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Abstract
Purpose  To train deep learning convolutional neural network (CNN) models for classification of clinically significant Chiari 
malformation type I (CM1) on MRI to assist clinicians in diagnosis and decision making.
Methods  A retrospective MRI dataset of patients diagnosed with CM1 and healthy individuals with normal brain MRIs 
from the period January 2010 to May 2020 was used to train ResNet50 and VGG19 CNN models to automatically classify 
images as CM1 or normal. A total of 101 patients diagnosed with CM1 requiring surgery and 111 patients with normal 
brain MRIs were included (median age 30 with an interquartile range of 23–43; 81 women with CM1). Isotropic volume 
transformation, image cropping, skull stripping, and data augmentation were employed to optimize model accuracy. K-fold 
cross validation was used to calculate sensitivity, specificity, and the area under receiver operating characteristic curve 
(AUC) for model evaluation.
Results  The VGG19 model with data augmentation achieved a sensitivity of 97.1% and a specificity of 97.4% with an AUC 
of 0.99. The ResNet50 model achieved a sensitivity of 94.0% and a specificity of 94.4% with an AUC of 0.98.
Conclusions  VGG19 and ResNet50 CNN models can be trained to automatically detect clinically significant CM1 on MRI 
with a high sensitivity and specificity. These models have the potential to be developed into clinical support tools in diag-
nosing CM1.

Keywords  Artificial intelligence · Chiari I malformation · Convolutional neural network · Deep learning · Magnetic 
resonance imaging

Abbreviations
CMI	� Chiari type I malformation
MRI	� Magnetic resonance imaging
CNN	� Convolutional neural network

Introduction

Chiari malformations are a group of disorders character-
ized by anatomical abnormalities of the craniocervical 
junction (CCJ) with involvement of the cerebellum and 
brainstem. Chiari malformation type 1 (CM1) is the most 
common Chiari malformation [1–3]. The precise fre-
quency of CM1 is not known; however, since the advent 
of MRI, CM1 has been increasingly detected with some 
studies estimating a prevalence of 1–3.6% [4, 5]. The 
precise natural history of CM1 has not been established 
and management is generally indicated for patients with 
severe symptoms, progressive neurological deficits, or 
those affected by significant syringomyelia with the goal 
of alleviating symptoms and preventing neurological dete-
rioration [6]. Diagnosis of CM1 rests on identification of 
displacement of the cerebellar tonsils below the foramen 
magnum [7]. Currently, it is most widely accepted that a 
herniation of 5 mm or more is the minimum criterion for 
diagnosis of CM1 [8–10]. More recently, there has also 
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been recognition of intermediate Chiari subtypes with 
clinical entities such as the Chiari 0 malformation that 
is not associated with any cerebellar tonsillar herniation, 
challenging the widely used 5 mm cutoff for CM1 [11–15].
There are other radiological findings that are known to 
be associated with CM1 such as syringomyelia, hydro-
cephalus, and skeletal anomalies such as platybasia and 
a hypoplastic posterior cranial fossa[16–18]. As there are 
no other tissue or blood biomarkers for CM1, diagnosis 
currently relies on neuroimaging primarily through MRI 
and identification of the known associated neuroanatomi-
cal anomalies.

Artificial Intelligence (AI) techniques have been applied 
to assist and improve the diagnosis of a number of patholo-
gies across a range of anatomical regions[19] with promising 
results, especially with regards to pathologies of neurosurgi-
cal interest [20]. In particular, the use of machine learning 
techniques in the application of image-recognition tasks 
in radiology is a promising emerging technology with the 
potential to drastically improve the efficiency and ability of 
radiology in the clinical setting [19]. In recent years, deep 
learning, an AI technique utilizing convolutional neural net-
works (CNN), has been shown to yield high sensitivity in 
automated detection of pathology on medical imaging with 
a similar (or even higher) performance to medical experts. 
A supervised learning approach is typically used to train 
CNNs where end-to-end labelled data is input into the net-
work including cases with a known diagnosis.

Deep learning algorithms and CNNs have been applied in 
research for radiological diagnosis of a number of patholo-
gies [21–26]; however, current literature on AI applications 
in CM1 is limited. Urbizu et al. [27, 28] proposed a diagnos-
tic predictive model based on machine learning, identifying 
and utilizing different anatomical morphometric parameters 
rather than the standard sole use of the measurement of ton-
sillar herniation. This is further evidence of the presence 
of other anatomical factors that could be important in the 
neuroradiological diagnosis of CM1 which may be too subtle 
for human detection but could be resolved by means of an 
AI-based data mining approach.

To our knowledge, there has not been a study applying 
a deep learning methodology in the automated diagnosis of 
CM1 in the literature and the present study aims to develop 
on this with the ultimate goal of expanding the use of AI in 
CM1 research and clinical applications. A supervised learn-
ing approach was utilized with end-to-end labelled MRI 
images used to train and subsequently test two CNNs. We 
also tested the effectiveness of different modifications to the 
CNN and input data for the optimization of the diagnostic 
performance. The use of a CNN in the analysis and auto-
mated diagnosis of CM1 can open the doors to developing 
AI-assisted clinical decision tools for controversial areas in 
the clinical management of CM1 such as management of 

oligosymptomatic patients, optimization of the surgical tech-
nique, and prediction of the clinical outcome and potential 
for post-operative recurrence.

Methods

Study participants

A total of 101 patients who had a diagnosis of CM1 from 
January 2010 to May 2020 with electronically accessible 
imaging and who underwent primary surgical intervention 
at our institution were retrospectively identified; a cohort 
of 111 patients with normal brain MRIs was also retrieved. 
Patients had been diagnosed and treated by practicing 
neurosurgeons and radiologists and as such there were no 
patients included with possible alternate diagnoses such a 
spontaneous intracranial hypotension. Normal brain MRIs 
were defined as individuals with no radiological intracra-
nial pathology as confirmed by certified radiologists (at 
least 5 years or more experience). To match the CM1 cohort 
with the normal participants’ cohort, the T1 fluid-attenuated 
inversion recovery (FLAIR) sequence in the sagittal plane 
was identified as the most consistently obtainable sequence 
between the two groups. Matching the sequences between 
the two groups maximized consistency of the resolutions of 
the images avoiding bias in the training of the CNN models.

Images were acquired on a 3 T MR unit (Siemens Mag-
netom Verio, Erlangen, Germany) with the following 
parameters: TR/TE/TI 2000/8.4/800 ms; flip angle 150°; 
field-of-view 240 × 240 mm2, slice thickness 4.5  mm; 
matrix 320 × 320. All imaging data were saved to secure 
private servers for the computational analysis. Since 2010, 
our institute has obtained consent from all patients undergo-
ing treatment for clinical research using their medical data 
approved by a clinical human research ethics committee. All 
participants included in this study had signed this consent. 
This study was approved by the University Human Research 
Ethics Committee.

MRI data pre‑processing

All MRI volumes were anonymized and transformed to 
isotropic volumes (1 mm3 voxel size) to homogenize the 
different spatial resolutions and orientations of the images 
as the images were acquired from multiple sites. Fol-
lowing the isotropic transformation step, volumes were 
aligned to a brain atlas using the Insight Toolkit (ITK) 
library. First, the ITK Multi-resolution Image Registra-
tion Method  with  Multi-resolution Pyramid Image Fil-
ter and Versor Rigid 3D Transform Optimizer was used to 
estimate the rotation, scaling, and offset parameters. Then 
the ITK Centered Transform was applied using only rotation 
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and offset parameters obtained from the Versor Rigid 3D 
Transform [29]. The co-registration to a brain atlas allowed 
for automatic selection of a single-central sagittal slice of 
each initial volume to be used in the CNN models (Fig. 1).

Image datasets

Four types of image dataset were compared to determine the 
best image format for the training of the neural networks. 
The training and testing dataset consisted of full images, 
cropped images,  skull stripped  full images,  and skull 
stripped cropped images. The full images were the whole 
single sagittal images automatically selected after the appli-
cation of the pre-processing pipeline. The cropped images 
contained an automatically selected 64 × 64 pixel section of 
the region of interest (coordinates mapped to the reference 
atlas volume) at the CCJ where herniation of the cerebellum 
into the foramen magnum occurs (Fig. 2). The CCJ region 
was selected automatically as the same image coordinates 
were utilized for the whole dataset after registration of the 
MRI volumes to the reference atlas volume. Skull stripped 
images were derived using the ITK filter “StripTsImageFil-
ter” [30, 31]. All images obtained for all four datasets were 
normalized to have the same pixel intensity value average as 

in the ImageNet dataset, thus allowing the use of pre-trained 
weights in CNN models.

Deep convolutional neural network models

The models used in this study were ResNet50 and VGG19, 
the most used CNN models in the biomedical sciences. Both 
models were initialized with ImageNet pre-trained weights, 
thus enabling transfer learning, i.e., a model that must be 
trained on different datasets is “transferred” to a different 
problem and set of information. This was particularly use-
ful given the small dataset available as transfer learning is 
proven to speed-up the training steps and improve the accu-
racy. Since the Chiari image dataset is very different from 
the ImageNet dataset (that largely consists of images of eve-
ryday scenes and not medical imaging), all the layers were 
trainable. In this way, the initial weights were used to extract 
the low-level features in the first layers whilst allowing the 
layers to be updated to better match low-level features of the 
MRI images, especially in consideration of the fact that no 
color information is contained in grey scale MRI images.

Each model was trained using the 135 training images 
and 34 validation images, in one image format selected from 
the four dataset types that had been derived (i.e., non-skull 
stripped full image, non-skull stripped cropped image, skull 

Fig. 1   Examples of an image 
cropped to 64 × 64 pixels of the 
craniocervical junction without 
skull stripping

Fig. 2   Examples of images following data augmentation in the starting dataset (original image is in the top left corner)
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stripped full images, and skull stripped cropped images). 
The number of epochs for each training process was 1000. 
Categorical cross entropy was used for the loss function. 
Only the best model weights were saved after each training 
epoch based on the value of the validation loss. Batch nor-
malization and a batch size of 16 were used to help reducing 
over-fitting as well as high dropout rates (0.5 and 0.8) on the 
last dense layer. The hyperparameters of the training process 
were fine-tuned through experimentation and it was found 
that an Adam optimizer with a learning rate of 1e-5 and a 
weights decay of 1e-6 gave better results.

Data augmentation

To improve the training process with a relatively small 
number of images, the training dataset was augmented by 
randomly shifting, zooming, rotating, and shearing the 
initial images. Brightness was also randomly changed on 
the original training dataset. The parameters used for the 
data augmentation were selected to emulate more positions 
and shapes of the cerebellar tonsillar herniation without an 
excess of deformation. To achieve this, a random rotation 
range of 15° clockwise and anticlockwise was performed, 
10 pixels for horizontal and vertical random shift, a zoom 
range of 5%, shear range of 1.2, and a brightness range from 
75 to 130% of the original pixel intensity value. Figure 2 
shows some examples of augmented images starting from 
one sample.

K‑fold cross validation

To evaluate the performance of the deep learning models, a 
testing dataset is randomly selected from the whole dataset 
and held out for evaluation of the performance of the model 
after it has been trained. Given the small sample size of our 
dataset, precision of the evaluation of the final accuracy of 
each model was prone to random bias. Small changes in the 
measured accuracy were mainly due to the random split of 

the training and testing dataset. Therefore, the k-fold cross 
validation method was used to estimate the precision of the 
model’s performance where k is an arbitrary number of ran-
dom partitionings of the initial dataset (k = 10 in this study). 
Within each fold, the dataset was split randomly into the 
training, validation, and testing subsets, i.e., 43 participants 
(20% of the dataset) were held out as a testing dataset; of 
the remaining 169 participants, 135 (64% of the dataset) 
were used for the training of the CNNs and 34 (16% of the 
dataset) for validation. A graphical representation of this is 
seen in Fig. 3. Since the split was random, the ratio between 
Chiari and Normal participants used for the training was not 
constant but still balanced for a binary classification task 
(ranging from a minimum of 56 Chiari cases with 79 normal 
participants to a maximum of 65 Chiari participants with 70 
normal participants).

Results

Table 1 shows the characteristics of the 101 participants that 
were included in this study. There was a preponderance of 
female participants (80.2%) which is not unexpected given 
the well-established increased prevalence of adult CM1 in 
females[32]. The age of the participants spanned from 5 to 
66 years with a median of 30 years (interquartile range from 
23–43 years). The age range of the normal participants was 
from 4 to 93 years (interquartile range from 29–66 years) 
with 63 females (56.8%) and 48 males (43.2%). The mean 
cerebellar ectopia was 10.7 mm with a range extending from 
4 to 24 mm. The patient with 4 mm of ectopia had a band 
of dura at the CCJ attaching to the cerebellar tonsils with 
evidence of CSF flow dysfunction at the CCJ on CSF flow 
studies and characteristic clinical features suggestive of a 
diagnosis of a CM1 given the underlying pathophysiology. 
The inclusion of this patient allows for recognition of a spec-
trum of cerebellar tonsillar herniation in Chiari malforma-
tions in the CNN models.

Fig. 3   Graphical representation of the k-fold cross validation technique (k = 10 in this study)
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Table 2 shows the initial testing of the CNN models that 
were used in this study with the corresponding dataset types. 
The ResNet50 model with a dropout rate of 0.5 achieved 
sensitivities ranging from 81.8 to 86.4% and specificities 
ranging from 71.4 to 95.2% (AUC 0.89–0.97). The VGG19 
model with a dropout rate of 0.5 achieved sensitivities rang-
ing from 81.8 to 86.4% and specificities ranging from 77.3 
to 86.4% (AUC 0.94–0.98). Amongst the two models, the 
cropped (64 × 64 pixel section of the CCJ) and non-skull 
stripped datasets were found to have the highest sensitivities 
and specificities. From this initial testing of different com-
binations of CNN models and starting image datasets, the 
VGG19 model with non-skull stripped and cropped dataset 
images set to a dropout rate of 0.8 was found to achieve 
the highest sensitivity and specificity of 95.5% and 100% 
respectively (AUC 1.0).

The tenfold cross validation performed on the VGG19 
model with the non-skull stripped and cropped dataset 
images achieved a sensitivity of 98.4% and a specificity of 
94.8% (AUC 0.99) (Table 3). Similarly, the calculated sen-
sitivity and specificity for the ResNet 50 model (also with a 
dropout rate of 0.8) from tenfold cross validation was 81.2% 
and 93.1% respectively (AUC 0.94).

The performance of both models was largely improved by 
data augmentation. Table 3 shows the tenfold cross valida-
tions results on validation and testing dataset for both mod-
els with and without data augmentation (using the cropped 
and non-skull stripped datasets) and Table 4 shows a tenfold 
cross validation run for VGG19 with optimized pre-process-
ing data settings. Whilst the specificity of the VGG19 model 
improved with data augmentation from 94.8% to 97.4%, the 
sensitivity decreased slightly from 98.4 to 97.1% (AUC 
0.99). Both the sensitivity and specificity of the ResNet 50 
model improved to 94.0 and 94.4% respectively (AUC 0.98).

Discussion

The application of deep learning CNNs in neuroradiology 
is an expanding area of research; however its validation in 
the automated diagnosis of neuroanatomical disorders such 
as CM1 is limited. This study aimed to apply and validate 
CNN models in automated diagnosis and identification of 
clinically significant CM1 to demonstrate the utility of deep 
learning in developing decision-making support tools for 
clinicians. We trained VGG19 and ResNet50 CNN mod-
els to diagnose CM1 on MRI (utilizing sagittal T1 FLAIR 
sequences) achieving a high level of sensitivity and speci-
ficity as validated with a tenfold cross validation. The CNN 
models were optimized by utilizing pre-processing image 
modification techniques including isotropic transformation, 
region of interest cropping, and data augmentation. The 
VGG19 model produced the best results with a sensitivity 

Table 1   Patient characteristics and presenting symptoms

Characteristic Value (N = 101)

Age (years)
Median (interquartile range) 30 (23–43)
Range 5–66
Gender (%)
Female 81 (80.2)
Male 20 (19.8)
Cerebellar ectopia (mm)
Mean (range) 10.7 (4–24)
Syringomyelia (%)
Present 36 (35.6)
Absent 65 (64.4)
Symptoms (%)
Headache 86 (85.1)
Limb pain 20 (19.8)
Hypoesthesia 17 (16.8)
Paresthesia 38 (37.6)
Limb weakness 10 (9.9)
Vertigo 20 (19.8)
Nystagmus 4 (4.0)

Table 2   Measured accuracy of different combinations of convolu-
tional neural networks and dataset settings

AUC​ area under receiver operating characteristic curve

CNN model Sensitivity (%) Specificity (%) AUC​

ResNet 50
Dropout rate 0.5
Non-cropped images
Non-skull stripped 86.4% 71.4% 0.89
Skull stripped 81.8% 90.5% 0.93
64 × 64 pixel cropped images
Non-skull stripped 86.4% 95.2% 0.98
Skull stripped 81.8% 95.2% 0.96
VGG19
Dropout rate 0.5
Non-cropped images
Non-skull stripped 86.4% 90.5% 0.97
Skull stripped 77.3% 100% 0.98
64 × 64 pixel cropped images
Non-skull stripped 86.4% 100% 1.00
Skull stripped 77.3% 100% 0.94
Dropout rate 0.8
Non-cropped images
Non-skull stripped 81.8% 100% 1.00
Skull stripped 77.3% 100% 0.97
64 × 64 pixel cropped images
Non-skull stripped 95.5% 100% 1.00
Skull stripped 72.7% 100% 0.95
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of 97.1% and specificity of 97.4% achieved when data aug-
mentation was used (AUC 0.99).

There are limitations in this study that should be consid-
ered with the interpretation of the results. The dataset of 212 
participants was small and limited to a single center, which 
limited the case numbers that were usable in the training, 
testing, and validation subsets and thus performing unsuper-
vised learning to look for clustering of neuroanatomical fea-
tures was unable to be performed. The small dataset size also 
prevented an analysis of unilateral or asymmetrical CM1 as 
the inclusion of stacks of images lateral to the midline sagit-
tal image in the pre-processing pipeline would introduce a 
degree of variability necessitating a larger number of par-
ticipants. The random splitting of the data for the cross vali-
dation also represented a potential source of random error; 
however, this was circumvented by use of the tenfold cross 
validation method with data augmentation. Thus, the final 
sensitivity and specificity rates achieved by the CNN models 
in this study were still high (97.2% for VGG19).

This study was also limited by the MRI sequence avail-
ability as we were restricted to using sagittal T1 MRI 
sequences for consistency between both the CM1 patient 
dataset and the normal brain dataset. This is partly due to the 
small sample size necessitating a more uniformly consist-
ent dataset to minimize any bias in the training of the CNN 

models. Amongst the datasets collected for this study, the 
T1 sagittal FLAIR sequence was most consistently avail-
able between CM1 and normal participants. Although an 
isotropic transformation was applied to the image datasets, 
the use of a single type of MRI sequence and anatomical 
plane represents a further restriction to the generalizability 
of this study.

The highest sensitivity and specificity were achieved in 
the VGG 19 model with the 64 × 64 cropped and non-skull 
stripped data augmented images (Table 2). Skull stripping 
with the ITK filter was found to crop out pertinent features 
at the CCJ (such as the tonsillar herniation) and hence dem-
onstrated inferior performance. The original rationale for 
testing skull-stripped images was to further enhance the 
accuracy of the models by eliminating regions of the head 
that are far removed from the region of interest. Skull strip-
ping with the ITK filter was found to also crop out pertinent 
features at the CCJ (such as the tonsillar herniation) and 
hence demonstrated inferior performance. This is not sur-
prising as it known that anatomical differences in the skull 
base or cranial vault are known to be important factors in 
the pathogenesis of CM1 [33, 34]. This highlights a need 
for new techniques that can incorporate the spinal content 
with the exclusion of the surrounding bone to improve the 
currently available skull stripping methodologies.

A review of the misclassified cases revealed that they 
were borderline cases of CM1 with evidence of crowding at 
the CCJ without overt tonsillar herniation on MRI. Figure 4 
shows an example of a normal patient MRI misclassified as 

Table 3   Comparison between 
ResNet50 and VGG19 with 
and without data augmentation 
(average results using tenfold 
cross validation)

AUC​ area under receiver operating characteristic curve

Model Data Aug-
mentation

Tenfold validation Tenfold testing Sensitivity Specificity AUC​

VGG19 No 95.3% 96.5% 98.4% 94.8% 99.3%
VGG19 Yes 97.4% 97.2% 97.1% 97.4% 99.2%
ResNet50 No 93.2% 86.7% 81.2% 93.1% 94.1%
ResNet50 Yes 92.6% 94.0% 94.0% 94.4% 98.3%

Table 4   Ten-fold cross validation values for CNN model VGG19 
with 64 × 64 cropped, non-skull stripped datasets with data augmen-
tation achieving the highest accuracy in testing

AUC​ area under receiver operating characteristic curve

Run Validation Testing Sensitivity Specificity AUC​

1 97.1% 97.7% 100% 94.0% 1.00
2 97.1% 100.0% 100% 100% 1.00
3 97.1% 97.7% 100% 96.0% 0.98
4 97.1% 95.3% 100% 94.0% 1.00
5 94.1% 95.3% 89.0% 100% 1.00
6 100.0% 100.0% 100% 100% 1.00
7 100.0% 97.7% 96.0% 100% 1.00
8 97.1% 100.0% 100% 100% 1.00
9 94.1% 95.3% 96.0% 95.0% 1.00
10 100.0% 93.0% 90.0% 96.0% 0.94

Fig. 4   Example of a normal MRI misclassified as Chiari
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CM1 by the models. Although there is no significant tonsillar 
herniation seen, there is suggestion of cerebellar crowding at 
the CCJ which we suspect is the reason for the misclassifica-
tion. Similarly, in Fig. 5, a CM1 patient was misclassified 
as normal with a similar appearance to the posterior fossa 
with no clear tonsillar herniation. In this case, a combina-
tion of the clinical history and review of the T2 sequence 
is what lead to the diagnosis of CM. T2 sequences allow 
for better delineation of cerebellar tonsillar herniation and 
posterior fossa crowding and would have been the preferred 
MRI sequence in this study although this sequence was not 
readily available between the CM1 and control groups. It is 
not surprising that the CNN model misclassified this case 
in the absence of clinical data given the equivocal appear-
ance of the posterior fossa on the T1 sequence. The fact that 
the misclassified cases were borderline lends weight to the 
validity of the trained CNN model as the misclassifications 
in the models only arose in truly equivocal cases.

The results of this study represent the first step towards 
development of an AI model that can assist clinicians in 
recognizing clinically significant CM1 and has potential 
to be developed into a tool for diagnosis, surgical outcome 
prognostication, developing optimal surgical techniques, 
and guiding management of recurrence. Clinical studies 
on these problems are difficult to execute and there are no 
highly powered studies to guide clinicians. The current 
VGG19 model could be augmented by incorporating clini-
cal outcome data, post-operative imaging, and post-operative 
outcomes that are matched to the input images to create a 
multifaceted clinical support tool. This data can be collated 
and unsupervised learning analyses using the models can be 
used to identify clustering of pertinent radiological and clini-
cal features to further elucidate the underlying pathophysi-
ology of disrupted cerebrospinal fluid circulation in CM1. 
The diagnostic scope of this model could also be further 
enhanced by including datasets of other structural pathologi-
cal entities to train the CNN to allow automated diagnosis of 
a range of other neuroanatomical anomalies.

Conclusion

In conclusion, the high sensitivity and specificity rates 
achieved in these CNN models represents a successful 
approach to automated recognition of clinically significant 
CM1 in MRI images. Whilst there are some limitations to 
the generalizability of the study, these results represent 
a starting point for further AI assisted research of CM1. 
Further studies including larger sample sizes, post-opera-
tive imaging, and clinical data are needed to improve the 
accuracy and generalizability of the models and to work 
towards developing a clinical support tool for managing 
CM1.
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