FIGURE 2 | (A) Imaginal disc growth factors gene, also their domain architecture and motif in Z. cucurbitae. The deduced amino acid sequences were used to
predict the domain architectures of the five IDGFs genes using online conserved domain database (CDD) and presented through TBTool software. (B) Amino acid
sequence alignment of IDGFs was performed using ClustalW alignment method in MEGA7. In GeneDoc program, ClustalW alignment was used to shade the
identical and similar amino acids in the alignment. The conserved regions among five IDGFs sequences are tinted with red box. Dark shade indicates identical amino
acids and gray shade represents similar amino acids.

B. oleae (79%), B. latifrons (76%), C. capitata (72%), followed
by Rhagoletis zephyria and R. pomonella (71%). Compared
to the same Drosophilidae, the highest identity of IDGF4_1
revealed with Drosophila mojavensis (58%). Comparison of
nucleotide sequence within Tephritidae family revealed that
IDGF6 of Z. cucurbitae has high homology with B. dorsalis (96%),
B. latifrons (96%), followed by B. oleae, and C. capitata (94%).
In the family Drosophilidae, the highest identity of IDGF6 was
observed with D. melanogaster (77%).

Architectures of Domain and Catalytic
Motif of IDGFs in Zeugodacus cucurbitae
We used amino acid sequences of the five IDGFs genes,
i.e., IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6, for
domain architectures using pfam online tool (Figure 2A).
Our results show that all predicted amino acid sequences
contained ≥ 1 Glyco_hydro_18 superfamily domain (PFAM
accession: PF00704).
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FIGURE 3 | Temporal expression of eight developmental stages of Z. cucurbitae was determined, RNA was extracted from the whole body of flies in different
developmental stages including 2nd instar larvae (L2), 3rd early-instar larvae (L3-1), Third late instar larvae (L3-3), 1–2 days mixed pupae as early pupae (P-E),
5–6 days as mid pupae (P-M), and 7–9 days as of late pupae (P-L), 1–2 days adults as (A-E), and 10-day adults as (A-M). We had presented our results after
normalization against reference gene EFα1 as the relative expression. All IDGFs gene expression is relative to the gene expression of each gene in 2nd instar larvae.
One-way ANOVA with post hoc Tukey test was used to test the statistical significance *p < 0.05; **p < 0.01; ***p ≤ 0.001, ns: not significant.

In particular, IDGF3_1 had two copies of Glyco_hydro_18
superfamily domains, whereas the remaining amino acid
sequences, IDGF1, IDGF4_0, IDGF4_1, and IDGF6, had only
one copy. Sequence alignment showed that five IDGFs genes
have well-conserved regions, including the specific sites for
gene activity (Figure 2B). However, no chitin-binding domain
(CBD) was found at the C-terminus. Further, IDGF1 has
two N-glycosylation sites at positions 208 and 220 in the
N-terminal extracellular domain, while IDGF3_1 has three
potential N-glycosylation sites at positions 219, 665, and 791.
The IDGF4_0 has two N-glycosylation sites at positions 65
and 222, and IDGF4_1 also has two potential N-glycosylation
sites at positions 83 and 278 in the N-terminal extracellular
domain. IDGF6 has only one N-glycosylation site at position 233
(Supplementary Figure 1).

Temporal Expression Patterns of IDGFs
in Zeugodacus cucurbitae Wild-Type
Temporal expression of five IDGFs genes in eight different
developmental stages of Z. cucurbitae was determined using
qPCR. IDGFs genes varied expression in certain developmental
stages (t-tests: P < 0.05). We observed that the expression
of IDGF1 slightly increased in early larval instars and almost
tended to stabilize until the pupal stage. The IDGF3 significantly
increased in expression at the first two larval stages. IDGF4_0
significantly expressed in all stages. IDGF4_1 was significantly
expressed in larval and mid-pupal stage. While IDGF6 was
strongly expressed in pupal and adult stages only (Figure 3).
The expression pattern of IDGFs indicates their pivotal roles in
different developmental stages.

dsRNA-Mediated Knockdown of IDGFs
Genes in Zeugodacus cucurbitae
RNAi technique has been used to inhibit target gene expression
as a temporal knockdown strategy. Recently, RNAi techniques
are being used in many studies for the management of
different insects. Z. cucurbitae is an economically efficient
fruit fly that causes a risk to many crop production and
requires economically quarantine restrictions and eradication

techniques. We developed a dsRNA feeding method for
functional characterization of IDGF genes in Z. cucurbitae and
identifying potential genes for effective management strategy.
Compared to other strategies, dsRNA mixed with artificial
food (Asimakis et al., 2019), is a non-invasive process and
is less laborious in various systems, i.e., synthesized dsRNA
(Turner et al., 2006), siRNA (Wuriyanghan et al., 2011), virus-
derived RNA (Kumar et al., 2012), and transgenic hairpin RNA
(Baum et al., 2007).

In all functional studies, two control groups, i.e., dsRNA-
GFP and DEPC were used with no difference among these
two control groups as compared to wild-type, e.g., no
malformed wings, no pupal–adult malformation, and no
larval–larval lethality in both the control groups, indicating
that these phenotype abnormalities were related to the dsRNA
homology depended on IDGFs genes knockdown. After
knockdown for each gene, the expression level for other
genes was determined by qPCR, and no non-target effects
were observed, which prove the effectiveness of RNAi in
Z. cucurbitae (Figure 4).

dsRNA-IDGF1 Shows No Phenotypic
Defects in Zeugodacus cucurbitae
Significant difference with a control group in the expression level
of IDGF1 was observed 24 h post-feeding of dsRNA-IDGF1, also
a significant decrease in mRNA expression level was observed at
48, 72, 96, and 240 h. However, IDGF1 knockdown causes (10.4%)
mortality in Z. cucurbitae.

IDGF3_1 and IDGF4_1 Contribute to the
Larval–Larval Molt of Zeugodacus
cucurbitae
Severe developmental defects and phenotypic abnormalities
were observed when dsRNA-IDGF3_1 or dsRNA-IDGF4_1
were fed to the 2-day-old third instar larvae. Since these
genes are highly expressed in the larval stage (Figure 3),
therefore, the decrease in expression led to cuticular degradation
in old larvae, resulting in the hindrance of larval molting
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FIGURE 4 | RNAi suppresses only the target transcripts. (A) Larvae fed with dsIDGF1 and the other four genes are non-target transcript. (B) Larvae fed with
dsIDGF3_1. (C) Larvae fed with dsIDGF4_0. (D) Larvae fed with dsIDGF4_1. (E) Larvae fed with dsIDGF6. No effects observed on non-target transcript.

(Figures 5, 6). After feeding dsRNA-IDGF3_1, the highest
mortality recorded was (17.2%) at 24 h (Figure 7). The
pupae size of dsRNA-IDGF3_1 fed larvae reduced by 50% as
compared to the control group. The remaining individuals
completed metamorphosis into adults. Further, after feeding
dsRNA-IDGF4_1, the highest mortality (40%) was recorded at
24 h compared to dsRNA-GFP and DEPC, and about (20%)
individuals died and turned black with abnormal pigmentation.

These results suggest that both IDGF3_1 and IDGF4_1 play an
essential role in larval molting.

IDGF4_0 Is Required for Pupal–Adult
Molt of Zeugodacus cucurbitae
Individuals fed with dsRNA-IDGF4_0 exhibited phenotype at
pharate adult stage as compared to the control group. After
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FIGURE 5 | Relative expression pattern of IDGFs in different time intervals post feeding to dsRNA or dsGFP or DEPC were determined as mean (±SE) of the three
biological replicates, and two flies were used per pooled RNA sample with control as the calibrator, i.e., cDNA from non-RNAi flies (only fed on artificial diet with
DEPC-water and dsGFP). EF1α is used as the internal control. One-way ANOVA with post hoc Tukey test was used to test the statistical significance *p < 0.05;
**p < 0.01; ***p ≤ 0.001, ns: not significant.

FIGURE 6 | Phenotypes, abnormalities after feeding dsRNA of IDGFs
compared to control group dsGFP or DEPC in different developmental stages
of Z. cucurbitae. All Pictures were taken with a scale bar 200 µm. The Control
group represents either dsGFP or DEPC, and the Phenotype group represents
abnormalities post feeding dsRNA for each gene. In phenotypes groups
IDGF6 represents wings malformation in Z. cucurbitae, IDGF3_1 and IDGF4_1
represents larval lethal phenotypes and IDGF4_0 represents phenotype at
pupal–adult stage where flies fail to shed their old cuticle.

5–6 days of pupation, a mortality of 49.2% was recorded
(Figure 7). Furthermore, Z. cucurbitae failed to shed their old
cuticle, and the mature cuticle was visible under the old cuticle
resulting in the splitting of the old pronotal cuticle (Figure 6). In
comparison, no abnormalities were recorded in control groups,
either dsRNA-GFP or DEPC.

IDGF6 Is Required for Wings Formation
of Zeugodacus cucurbitae
When dsRNA for IDGF6 was fed to the third larval instar of
Z. cucurbitae no phenotype was observed in larval or pupal stage.
The larvae had completed the larval–larval and larval–pupal
molts; however, there were some notable differences during the
molts. The pupae usually contract their abdomens compared to
control (dsRNA-GFP or DEPC) to the same extent. The adult’s
eclosion was also the same as the control group. A remarkable
phenotype was observed at the adult stage, where the wings were
malformed and curled, which did not spread normally (Figure 6).
Approximately 90% of individuals with malformed wings died
within 10 days of emergence. The highest mortality rate (20.8%)
was recorded at 240 h post-feeding dsRNA-IDGF6 compared to
the control group (Figure 7). Moreover, no malformed wings
were observed in the control group in dsRNA-GFP and DEPC,
and all the flies lived normally.

DISCUSSION

Based on these results, we had applied the oral feeding dsRNA
technique for the first time in melon fly Z. cucurbitae to
know the specific function of IDGFs genes. IDGFs belong
from a poorly described GH 18 Chitinase family with proteins
without catalytic activity (Funkhouser and Aronson, 2007).
Using five IDGFs genes (mentioned above) nucleotide sequences
of Tephritidae, the Maximum likelihood method was applied
to get a phylogenetic tree, which shows a high similarity
with the homolog in other Tephritidae fruit flies (Figure 1
and Supplementary Table 1). Chitinase is known to degrade
chitin to the low molecular weight Chit oligosaccharides and
play an important role in the growth and development of
insects (Zhu et al., 2016). The number of chitinase family
genes in different insects ranges from 9 Acyrthosiphon pisum
to 24 in Tribolium castaneum (Zhu et al., 2008; Arakane and
Muthukrishnan, 2010; Nakabachi et al., 2010; Tetreau et al.,
2015; Omar et al., 2019). Zhao et al. (2018) reported that
plant-mediated RNAi of chitin synthase 1 (CHS1) gene in
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FIGURE 7 | Mortality rate (%) of Z. cucurbitae at different developmental
stages after being artificially fed with dsGFP or DEPC or dsRNA of IDGFs. The
letters (A–E) represents IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6. The
white portion represent larval stages, light gray indicates pupal stage, and dark
gray indicates adult stage of Z. cucurbitae. The values are presented as the
mean (±SE) of five biological replications (50 insects were used per replicate).
Treatments were compared using one-way ANOVA (Turkey’s test, p < 0.05).

Sitobion avenae causes ∼50% decreased expression, whereas
∼20% reduction was observed in number of aphids and ecdysis.
RNAi-mediated knockdown of MpNav gene expression caused
up to 65% mortality in 3rd instar nymphs and lowered the
longevity and fecundity in adult peach-potato aphid, Myzus
persicae (Tariq et al., 2019). Oral-delivery-mediated RNAi of
CHS1 causes mortality and also disrupted the adult longevity
and fecundity of the cotton-melon aphid, Aphis gossypii
(Ullah et al., 2020b).

Temporal expression analysis in eight different developmental
stages showed that these genes are highly expressed in different
stages: larval–larval, larval–pupal, and pupal–adults, which
indicate a vital role in the growth and development of these
stages. IDGF1 was expressed in all stages, mostly in larval stages,
and it’s silencing caused mortality, but no phenotypic effects
were observed. It would be an interesting study to compare the
impact of IDGF family knockdown effect on the anatomy and
histology of the melon fly. Furthermore, IDGF3_1 and IDGF4_1
were highly expressed in a larval stage, and silencing of both
of these genes caused lethal phenotype in larvae (Figure 6) and
caused mortality. Taken together, our results are consistent with
few previous studies focused on IDGFs role in insect molting.
A prior study on further vitro cell growth tests reported that
combined with the insulin, IDGF1 or IDGF2 proteins stimulated
the cultured imaginal disk cells growth (Hipfner and Cohen,
1999; Kawamura et al., 1999). Previously, it has been shown that
IDGF1 is expressed in the large salivary gland cells. Along with
IDGF3 its expression is lower as compared to IDGF2 and IDGF4
(Kawamura et al., 1999) in vitro cell growth tests combined with
the insulin revealed that IDGF1 or IDGF2 proteins stimulated
the cultured imaginal disk cells growth (Hipfner and Cohen,
1999; Kawamura et al., 1999). In a previous functional study of
IDGFs, genes reported that individually IDGF1 knocked down
through RNAi in a model specie Drosophila, shows narrowed
ECM thickness and displayed severe epidermal lesions in the
larvae (Pesch et al., 2016). Similarly, expression levels of IDGF3_1
after dsRNA feeding significantly decrease at 24, 48, 72, 96,
and 240 h post-feeding. Pesch et al. (2016) found that in
Drosophila, the IDGFs are essential for larval and adult molting.
dsRNA-mediated silencing of IDGF family genes resulted in
deformed cuticles, larval, and adult molting defects in Drosophila.
Individual IDGF3 knockdown via RNAi resulted in cuticle
molting defects (Zurovcova et al., 2019). In similar studies,
Espinoza and Berg (2020) found that overexpressing IDGF3 leads
to defects in the dorsal appendage with∼50% frequency.

Individual knockdown of IDGF4 in 3rd instar larvae through
RNAi led to reduced larvae’s survival rate under high temperature
and caused malformation as adults. This finding indicates the
role of IDGF4 in the defense barrier and development of fruit
flies (Gu et al., 2019). Several studies have mainly focused on
the function of IDGF4 in larval stages, while only two related
research articles were founded about another key developmental
stage: pupae. In T. castaneum, when dsIDGF4 injected either into
penultimate or to the last instar larvae shows normal pupation
but caused mortality during adult eclosion (Zhu et al., 2008). In
B. mori, proteins with a decisively different expression profile
among wild-type and scale-less wing mutants were verified and
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revealed that one IDGF gene was correlated to the differentiation
of scale cells and development (Shi et al., 2013). Likewise, in
homologs, specie B. dorsalis, dsRNA-IDGF4 feeding in artificial
food caused wings malformation and mortality (Gu et al., 2019).
Furthermore, in B. correcta, dsRNA-IDGF6 mediated strategy led
to reduced gene expression of IDGF6, resulting in larval death
and adult wing malformation. The knockdown of IDGF6 led to
decreased chitinase activity, resulting in stabilizing old cuticles
and reduced body size (Zhao et al., 2020). Pesch et al., reported
that IDGF6 RNAi-induced mutants showed high mortality, and
severe cuticle defects were observed in other mutants (Pesch
et al., 2016). IDGF6 is critical for larval cuticle barrier formation
and protection against invasive microorganisms and mechanical
stresses (Pesch et al., 2016). Therefore, IDGF6 may prove to be an
effective target for RNAi-based management.

In the current study, we observed differential responses to
dsRNA uptake. For example, in IDGF4_1, the gene expression
goes down in response to dsRNA feeding. However, the IDGF4_1
expression recovers 48 h after dsRNA feeding. This phenomenon
has been widely observed and attributed to various potential
mechanisms, including the mutations of target genes or core
RNAi machinery genes, enhanced dsRNA degradation, and lower
dsRNA uptake (Zhu and Palli, 2020). For example, The Western
Corn Cutworm (WCR) exhibited resistance to transgenic maize
expressing DvSnf7 dsRNA due to impaired luminal uptake. This
resistance was not DvSnf7 dsRNA specific, as indicated by cross-
resistance to all other tested dsRNAs (Khajuria et al., 2018).
The differential response of IDGF genes to the corresponding
dsRNA may provide an excellent tool to further demystify the
dsRNA resistance in insect pests. Overall, IDGFs can be used as
potential target genes for pest control because of their function
in different developmental stages. The malformation in wings,
larval–larval lethality and pupal–adult malformation and small
body size, and the highly conserved traits show that IDGFs are
key genes for the pest. Furthermore, our results will pave the way

for in-depth functional analysis of IDGFs family members and
identify suitable insect control strategies through RNAi.
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