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Abstract

Tactile stimuli can be distinguished based on their temporal features (e.g., duration,

local frequency, and number of pulses), which are fundamental for vibrotactile fre-

quency perception. Characterizing how the hemodynamic response changes in shape

across experimental conditions is important for designing and interpreting fMRI stud-

ies on tactile information processing. In this study, we focused on periodic tactile

stimuli with different temporal structures and explored the hemodynamic response

function (HRF) induced by these stimuli. We found that HRFs were stimulus-

dependent in tactile-related brain areas. Continuous stimuli induced a greater area of

activation and a stronger and narrower hemodynamic response than intermittent

stimuli with the same duration. The magnitude of the HRF increased with increasing

stimulus duration. By normalizing the characteristics into topographic matrix, non-

linearity was obvious. These results suggested that stimulation patterns and duration

within a cycle may be key characters for distinguishing different stimuli. We conclude

that different temporal structures of tactile stimuli induced different HRFs, which are

essential for vibrotactile perception and should be considered in fMRI experimental

designs and analyses.
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1 | INTRODUCTION

Blood oxygen level-dependent (BOLD) signals measured by functional

magnetic resonance imaging (fMRI) could be used to indirectly infer

neural activity. The waveform of an assumed hemodynamic response

function (HRF) plays a key role in fMRI analysis, which is regarded as

the vascular response evoked by a brief neural event (Boynton, Engel,

Glover, & Heeger, 1996). Studies found it varies in shape across corti-

cal regions (Handwerker, Ollinger, & D'Esposito, 2004; Puckett,

Mathis, & Deyoe, 2014) and ages (Liu, Gerraty, Grinband, Parker, &
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Razlighi, 2017), which potentially reflect different local distributions

of vascular anatomy and morphology. Incorrect assumptions about

HRFs can lead to substantial inference errors (Greve, Brown, Mueller,

Glover, & Liu, 2013; Liu, Duffy, Bernal-Casas, Fang, & Lee, 2017). Fur-

thermore, there has been increasing interest in characterizing the peak

amplitude, onset, and duration of evoked hemodynamic responses

across experimental conditions, which may be used to infer informa-

tion about intensity, onset latency, and duration of the underlying

neuronal activity (Lindquist, Loh, Atlas, & Wager, 2009). Studies using

visual stimuli of varying durations found HRFs exhibit nonlinearities

(Lewis, Setsompop, Rosen, & Polimeni, 2018). Shorter duration stimuli

can elicit larger and faster responses than would have been predicted

by a linear model. This means the hemodynamic response is also stim-

ulus dependent. Exploring the hemodynamic response properties in

different experimental conditions will be of increasing importance

when exploring the process of how humans perceive stimuli.

To date, most studies focused on estimating HRFs across visual

cortex (Puckett et al., 2014), frontal areas (Handwerker et al., 2004;

Taylor, Kim, & Ress, 2018), and subcortical areas (Lewis et al., 2018).

To our knowledge, few studies explored the properties of the hemo-

dynamic response induced by tactile stimuli. Touch has traditionally

been considered a spatial sense. Researchers have often studied brain

activity using stimulus with different spatial configurations, such as

somatotopic maps (Sanchez-Panchuelo et al., 2014; Sanchez-Pan-

chuelo, Francis, Bowtell, & Schluppeck, 2010). However, there are

aspects of touch that are unrelated to the spatial dimension, in partic-

ular its temporal precision and the putative functional role thereof. It

was reported that BOLD activation exponentially decreased due to

long-term tactile stimuli (up to 15 s) (Chung et al., 2015). Studies on

macaque monkeys shown that tactile stimuli can be distinguished

based on their temporal features, which are fundamental for

vibrotactile frequency perception (Harvey, Saal, Dammann, &

Bensmaia, 2013; Mackevicius, Best, Saal, & Bensmaia, 2012). The tem-

poral structures of tactile stimuli are important components in human

judgments of surface texture and object recognition (Yang et al., 2017;

Yu, Yang, Ejima, Fukuyama, & Wu, 2017). Human behavioral studies

found tactile frequency perception was similar to auditory frequency

perception, in which the duration of silent gap between successive

bursts was more important than underlying periodicity (Birznieks &

Vickery, 2017). In clinical interventions, tactile stimulation can enhance

sensorimotor function, and the results greatly varied across different

parameters, such as duration, frequency and amplitude (Lesemann, Reu-

ter, & Godde, 2015). However, how peripheral tactile stimulation trans-

lates into perception at the cortical level is still unknown.

Tactile information is transmitted from peripheral receptors to

the cuneate, thalamus, primary somatosensory cortex (SI) and second-

ary somatosensory cortex (SII) (Abraira & Ginty, 2013). Along this

path, thalamic and SI neurons mostly encode the physical features of

the stimulus, such as location, duration and frequency

(Sherman, 2016). In addition, sounds and vibrations may not be inde-

pendently represented and processed so that they could evoke

responses in the same area (Kayser, Petkov, Augath, &

Logothetis, 2005; Nordmark, Pruszynski, & Johansson, 2012;

Schurmann, Caetano, Hlushchuk, Jousmaki, & Hari, 2006). Recent stud-

ies reported that tactile stimulation could modulate activity in the tem-

poral lobes (Perez-Bellido, Barnes, Crommett, & Yau, 2018). In this study,

we focused on the basic tactile processing circuits, including the SI, SII,

and temporal lobe, and explored the hemodynamic response induced by

tactile stimuli of different frequencies and durations. We used periodic

stimuli (1 Hz) of the same intensity, in which local frequencies were dif-

ferent (continuous and intermittent stimuli). We hypothesize that the

HRFs in all regions of interest (ROIs) induced by two types of tactile

stimuli have different characteristics. The nonlinearities also exist in tac-

tile regions. In addition, duration maybe important component within a

stimulus cycle. Our findings will highlight the temporal features of a tac-

tile stimulus that should be considered when analyzing fMRI data.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty healthy participants participated in the experiments (7 females;

age range: 21–30 years old; mean age: 24.7 years old). Another eight

healthy participants performed the experiment at a higher resolution to

verify the results. All of them were right-handed according to the Edin-

burgh Handedness Inventory (Oldfield, 1971). The protocol and data

collection of the study were approved by the ethics committee of Capi-

tal Medical University in accordance with the declaration of Helsinki. All

participants provided written informed consent.

2.2 | Stimulus and tasks

Tactile stimuli were presented using a pneumatic air-jet stimulator sys-

tem, which could provide steady stimulus to fingers (Jia et al., 2020).

Five finger tips of the right hand were stimulated simultaneously in the

context of event-related paradigm (Figure 1a). The pressure of tactile

stimuli applied to the hand was controlled at 150 mN by adjusting the

input air pressure. To control the attentional state, the experiment was

divided into eight runs. Participants were asked to count the number of

trials in each run, in which comprised 29–31 stimulus trials with 2-s

periods of stimulation and a random interstimulus intervals (ISI) ranging

from 19 to 23 s (average is 21 s). In this manner, expectations could also

be avoided (Liu, Gerraty, Grinband, Parker, & Razlighi, 2017).

Eight types of stimuli were designed with an overall frequency of

1 Hz (Figure 1b). In addition, they were divided into two patterns. The

first pattern was continuous stimulus (c) with three durations (c3:

300 ms, c5: 500 ms, and c7: 700 ms). The second pattern was inter-

mittent stimulus (i) with a local frequency of 5 Hz and durations

matching the first group (i3, i5, and i7). Then, we added two supple-

mental conditions of intermittent stimulation to further explore the

influence of pulses number within one period to the hemodynamic

response. The first condition was stimulation with two pluses for

500 ms duration (i50), and the second condition was stimulation with

three pulse for 700 ms duration (i70).
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2.3 | Magnetic resonance imaging data acquisition
and preprocessing

The fMRI data were acquired using a 3.0-Tesla Siemens MAGNETOM

Prisma scanner to measure activation with a 64-channel head coil. An

interleaved T2*-weighted gradient-echo planar imaging (EPI) scan was

performed to acquire functional images covering the entire brain (repeti-

tion time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90�,

matrix = 64 × 64, voxel size = 3.5 × 3.5 × 4.2 mm, slice gap = 0 mm,

33 axial slices per volume, GRAPPA factor = 2). In verification experiment,

we used finer spatial resolution with matrix 64 × 64, 2 × 2 × 2.5 mm

voxel size, 25 coronal slices per volume, and other parameters were same

as main dataset. The phase-encode direction was set to left–right to avoid

wrap-around. T1-weighted magnetization-prepared rapid acquisition

gradient-echo (MP-RAGE) fine structural images of the entire head were

also acquired (TR = 2,300 ms, TE = 2.36 ms, TI = 900 ms, flip angle = 8�,

FOV = 256 × 256 mm, voxel size = 0.84 × 0.84 × 1.0 mm).

Preprocessing steps were carried out using the SPM12 software

(Wellcome Department of Cognitive Neurology, London, UK). The

processing of the fMRI data included slice timing correction, spatial

realignment, coregistration, normalization to Montreal Neurological Insti-

tute (MNI) space based on the average bold image resliced in realignment,

and smoothing with an isotropic Gaussian kernel of 8 mm full-width at

half-maximum (FWHM) for main dataset. There was no smooth for verifi-

cation data set. A general linear model (GLM) analysis was carried out to

estimate the activation induced by stimulus, which included six head

motion parameters as nuisance regressors.

2.4 | Dissimilarity analysis

The goal of the dissimilarity analysis was to investigate whether multi-

voxel patterns of activations associated with the stimulus types were

different. After GLM analysis, we extracted all estimated beta parame-

ters in each anatomical ROI. The stereotypical anatomical locations of

the SI (BA1, 2, and 3), superior temporal gyrus (STG), and SII were

identified using the automated anatomical labeling (AAL) template. SII

spherical ROIs with coordinates of (−53, −26, 20) and (53, −28, 22) in

MNI space with a radius of 15 mm were defined based on a meta-

analysis of all noxious stimuli (Duerden & Albanese, 2013). All the ana-

tomical ROIs were defined using WFU PickAtlas 3.0.5 (Maldjian,

Laurienti, Kraft, & Burdette, 2003). The representational dissimilarity

matrix (RDM) between each pair of stimulus types was calculated

using correlation distance based on beta values. Then, the RDM was

averaged in each ROI and statistically analyzed using paired t test to

test differences across brain areas.

2.5 | Analysis of peak activation and extent areas

We investigated the coordinates of the peak activation voxel in ana-

tomical ROIs to explore whether different types of stimulus could

induce different spatial configurations (p < .001, cluster corrected). In

addition, because the total volume across anatomical ROIs was differ-

ent, we analyzed the extent area using the relative volume of activa-

tion, not the absolute volume (activation volume). The number of

F IGURE 1 Experimental paradigm of
event-related design. (a) Example of two
event trails, which used 2-s stimulus
presentation and random rest intervals
(19–23 s). (b) Eight types of 1 Hz stimuli.
The naming rules are as follows: the first
letter represents the pattern of the
stimulus (c, continuous; i, intermittent),
and the digit represents the duration of

the stimulus
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activated voxels within each ROI were normalized by the total number

of voxels of the corresponding ROI (Akselrod et al., 2017). This

method measured the fraction occupied by a given stimulus type to

account for volumetric differences. In addition, based on a conjunc-

tion analysis, subregions that were tactilely driven by our stimulus

were further constrained using a spatial extent representing the inter-

section of all task conditions (p < .001, cluster corrected). These func-

tional ROIs were used for further analysis including only voxels that

showed significant responses to the task in all conditions.

2.6 | HRF deconvolution

A deconvolution analysis was performed between the full time-course

of each voxel and the stimulus timing waveform. We used both

unsmoothed and smoothed data to estimate HRF induced by eight

stimuli. The HRF was modeled by the sum of two gamma functions:

h tð Þ=A tα1−1βα11 e−β1t

Γ α1ð Þ −c
tα2−1βα22 e−β2t

Γ α2ð Þ
� �

ð1Þ

Six free parameters are assumed to be unknown, where A represents

the amplitude, αand βrepresent the shape and scale, respectively, and c

determines the ratio of the response to undershoot. An unconstrained

nonlinear search algorithm was used to identify the best fitting parame-

ters (MATLAB's fminsearch function) (Handwerker et al., 2004; Lindquist

et al., 2009; Liu, Duffy, et al., 2017; Shan et al., 2014). To assess the capa-

bility of estimation, the root-mean-square error (RMSE) was calculated

relative to the observed fMRI time-course.

The mean signal value during the first rest period was calculated as

the baseline value, and then each voxel within ROIs was estimated indi-

vidually. The percentage BOLD signal change at each time point was cal-

culated based on the baseline value (Shan et al., 2014; Wen, Liu, Yao, &

Ding, 2013). Then, the averaged hemodynamic responses and characteris-

tics were used for statistical analysis across stimulus types. We used the

following summary HRF characteristics: peak, defined as the maximum

signal change during the stimulus time window (30 s was used for this

study); peak time, the time taken from start time to the time when the

signal change reached its maximum value; FWHM; kurtosis and skew-

ness, which represent asymmetry or higher-order statistics of HRF. All

processes were performed using an inhouse MATLAB program.

Previous studies have shown that the hemodynamic response

exhibits nonlinearities across the visual cortex. The nonlinearity is rep-

resented by the shape of the HRF changing as the stimulus changes.

These changes are mainly reflected in the dynamics and amplitude of

the HRF. To explore nonlinearity in the tactile cortex, the characteris-

tics of the HRF were normalized by the stimulus duration and the

number of pulses within 1 s period (Lewis et al., 2018). If the normal-

ized index falls on the line y = 1, the hemodynamic response changes

linearly with the stimulus; otherwise, a nonlinear response exists. The

degree of nonlinearity was computed as the best-fit straight line to

the normalized index (i.e., steep negative slope = highly nonlinear,

slope of 0 = linear). To obtain confidence intervals and perform

statistical testing, 1,000 times bootstrap resampling was conducted

over subject. In addition, to explore the variation across characteris-

tics, stimulus duration, and number of pulses, characteristics were

fitted to topographic maps.

2.7 | Statistical analysis

SPSS version 23 (SPSS, Inc., Chicago, IL) was used for statistical analy-

sis. A paired-sample t test was performed to test averaged RDM

across each ROI (1,000 times bootstrap resampling was conducted

over subjects). In addition, repeated measures ANOVA were per-

formed when comparing extent areas and characteristics of HRF. Post

hoc Bonferroni-corrected pair-wise comparisons were used to assess

differences between levels of significant factors. The significance level

was set to α = 0.05 for both ANOVAs and post hoc tests. We also

assessed the sphericity and normality of the data. In case of violation

of sphericity, we conducted a Greenhouse–Geisser correction on the

ANOVA (Geisser & Greenhouse, 1958).

3 | RESULTS

3.1 | Different spatial activation configurations

We recorded the spatial coordinates of the peak activation voxel

(Table S1). There was no sequential arrangement across different

stimulus types. For stimulus c3, c5, c7, i3, i5, and i7, the extent areas

were also measured and compared by a two-way repeated measures

analysis of variance (ANOVA) with pattern (2 levels) and duration

(3 levels) as within-subject factors. The comparison was performed

separately for each ROI. A significant main effect of pattern was

found in all three ROIs (SI: p < .001, F (1, 19) = 37.768; STG: p < .001,

F (1, 19) = 54.013; SII: p < .001, F (1, 19) = 30.175). This result

suggested that the continuous stimuli significantly induced larger

extent than the intermittent stimulus (Figure 2a). However, there was

no significant main effect of duration.

3.2 | Dissimilarity analysis across areas

All voxels in anatomical ROIs (SI, STG, and SII) were extracted to

investigate multi-voxel activity patterns associated with stimulus

types (Figure 3a–c). In addition, we averaged the index across stimulus

types in each ROI. Results of paired t test showed significant higher

dissimilarity in the SI compared with other brain areas (1,000 times

bootstrap resample, p < .05), followed by STG, and SII (Figure 3d).

3.3 | Comparison of stimulus types

The time series of these significant activated voxels were extracted

for estimating the characteristics of the HRFs and were compared
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across stimulus types. All six free parameters of two gamma functions

were summarized in Table S2. We did the same two-way repeated

measures ANOVA for each characteristic respectively. For the first

factor pattern, results showed that there were significant main effects

when comparing peak (SI: p = .002, F (1, 19) = 12.358; STG: p < .001,

F (1, 19) = 20.630; SII: p < .001, F (1, 19) = 23.498), time to peak (SI:

p < .001, F (1, 19) = 29.388; STG: p < .001, F (1, 19) = 80.475; SII:

p < .001, F (1, 19) = 105.325), width (e.g., FWHM, SI: p = .002,

F (1, 19) = 13.215; STG: p < .001, F (1, 19) = 38.636; SII: p < .001,

F (1, 19) = 44.557), kurtosis (SI: p = .002, F (1, 19) = 12.812; STG:

p < .001, F (1, 19) = 40.862; SII: p < .001, F (1, 19) = 63.672), skew-

ness (SI: p = .015, F (1, 19) = 7.112; STG: p < .001, F (1, 19) = 21.916;

SII: p < .001, F (1, 19) = 43.543). These results suggested that the con-

tinuous stimuli induced a stronger and earlier hemodynamic response

than the intermittent stimuli. In addition, the HRF induced by

continuous stimulus was significant narrower, especially in STG and

SII (Figure 4d).

For the second factor duration, results of ANOVA revealed signif-

icant main effects on peak (SI: p < .001, F (2, 38) = 20.063; STG:

p < .001, F (2, 38) = 12.674; SII: p < .001, F (2, 38) = 13.367) and

width (SII: p = .005, F (2, 38) = 6.124). The paired comparison results

showed that the magnitude of the HRF increased with increasing

stimulus duration in all three ROIs (Figure 5d). In addition, the 700-ms

stimulus induced a longer width at half-maximum of the HRF than the

other stimulus in SII. Similar results were found using unsmoothed

main dataset and verification data set (Figure S1–S4).

Furthermore, we designed two supplemental intermittent stimu-

lus i50 and i70 and compared their induced HRF with i5 and i7. Each

pair had the same duration but different number of pulses within 1 s

period. All the characteristics were investigated, and paired-sample

t tests showed no significant differences between them. However,

differences remained when compared with c5 and c7.

3.4 | Nonlinear responses to brief stimulus

To assess the nonlinearity of the hemodynamic response across stim-

ulus durations and frequencies, we normalized the response by dura-

tion and number of pulse. Significant nonlinear responses were

observed in each ROI for all the characteristics (the normalized

indexes did not fall on the line y = 1, Figure 6a). The degree of non-

linearity was computed as the slope of the best-fit straight line. Boot-

strap 95% confidence interval (CI) of slope on peak was (−0.996,

−0.724) in SI, (−0.929, −0.786) in STG, and (−0.899, −0.781) in SII,

where zero is linear. For time to peak, CI of slope was (−1.185,

−1.029) in SI, (−1.201, −1.083) in STG, and (−1.212, −1.065) in SII.

Significant nonlinear were also observed in width (CI was [−1.234,

−0.930] in SI, [−1.312, −1.036] in STG, and [−1.282, −1.048] in SII),

kurtosis (CI was [−0.724, −0.513] in SI, [−0.647, −0.487] in STG, and

[−0.606, −0.482] in SII), and skewness (CI was [−0.747, −0.570] in SI,

[−0.747, −0.564] in STG, and [−0.690, −0.560] in SII).

In addition, topographic matrix of peak in each ROI as an example

were displayed in Figure 6b. As shown in the matrix, it was clear that

the normalized characteristic of the HRF decreased with increasing

stimulus duration and number of pulses within a period. Once again,

we could determine that stimuli with one pulse (continuous stimuli)

could induce a stronger HRF than stimuli with more than one pulse.

4 | DISCUSSION

To understand how signals are encoded to different types of tactile

stimuli, we investigated the hemodynamic response induced by peri-

odic tactile stimuli of the same intensity. We designed two patterns of

stimuli with the same overall frequency (1 Hz) but different local tem-

poral structures (continuous stimulus and intermittent stimulus with

local frequencies of 2.5, 3.3, and 5 Hz). In addition, each pattern had

three durations (300, 500, and 700 ms). First, we measured the spatial

F IGURE 2 Extent areas of the two patterns of stimuli and region
of interest (ROI). (a) The vertical axis represents the relative volume of
activation in each anatomical ROI. Black boxes are the extent areas
for the continuous stimuli, and red boxes are for the intermittent
stimuli. (b) Functional ROIs used in following analysis based on
conjunction analysis, which include primary somatosensory cortex (SI),
secondary somatosensory cortex (SII), and superior temporal
gyrus (STG)
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configuration, such as coordinates of peak activation and extent areas.

Second, we estimated the HRF characteristics based on

deconvolution of the sum of two gamma functions with six free

parameters (Handwerker et al., 2004; Lindquist et al., 2009; Liu,

Duffy, et al., 2017; Shan et al., 2014). Previous results showed that

this function has low parameter bias for event-related designs

(Lindquist et al., 2009). The current results contribute to the evidence

that the temporal structure of the stimuli is essential for vibrotactile

perception.

Our results clearly demonstrated that continuous stimuli induced

greater activation areas (Figure 2). In addition, continuous stimuli

induced a significant stronger and narrower hemodynamic responses

in all ROIs (Figure 4). Studies reported that the HRF variability could

be affected by neural factors, such as the distribution and number of

neurotransmitters and its receptors (Muthukumaraswamy, Evans,

Edden, Wise, & Singh, 2012). HRFs induced by continuous stimuli had

higher amplitudes because neurons fire more often. Different physio-

logical profiles and response properties of mechanoreceptors related

to continuous and intermittent stimuli may cause the variability of

hemodynamic response. Research using Optacon found that intermit-

tent stimulus evokes one spike per pulse in fast-adapting type I and II

tactile afferents without activating slow-adapting type I afferents

(Gardner & Palmer, 1989), which supports our results. Invasive studies

in animals may ultimately be needed to determine the exact neural

contributions to HRF. However, because the BOLD signal indirectly

probed neuronal activity, differences of HRF between stimuli are

F IGURE 3 Results of the dissimilarity analysis in different anatomical regions of interest. (a) RDM result of all voxels in SI. The value between
each pair of stimulus types (c, continuous; i, intermittent) was calculated using correlation distance based on beta values of GLM analysis.
(b) RDM result in the superior temporal gyrus (STG). (c) RDM result in SII. (d) Averaged RDM in each ROI
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more likely to reflect changes of vascular and metabolic events

because the relatively slow timescale over neuronal activation

(Uludag & Blinder, 2018). The hemodynamic response depends on

combined changes in cerebral blood flow (CBF), cerebral blood vol-

ume (CBV), and cerebral metabolic rate of oxygen (CMRO2)

(Buxton, 2012). Studies found the competition between CBF and the

CMRO2 responses related to the task demand (Taylor et al., 2018).

Although continuous and intermittent stimulus have similar temporal

span, the on/off time of local pulses within one period are different.

Stronger hemodynamic response of continuous stimuli perhaps indi-

cates robust blood flow and subsequent oxygen metabolism during

the brief stimulus. For intermittent stimuli, the mismatch of dynamics

F IGURE 4 The HRF between the two patterns. The average HRF in (a) SI, (b) STG, and (c) SII. The dots are the individual peak times of HRFs
from different subjects. (d) Estimated characteristics (peak, time to peak, width, kurtosis, and skewness) of the HRF. Black lines and dots represent
continuous stimuli, while red lines and dots represent intermittent stimuli

F IGURE 5 The HRFs across three durations. The average HRF in (a) SI, (b) STG, and (c) SII. The dots are the individual peak times of HRFs
from different subjects. (d) Estimated characteristics (peak, time to peak, width, kurtosis, and skewness) of the HRF. Black lines and dots represent
stimuli with the 700-ms duration, blue lines, and dots represent the 500-ms duration, and red lines and dots represent the 300-ms duration
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of CBF and CMRO2 may have caused more competition because

there are more on/off within one period.

Furthermore, the amplitude of the HRF gradually increased as

duration increased in SI, STG, and SII (Figure 5). This phenomenon has

been demonstrated in auditory pitch perception, where longer inter-

pulse durations received higher weights than short ones (Carlyon, van

Wieringen, Long, Deeks, & Wouters, 2002; Pressnitzer, Cheveigne, &

Winter, 2004). A previous study reported that the number of sup-

rathreshold voxels decreased during long durations of pressure stimu-

lation, which was opposite to our results (Chung et al., 2015).

However, the stimuli used in their study were up to 15 s, whereas,

they were within 1 s in our study. We hypothesize that there may be

a trend of growth followed by a decline at some time point, but

assessing this is not within the scope of this study and could be

explored in the future. This increase in amplitude may result from dif-

ferent total amounts of energy delivered by a stimulus. If the HRF is

an idealized impulse response function that is identical across stimuli,

this increase would be linear. However, when we normalized the

response by duration and number of pulses within a cycle, the results

showed a nonlinear response in all characteristics of hemodynamic

response in all the ROIs. In other words, the peak amplitude and

dynamics do not proportionately increase as the duration and number

of pulses increase (Figure 6a). Shorter and fewer stimuli elicit propor-

tionally larger responses. Nonlinearity has been observed in the visual

cortex (Lewis et al., 2018; Yesilyurt, Ugurbil, & Uludag, 2008), auditory

cortex (Soltysik, Peck, White, Crosson, & Briggs, 2004), and somato-

sensory cortex (Harrington & Downs, 2001; Nangini, MacIntosh, Tam,

Staines, & Graham, 2005). Studies used a nonlinear neuronal model

and have found it could not sufficiently explain the observed non-

linearity of HRF (Lewis et al., 2018). The current study does not pro-

vide sufficient data to discern possibly divergent responses between

metabolic demands and blood flow increases (Puckett et al., 2014).

Our research extended this nonlinear response to tactile related areas.

Although neural contribution and balance between vascular and

metabolic demands cannot be completely disentangled in our results,

we detected varied shapes of hemodynamic response induced by tac-

tile stimuli with different temporal features. In addition, we included

two supplemental stimuli i50 and i70 to further test whether the

shape of the HRF could be modulated by number of pulses within

one period (local frequency) at the same duration. The results

showed that even if their local frequency was different, the HRF

induced by them was similar and significant different from with

the continuous stimulus. Consistent with previous results, the

duration of a stimulus within a cycle was the key characteristic for

discrimination frequency rather than the local frequency

(Mackevicius et al., 2012). A behavioral study asked participants to

make a judgment on perceived stimuli with varied temporal struc-

ture (Birznieks & Vickery, 2017). The stimuli had identical dura-

tions, but the local frequency was changed. The results revealed

that the most essential feature determining tactile frequency was

the duration between successive pulses. Several previous studies

reported that early areas in the tactile circuits, such as the cuneate

nucleus (Douglas, Ferrington, & Rowe, 1978) and VPL (Vazquez,

Zainos, Alvarez, Salinas, & Romo, 2012), presented phase-locked

responses to the stimulus. However, this response was appreciably

diminished in SI and almost disappeared in neurons of SII

(Hernandez et al., 2010; Rossi-Pool et al., 2016), which is consis-

tent with results of the dissimilarity analysis, showing that the SI

had significant higher level of dissimilarity across the stimulus

types than the other brain areas (Figure 3). The pattern reflected

the progressive flow of information. The faithful representation

(high dissimilarity) was transformed to a more abstract representa-

tion (low dissimilarity), which seemed to extract and classify the

features of the stimulus.

There are some limitations to our study. First, in this study,

although participants could distinguish stimuli with different number

of pulses, this does not contradict the fact that the stimuli induced

similar HRFs. The participants may differentiate the stimuli by the dif-

ferent numbers of pulses. Previous studies pointed out that percep-

tual decisions seemed to build up across brain areas (Vazquez,

Salinas, & Romo, 2013). Information encoded within limited areas did

not entirely determine behavioral output. We need to further explore

the differences in the brain network induced by different stimuli. Sec-

ond, our study discussed only the positive peak of the HRF, but the

F IGURE 6 Normalized peak across different types of stimuli as an example. (a) Comparison across ROIs. (b) Topographic matrix in each ROI.
The horizontal axis is the duration of the stimuli, and the vertical axis is the number of pulses within a period
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poststimulus undershoot was also shown to be an important compo-

nent of the HRF (Siero et al., 2015). We could explore variability in

this component across stimulus types in future studies.

We conclude that this study characterizes the hemodynamic

response induced by different types of tactile stimuli across

tactile-related areas. Firstly, continuous stimulus induced stronger

and narrower hemodynamic response compared with intermittent

stimulus. Secondly, the stimulation duration within a cycle may be

a key component for distinguishing different stimuli. Nonlinearities

of hemodynamic response are also found in tactile areas, which are

related to stimulus duration and number of pulses. The competi-

tion between vascular and metabolic demand may be related to

different tactile stimuli, and affects the variation and nonlinearity

of HRF. We conclude that the temporal characteristics of tactile

stimuli are an important component for distinguishing different

stimuli. Future fMRI experimental designs and analyses should

consider the varied HRF in different brain areas and induced by

types of stimuli. In other words, if the temporal pattern of stimula-

tion is not a contrast of interest for a study, it should be held con-

stant across conditions.
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